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RESUMO 
 

Associação genômica ampla de CNVs com características de desempenho em frangos  
 
A galinha (Gallus gallus) é uma importante fonte de proteína animal e é considerada um 

modelo biológico de pesquisa principalmente na área da genética. É notável que a produção de 
carne de frango tem extensa relevância na economia brasileira e mundial, consequência sobretudo 
da constante melhoria das características de desempenho. Neste sentido, a seleção de animais que 
apresentam tais características fenotípicas de interesse é fundamental. Nesta perspectiva, a 
identificação de variações genéticas e sua associação com características de importância 
zootécnica se apresentam como etapas cruciais para melhor compreensão dos mecanismos 
biológicos que controlam estas características complexas. Uma importante fonte de variação 
conhecida no DNA são as variações no número de cópias (CNVs), que podem contribuir 
significativamente com a variação fenotípica em diversas espécies. Neste contexto, foram 
utilizados os dados genotípicos de aproximadamente 1.500 animais de uma linha paterna de 
frangos de corte (TT), obtidos utilizando um chip de SNPs de alta densidade (600k, Affymetrix) 
para identificar regiões genômicas e genes candidatos associados à características de desempenho. 
Realizamos análises de associação genômica ampla (GWAS) baseadas em CNV usando o 
programa CNVRanger, ajustando um modelo linear misto, para identificar regiões no genoma 
associadas à: peso ao nascimento, peso aos 21 dias, peso aos 35 dias, peso aos 41 dias, peso aos 
42 dias, consumo de ração, conversão alimentar e ganho de peso. Segmentos CNV 
significativamente associados ao peso ao nascimento, peso aos 35, 41 e 42 dias e ganho de peso 
foram identificados. Após as análises de associação, foi feita a validação destes segmentos CNV 
signifcativos associados por meio da técnica de qPCR (PCR quantitativa). A busca por genes 
candidatos foi feita dentro de cada região genômica associada, considerando termos de Gene 
Ontology (GO) e também a informação da literatura. Foram identificadas novas regiões no genoma 
associadas a estas características e importantes genes candidatos para crescimento e 
desenvolvimento muscular, tais como KCNJ11, MyoD1 e SOX6, fornecendo novas informações 
para melhor compreeensão acerca da regulação do controle genético para desempenho em 
frangos.  

 
Palavras-chave: GWAS, Desempenho, CNVs, QTLs, qPCR 
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ABSTRACT 
 

CNV-based genome-wide association studies with performance traits in broilers 
 

Chicken (Gallus gallus) is an important source of animal protein, considered a biological 
research model in the genetics field and a species of considerable economic relevance worldwide, 
mainly as a consequence of constant improvement of performance traits. In this sense, selection 
of animals that present phenotypic traits of interest is fundamental. Therefore, the identification 
of genetic variations and their association with production traits of economic importance are 
crucial steps for a better understanding of the biological mechanisms that control these complex 
characteristics. An important source of known variation in the DNA are copy number variations 
(CNVs), which can contribute significantly to phenotypic variation in several species. In this 
context, genotypic data from approximately 1,500 animals from a paternal broiler line (TT), 
obtained using a high-density SNP array (600k, Affymetrix), were used to identify genomic 
regions and candidate genes associated with performance traits. We performed a CNV-based 
genome-wide association study (GWAS) using the CNVRanger software, adjusting a linear mixed 
model, to identify regions in the genome associated with birth weight, body weight at 21 days, 
body weight at 35 days, body weight at 41 days, body weight at 42 days, feed intake, feed 
conversion ratio and body weight gain. CNV segments significantly associated with birth weight, 
body weight at 35, 41 and 42 days and body weight gain were identified. After the association 
analyses, validation of these significantly associated CNV segments was performed by qPCR. The 
search for candidate genes was made within each associated genomic region, considering Gene 
Ontology (GO) terms and also the literature information. We identified novel genomic regions 
associated with these traits and important candidate genes for muscle growth and development, 
such as KCNJ11, MyoD1 and SOX6, with known role on chicken growth and muscle 
development, providing new information for a better understanding of the regulation of genetic 
control for performance in broilers. 

 
Keywords: GWAS, Performance, CNVs, QTLs, qPCR 
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1. INTRODUCTION 

Chicken is an excellent biological model organism (Wolpert, 2004; Ellegren, 2005; Stern, 2005) and a 

species of considerable economic relevance worldwide. Over the past 50 years, a growing demand for chicken meat 

in the world has pressured chicken breeders to enhance growth rate, feed efficiency, size of breast muscle and reduce 

abdominal fat, aiming to produce a carcass with maximal meat-yield and a low-fat content (Petracci & Cavani, 2012). 

Therefore, poultry breeding programs have been directed to improve growth and muscle deposition (Ismail & Joo, 

2017), focusing on commercial broiler breeds with superior traits and higher growth and performance capabilities 

(Scheuermann et al. 2003; Havenstein et al. 2003).  

In comparison to 50 years ago, broilers are ready to market in half the time and twice the body weight 

(Tallentire et al., 2016), mainly due to genetic improvement and high heritability of body weight and body 

composition (Le Bihan-Duval et al., 2003). Understanding genetic architecture and regulation of traits of economic 

interest may contribute to development of new genomic strategies for improving breeding programs. 

In Brazil, in 1999 a collaboration was established between EMBRAPA Swine and Poultry National 

Research Center and ESALQ/USP to conduct research on chicken genomics, in order to investigate quantitative 

trait loci (QTLs) and identify genes associated with traits of economic interest. An F2 population obtained from 

reciprocal crosses between a paternal broiler line (TT) and a maternal layer line (CC) was used for research. The TT 

broiler line has been under multiple trait selection since 1992 to improve body weight, feed conversion, carcass and 

cuts yields, viability, fertility, eclodibility, reduction of abdominal fat and metabolic syndromes (Marchesi et al., 2018). 

In the F2 population, several QTLs were mapped and genes associated with performance, carcass and abdominal fat 

were identified (Nones et al., 2006; Ambo et al., 2009; Campos et al., 2009; Baron et al., 2010; Boschiero et al., 2013, 

Ragognetti et al., 2015). 

In 2008, from an expansion of the TT broiler line, the TT Reference Population was generated to validate 

results obtained in the F2 population and for advanced genomic studies. In this population, QTLs were mapped for 

abdominal fat and skin traits on GGA5, 9, 10, 13, 15, 20, 24, 26 and 27 (Moreira et al., 2018). Complementary, other 

studies have been developed to identify QTLs and single nucleotide polymorphisms (SNPs) associated with 

performance, carcass and abdominal fat in chickens (de Koning et al. 2004; Navarro et al., 2005; Zhou et al., 2007; 

Nassar et al., 2012; Felício et al., 2013; Mignon-Grasteau et al., 2015; Wang et al., 2016). 

 The genomic variation can explain a considerable fraction of the variation observed at phenotypic level, 

mainly for traits with heritability estimates. In the last two decades, analysis of genomic variation focused on SNPs 

(Syvänen, 2001) however, it has been increasingly observed that SNPs are not the only source of variation in the 

genome. A major source of structural variation are the copy number variations (CNVs), which are large regions of 

the genome, differing in number of copies due to duplication or deletion events (Redon et al., 2006; Mccarroll et al., 

2007). CNVs can induce phenotypic variation due to their effect on gene expression, as a consequence of gene 

disruption, dosage alteration or positional effects (Beckmann et al., 2007, da Silva et al., 2016). Known phenotypes 

associated with CNVs in chicken include late feathering (Elferink et al., 2008), pea-comb (Wright et al., 2009), dermal 

hyperpigmentation (Dorshorst et al., 2010), dark brown plumage color (Gunnarsson et al., 2011) and 

resistance/susceptibility to Marek's disease (Luo et al., 2013; Yan et al., 2015; Xu et al., 2017). 

Most CNVs present in the offspring are inherited from their parents, following a Mendelian inheritance 

(Wang et al., 2008). However, a fraction of them is the result of de novo events, representing CNVs that were not 
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inherited from any of the parents (Wang et al., 2008). De novo mutations take place due to mitotic/meiotic 

recombination or chromosome rearrangements, induced by germinative or somatic cells (Wang et al., 2008). 

CNVs can be experimentally detected from comparative genomic hybridization (CGH) assays (Pinkel et 

al., 2005), new generation sequencing (Zhao et al., 2013) and SNP arrays (Winchester et al., 2009; Xu et al., 2013). A 

frequently used algorithm to infer CNVs from SNP-chip data is the PennCNV software (Wang et al., 2007).  

In this study, the use of CNVs to conduct GWAS for performance-related traits in a broiler population 

allowed the identification of novel genomic regions associated with these traits and potential candidate genes for 

growth and development. This dissertation generated results that can contribute to a better understanding of the 

genetic variants underlying performance regulation in chickens and may be useful for future chicken studies and 

poultry breeding programs aiming to increase chicken growth .  

 

1.1. GENERAL OBJECTIVES 

Identify CNVs and positional candidate genes associated with traits related to performance in a Brazilian 

broiler population using a CNV-based genome-wide association study (GWAS) approach. 

 

1.2. SPECIFIC OBJECTIVES 

(a) Identify CNVs in the whole chicken genome of an experimental broiler population (i.e., TT Reference 

Population). 

 (b) Concatenate CNVs into CNV regions (CNVRs). 

(c) Identify CNV segments associated with performance traits in broilers using a CNV-based GWAS 

approach.  

(d) Validate significantly associated CNV segments using qPCR. 

(e) Annotate QTLs, positional candidate genes, enriched biological processes and metabolic pathways 

related to performance in significantly associated regions. 

 

1.3. SYSTEMATIZATION TEXT  

This project allowed the identification of structural genetic variations associated with performance traits 

in chickens. CNVs were inferred in the whole genome using high density SNP-chip (Affymetrix®) data from a 

Brazilian broiler population. We identified 23,214 unique autosomal CNVs, merged into 5,042 distinct CNV regions 

(CNVRs), covering 12.84% of the chicken autosomal genome. CNV segments were significantly associated with 

birth weight, body weight at 35, 41 and 42 days of age and body weight gain from 35-41 days of age. These 

associated CNV segments overlap and/or are in proximity of genes, such as KCNJ11, MyoD1 and SOX6, with 

known role on chicken growth and muscle development.   

Genome-wide association study is a common method to link phenotypic variation to genomic variation. 

The majority of the GWAS studies have focused only on SNPs. However, the effects of complex structural variants, 
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such as CNVs, on economically relevant phenotypes could improve our understanding on the genetics underlying 

their variation.  

Moreover, an integration of the results obtained in this project with results obtained in previous studies 

will help to unravel molecular mechanisms involved in the regulation of performance, contributing to a deeper 

comprehension of bird physiology. Therefore, this information may help detect metabolic and/or physiological 

changes in birds that could be associated with the presence of complex variants in the genome. 

 In summary, the results presented here provide relevant information for future chicken studies and 

breeding programs, allowing the increase of selection accuracy and, consequently, genetic gain for traits of economic 

interest. We hope that this study will contribute to poultry genetic improvement programs, to the poultry industry, 

and also to a better understanding of the genetic variants underlying muscle physiology and body growth.  
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2. GENOME-WIDE DETECTION OF CNVS AND THEIR ASSOCIATION WITH 

PERFORMANCE TRAITS IN BROILERS  

 

ABSTRACT 

Copy number variations (CNVs) are a major type of structural genomic variants that 
underlie genetic architecture and phenotypic variation of complex traits, not only in humans, but also 
in livestock animals. We identified CNVs along the chicken genome and analyzed their association 
with performance traits. Genome-wide CNVs were inferred from Affymetrix® high density SNP-chip 
data for a broiler population. We identified 23,214 autosomal CNVs, merged into 5,042 distinct CNV 
regions (CNVRs), covering 12.84% of the chicken autosomal genome. CNVs were concatenated into 
segments and association analyses were performed with linear mixed models considering a genomic 
relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35-41 
days, feed conversion ratio from 35-41 days and, body weight gain from 35-41 days of age. One 
significant CNV segment was associated with BWG on GGA3 (p-value=0.00443); one significant 
CNV segment was associated with BW35 (p-value=0.00571), BW41 (p-value=0.00180) and BW42 (p-
value=0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (p-
value=0.00432). All of the significant CNV segments identified were verified by qPCR. We obtained a 
validation rate of 92.59%. Such CNV segments are located nearby genes, such as KCNJ11, MyoD1 and 
SOX6, known to underlie growth and development. Moreover, gene-set analysis revealed terms linked 
with muscle physiology, cellular processes regulation and potassium channels. Overall, this CNV-
based GWAS study unravels potential candidate genes that may regulate performance traits in 
chickens. Our findings provide a foundation for future functional studies on the role of specific genes 
in regulating performance in chickens.  

 
Keywords: 1. GWAS, 2. Performance, 3. CNVs, 4. QTLs, 5. qPCR 
 
 

2.1. Introduction 

Gallus gallus is an excellent biological model organism for genetic studies [1-3] and a species of 

considerable economic relevance worldwide. In 2019, global poultry meat consumption was estimated at 97,000 tons 

[4], being one of the main sources of protein for humans. Understanding the genetic architecture of performance-

related traits may contribute to the development of new genomic strategies to increase production efficiency and 

sustainability of the chicken industry. 

Significant advances have been achieved on chicken genetics [5] since the landmark publication of the 

first reference genome [6], which has been continuously updated with the most recent genome assembly (GRCg6a) 

released in 2018. Variations in the genome, especially single nucleotide polymorphisms (SNPs), are known to be 

associated with phenotypic variation [7]. However, structural variations, such as the copy number variations (CNVs) 

have been increasingly studied and associated with quantitative traits of economic interest in livestock [8-15]. 

CNVs associated with phenotypes of economic interest are promising targets for animal breeding 

programs [16]. They are defined as large DNA fragments (conventionally >1 kb) that, due to deletion or duplication 

events, display variable copy number between individuals of a population [17, 18]. When compared to SNPs, CNVs 

encompass more total bases and seem to have a higher mutation rate and potentially greater effects on gene 

structure, gene regulation and consequently gene expression [19, 20].  
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Various techniques are available for CNVs detection in humans and other animal species [21]. Most of 

them depend on the analysis of signal intensity along the genome, such as the comparative genomic hybridization 

array (aCGH) [22] and high-density SNP chips [23]. Although sequencing-based CNV analysis pipelines have been 

developed and seem to be a viable alternative [24], SNP chips have been commonly used for CNV detection [25-31]. 

This technology allows CNVs identification due to the abnormal hybridization that occurs for SNPs located in CNV 

regions (CNVRs) [32]. Simultaneous measurement of both signal intensity variations, measured for each allele of a 

given SNP, and changes in allelic composition (i.e., B allele frequency) allow the detection of both copy number 

changes and copy-neutral loss-of-heterozygosity (LOH) events [33, 34]. 

 Several factors, such as detection algorithm, genotyping platform, SNP density and population genetic 

background may impact CNV scanning performance [35, 36]. Indeed, different algorithms used for CNV detection 

[37, 38] may demonstrate variable sensitivity, consistency and reproducibility [39], specially for commercial SNP 

arrays, such as Illumina and Affymetrix SNP chips. One of the most prominent algorithms for CNV detection is the 

PennCNV software [38], which has been widely applied in several studies on livestock species, including chickens 

[40, 41], horses [42], pigs [43-48], cattle [49-53] and sheep [54].  Moreover, PennCNV has better consistency when 

compared to other CNV calling algorithms [39]. Nevertheless, CNVs identified through SNP-chip platforms can be 

associated with a considerable rate of false negative and positive results [35]. Therefore, the quantitative polymerase 

chain reaction (qPCR) is commonly used for CNV validation, being a molecular method to confirm computationally 

identified loci [55-57].  

In chickens, several studies have identified quantitative trait loci (QTL) and positional candidate genes 

flagged by SNPs significantly associated with traits of economic interest, such as performance, carcass and abdominal 

fat [58-71]. Unsurprisingly, the number of CNV-focused studies is increasing in chicken populations as well [41, 72-

81]. CNVs associated with late feathering [82], pea-comb phenotype [83], dermal hyperpigmentation [84], dark 

brown plumage color [85] and resistance/susceptibility to Marek's disease [76, 81, 86] have been reported. None 

CNV-association study for performance traits in chickens has been described yet.  

Herein, we identified CNVs in the genome of a broiler population, performed a CNV-based GWAS for 

performance traits and validated associated CNV segments by qPCR. In addition, we identified performance-related 

genes overlapping significant CNV segments to establish relationships between structural genomic variation and 

such phenotypes. 

 

2.2. Material and Methods 

2.2.1. Population description  

A paternal broiler line (TT) belonging to the Chicken Breeding Program of Embrapa Swine and Poultry 

National Research Center, in Concórdia, Santa Catarina State, South of Brazil, was developed in 1992. This line 

originated from White Plymouth Rock and White Cornish breeds and has been under multiple trait selection to 

improve body weight, feed conversion, carcass and breast yields, viability, fertility, reduction of abdominal fat and 

metabolic syndromes [87]. The experimental broiler population evaluated in this study, called the TT Reference 

Population, was generated by an expansion of the paternal broiler line TT in 2008 and consisted of approximately 
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1,500 chickens generated in five hatches from 20 males and 92 females (1:5). More details can be found in Marchesi 

et al. [87].  

 

2.2.2. Phenotype measurement 

Body weight was recorded at 1 (birth weight), 21, 35, 41 and 42 (after fasting) days of age. Over the 

period between 35 and 41 days of age, chickens were transferred to individual cages for measuring feed intake and 

body weight gain to evaluate feed conversion. At 42 days of age, the chickens were weighed and euthanized by 

cervical dislocation followed by exsanguination. By then, a blood sample from each animal was collected for 

subsequent DNA extraction. In this study, we analyzed eight performance traits: (i) birth weight (BW), (ii) body 

weight at 21 days of age (BW21), (iii) body weight at 35 days of age (BW35), (iv) body weight at 41 days of age 

(BW41), (v) body weight at 42 days of age (BW42), (vi) feed intake measured from 35-41 days of age (FI), (vii) feed 

conversion ratio measured from 35-41 days of age (FCR), and body weight gain measured from 35-41 days of age 

(BWG). More detailed descriptions on this population, rearing conditions and phenotype measurements are available 

in Marchesi et al. [87]. The descriptive statistics for the analyzed phenotypes are shown in Table 1.  

 

Table 1. Descriptive statistics from phenotypic values for performance traits analyzed in the TT Reference Population. 

Traits¹ N² Mean SD³ Minimum Maximum 

BW 1448 47.66 3.7 37.4 61.8 

BW21 1426 648.43 133.86 256 1034 

BW35 1450 1730.96 202.52 776 2444 

BW41 1443 2219.2 251.82 1026 2922 

BW42 1452 2223.86 260.15 988 2971 

FI 1443 1091.45 152.43 508 1590 

FCR 1439 2.31 0.47 1.42 5.25 
BWG 1439 488.77 106.53 128 802 

¹BW: birth weight in grams; BW21: body weight at 21 days in grams; BW35: body weight at 35 days in grams; BW41: body weight 
at 41 days in grams; BW42: body weight at 42 days in grams; FI: feed intake from 35-41 days in grams; FCR: feed conversion ratio 
from 35-41 days; BWG: body weight gain from 35-41 days in grams 
²Number of animals 
³Standard deviation of the mean  

 

2.2.3. DNA extraction, genotyping and quality control 

Genomic DNA from 1,461 blood samples was extracted using the PureLink® Genomic DNA 

(Invitrogen, Carlsbad, CA, USA) kit and then quantified using Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, 

Waltham, MA, USA). After extraction, DNA integrity was evaluated on agarose gel (1%) and diluted to 10 ng/μL. 

Diluted genomic DNA was prepared following recommended Affymetrix protocols in order to perform the 

genotyping analysis using the 600K Affymetrix Axiom Genotyping Array (Affymetrix, Inc. Santa Clara, CA, USA, 

[88], that contains segregating SNPs for different populations, including commercial broiler lines.  

Initially, Axiom™ Analysis Power Tools (Affymetrix®) software v.2.10.2.2 was used to filter genotypes 

based on DishQC and call rate parameters. A minimum default quality control of 0.82 and a minimum sample call 

rate of 97% were used. Therefore, only samples with DishQC ≥0.82 and call rate ≥ 97% were kept for following 
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analyses. SNPs in sex chromosomes, and those not mapped in the chicken genome assembly (GRCg6a) were 

excluded. Only SNPs annotated to autosomal chromosomes from GGA1 to GGA33 were included in the analysis. 

From the total of 580,961 SNPs available on the SNP array, 476,254 informative polymorphic SNPs on the 

autosomal chromosomes (GGA1-33) were kept after filtering.   

 

2.2.4. Input construction and CNV calling  

CNV calling was performed using PennCNV v.1.0.5 [38], an integrated hidden Markov model (HMM) 

that merges various sources of information, including relative signal intensities (log R Ratio, LRR) and relative allele 

frequencies (B allele frequency, BAF) at each SNP, the distance between adjacent SNPs, and the population 

frequency of the B allele (PFB).  

The files denominated ‘summary’, ‘calls’ and ‘confidences’ that are built during SNP genotyping and initial 

data filtering, and are required for signal intensities estimation, were used to extract the LRR and BAF values. First, 

these files were used to generate canonical clusters (Peiffer, 2006) by the PennCNV-Affy ‘generate_affy_ 

geno_cluster.pl’ function, which allows the estimation of the LRR and BAF values by the PennCNV-Affy 

‘normalize_affy_geno_cluster.pl’ function. Then, the PFB file was estimated from marker’s individual BAF values, 

using the PennCNV ‘compile_pfb.pl’ function. Next, the individual-based CNV calling was performed using the -

test option with default parameters for the HMM model. Given that the GC ratio content around each SNP marker 

is known to influence signal strength, creating the so-called genomic waves [89], the LRR of each sample was 

corrected using the chicken GC content file (i.e., GC content of 1-Mb genomic regions surrounding each SNP) by 

the -gcmodel option. As long as family structure can be used for generating more accurate CNV calls [38], and 

pedigree information for a father-mother-offspring trio was available, a family-based CNV detection algorithm was 

used to jointly update CNV status previously obtained in the individual-based calling step.  

For CNV filtering, the default PennCNV standard deviation (SD) criteria for LRR≤0.35, BAF drift<0.01, 

and waviness factor≤0.05 were used. Note that the waviness factor represents the dispersion in signal intensity over 

the genome. Moreover, CNVs smaller than 1 kb were excluded and only CNVs consisting of at least three 

consecutive SNPs were retained in the analysis [41]. Lastly, all duplicated CNVs (i.e., same event in the same 

parental) were removed. Duplicated CNV entries occurred due to half sib families, as some sires and dams were 

included more than once in PennCNV analysis. The CNV calling was focused only on autosomal chromosomes 

GGA1 to GGA33 as PennCNV results for sex chromosomes are unreliable and difficult to interpret [38]. 

 

2.2.5. CNVR compilation 

Individual CNV calls filtered by PennCNV overlapping at least one base pair were concatenated into 

CNV regions (CNVRs) using the populationRanges(grl, density=0.1) function from the CNVRanger 

R/Bioconductor package [90]. Genomic areas with density <10% were deleted to avoid false positive predictions. 

The CNVRs were classified as gain or loss. The overlapping CNVRs of ‘gain’ and ‘loss’ were merged into single 

regions to account for genomic regions in which both events can occur (i.e., ‘both’ CNVRs). The frequency of each 

CNVR was estimated based on the number of samples mapped at the genomic interval covered by the CNVR.  
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2.2.6. Genome-wide association analyses 

Genome-wide association analyses between performance traits and CNV segments were carried out using 

the CNVRanger R/Bioconductor package [90]. This procedure was originally proposed by da Silva et al. [51]. First, 

the CNV segments to be used in the association analyses were established. For that, a state was assigned for each of 

the SNP probes overlapping a CNV call. Then, we estimated the CNV frequency in each probe and selected only 

those with frequency above 5% [90]. Finally, selected probes were used to construct the CNV segments based on a 

CNV-genotype similarity, in which subsequent probes with identical genotype in ≥95% of our population were 

concatenated to CNV segments. A raw p-value was independently generated for each probe and, the probe with the 

lowest p-value was selected to represent the CNV segment. Multiple testing correction was carried out using the 

FDR method [91] generating the q-values for each CNV segment. The following statistical models were used:  

a)                             

b)                      (          ̅̅ ̅̅ ̅̅ ̅̅ ̅)            

where       and        are the phenotypic records on the lth or mth animal, respectively,   is the overall 

intercept,    is the fixed effect of the ith sex (i = 1, 2),    is the fixed effect of the jth hatch (j = 1, 2, 3, 4, 5),      is 

the number of copies of a given allele in the genotype of the kth CNV segment (k = 1, …, 191, represented as gain, 

loss and normal (2n), and coded as 1, − 1 and 0, respectively),   is the linear regression coefficient related to the 

BW35 effect considered as deviation from the mean (    ̅̅ ̅̅ ̅̅ ̅̅ ),    and    are the random direct additive genetic 

effect for the lth or mth animal, respectively, and       and        are the random residual effect for the lth or mth 

animal, respectively. Note that sex and hatch were included in the models as class effects for all phenotypes, and 

BW35 was fit as continuous effect only for FI, FCR and BWG (model b). The random components of the models 

were distributed as            
   and            

  , where   
  and   

  are the genetic and residual variances, 

respectively,   is the CNV-based genomic relationship matrix, and   is an identity matrix.  

Lastly, we established two different thresholds. The first corresponded to a suggestive association (FDR-

corrected p-value<0.1) and should be used to identify CNVs for consideration in future studies. The second one 

corresponded to a significant association (FDR-corrected p-value<0.05), consequently, highlighting regions more 

likely to be truly associated with the investigated phenotypes [92]. 

 

2.2.7. Validation by qPCR 

Quantitative PCR (qPCR) was carried out to validate significant CNV segments associated with 

performance traits. Copy number was determined in the 3 significant CNV segments using 3 distinct primer pairs 

designed to target each CNV segment. We designed 3 primer pairs for each segment as CNV breakpoints may vary. 

A total of 18 samples, consisting of 3 different reference animals (2n) and 3 different testing animals per CNV 

segment, were selected for the validation process based on the amount of double-stranded DNA (dsDNA) measured 

with Qubit® 2.0 Fluorometer. Primers designed using Primer3plus [93] were quality tested through NetPrimer 

(http://www.premierbiosoft.com/netprimer). Additionally, we used the SNPdb [94] against the Ensembl-Biomart 
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tool (http://www.ensembl.org/biomart/martview, [95]) to check the presence of SNPs in the genomic region 

targeted by the primers.  

All primers were previously PCR-tested to verify non-specific amplicons and to optimize qPCR 

conditions. A qPCR solution of a final 10 μl was used consisting of 5.0 μl PowerUp™ SYBR™ Green Master Mix 

2x (Applied Biosystems®, catalog number: A25742), 0.5 μl forward primer (10 mM), 0.5 μl reverse primer (10 mM) 

and 4.0 μl of genomic DNA (2.5 ng/μl). The reference and testing samples were amplified with the designed primers 

sets in technical triplicates carried out in QuantStudio™ 12k Flex machine coupled to QuantStudio 12K Flex 

Software v.1.2.2 (Applied Biosystems®). The qPCR thermocycling steps were as follows: 50ºC for 2 min, 95°C for 2 

min and 40 cycles of amplification (95°C for 15 seconds, 55–60°C (primer-dependent) for 15 seconds and 72°C for 

1 min). The reference samples were randomly chosen from a set predicted by PennCNV to have normal copy 

number status on each of the tested regions.  

Cycle thresholds (Ct) were corrected by primer mean efficiency calculated by LinReg [96] and copy 

number was estimated from normalized ratio method (NR): 2x2-(∆∆Ct) [97-99]. The primers for the 

propionylcoenzyme A carboxylase gene (PCCA, GGA1) were used as references ([72, 73, 100, 101]. Moreover, the 

control value was estimated based on the average value of ΔCt from reference diploid animals, and copy number 

states were categorized based on the geometric mean between copy number 1, 2 and 3 [98], where lack of 

amplification was considered as 0n (complete deletion).  

 

2.2.8. CNV segments overlapping known QTLs  

Overlaps of significant associated CNV segments with previously mapped QTLs for performance traits 

were determined using information from the Chicken QTLdb - release 41 [7]. We used the available .gff files with 

the QTL coordinates based on the last chicken genome assembly (GRCg6a) to check for overlaps using the 

subsetByOverlaps function from the GenomicRanges R/Bioconductor package [102]. All previously mapped QTLs 

were reported by QTL ID numbers, available at the Chicken QTLdb [7].  

Additionally, we checked the overlapping between the genomic windows covered by the significant CNV 

segments and the QTLs for growth-related traits reported for the Embrapa F2 Chicken Resource Population, which 

was originated by crossing sires of the paternal broiler line TT (same line used to obtain the TT Reference 

Population) and dams of a maternal layer line [103]. Therefore, genomic coordinates were converted from 

Gallus_gallus-5.0 to GRCg6a using the LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver).  

 

2.2.9. Identification of candidate genes and gene-set analysis 

Gene content of significant CNV segments was assessed using Ensembl Release 101 BioMart tool [95, 

104], based on the GRCg6a chicken genome assembly. We investigated genes flanking genomic intervals for 

significant associated CNV segments, corresponding to 1 Mb windows (500 kb up and downstream). 

Enrichment analyses were performed with WebGestalt (http://www.webgestalt.org/), a “WEB‐based 

GEne SeT AnaLysis Toolkit” designed for functional genomics, proteomics and large‐scale genetic studies [105, 

106]. GO-terms for biological process (BP), cellular component (CC) and molecular function (MF) were 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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investigated. Multiple testing correction was carried out using the default option (i.e., Benjamini-Hochberg method 

[91]). In addition, STRING v.11 (http://string-db.org/) [107] was used as a complementary approach to search for 

enriched pathways and protein domains. Conversely to WebGestalt, the STRING database intends to integrate all 

publicly available sources of protein–protein direct and indirect interaction information to obtain a comprehensive 

global network.  

 

2.3. Results  

2.3.1. CNV identification 

After applying the initial quality control filters, 223 individuals out of 1,461 genotyped chickens from the 

TT Reference Population presented DishQC<0.82 and call rate<97%, and were excluded from further analyses. 

Therefore, individual-based CNV calls were performed on the remaining 1,238 samples. Pedigree information on 

father-mother-offspring trio was used to update the CNV status for the trios, generating more accurate CNV calls 

[38]. From the total of 1,238 chickens, 709 trios were determined based on complete family information available. 

Then, the trio-based CNV calling using 779 animals, represented by 709 trios, consisting of 14 sires, 56 dams and 

709 offspring, was performed. Several families with incomplete information could not be used as PennCNV is not 

able to handle trios with missing sire or dam genotypes. After quality control filtering and removal of duplicated 

CNVs from the dataset, we identified 23,214 unique autosomal CNVs, including 2,905 deletions and 20,309 

duplications. Finally, a total of 614 chickens had at least one CNV call after the quality control process. 

 

2.3.2. CNVR compilation 

CNVRs represent the concatenation of overlapping CNVs into a consensus genomic region. CNVs 

showing overlap of at least one base pair among samples in this population were summarized across all individuals 

into CNVRs. After filtering, 23,214 individual CNVs were merged into 5,042 distinct CNV regions, which cover 

12.84% (136.75 million of base pairs - Mb) of the chicken autosomal genome. The number of regions with copy loss 

and gain were 424 and 4,105, respectively. The presence of both types was observed in 513 regions. The CNVRs had 

variable sizes ranging from 0.14 kb to 760 kb with an average size of 27.12 kb. The number of chickens with CNVs 

mapped onto a given CNVR ranged from 1 (0.13%) to 348 (44.67%) from the total of 614 chickens. We identified 

656 CNVRs occurring in more than 1% of the population (i.e. ‘polymorphic CNVRs’, as suggested by Itsara et al. 

[108]). The relative chromosome coverage by CNVRs ranged from 1.55% for GGA24 to 18.38% for GGA2, while 

the absolute genomic length overlapped by CNVRs varied from 0.10 Mb for GGA24 to 35.98 Mb for GGA1. 

Detailed information of all CNVRs detected in our population is provided under request 

(carolina_fernandes@usp.br). 
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2.3.3. Association of CNV segments with performance traits 

Genome-wide association studies were performed to investigate significant associations of CNV 

segments, named as CNV-based GWAS, with eight performance-related traits available in our population: BW, 

BW21, BW35, BW41, BW42, FI, FCR and BWG. There were three distinct CNV segments classified as losses and 

significantly associated (p-value < 0.05) with BWG, BW35, BW41, BW42 and BW (Table 2). 

 

Table 2. Characterization of significant CNV segments associated with performance traits in the TT Reference Population. 

Trait¹  GGA: first–last position² Number of genes/window³ 

BWG 3: 64169030-64171297 16 

BW35 3: 97801202-97809208 3 

BW41 3: 97801202-97809208 3 

BW42 3: 97801202-97809208 3 

BW 5: 12059966-12062666 13 

¹BWG: body weight gain from 35-41 days; BW35: body weight at 35 days; BW41: body weight at 41 days; BW42: body weight at 
42 days; BW: birth weight  
²Map position based on GRCg6a chicken genome assembly 
³Number of annotated genes within a 1-Mb window of each significant CNV segment associated with performance traits in the 
TT Reference Population, based on Ensembl Genes 101 Database (https://www.ensembl.org/biomart/martview/) 

 
 One CNV segment was significantly associated with BWG (p-value=0.00443); one CNV segment was 

significantly associated with BW35 (p-value=0.00571), BW41 (p-value=0.00180) and BW42 (p-value=0.00130), and 

one CNV segment was significantly associated with BW (p-value=0.00432).  It is interesting to highlight that the 

significant CNV segment associated with BW35, BW41 and BW42 was the same (GGA3:97801202-97809208). 

Manhattan plots for CNV segments across the 33 autosomal chromosomes associated with performance traits are 

presented in Figure 1. The QQplots for BW, BW35, BW41, BW42 and BWG are in APPENDIX A. Note that none 

significant CNV segments associated with BW21, FI and FCR were detected. 
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Figure 1. Manhattan plots for CNV segments across the 33 autosomal chromosomes associated with (a) birth weight, (b) 
body weight at 35 days, (c) body weight at 41 days and (d) body weight at 42 days and (e) body weight gain. The X-axis 
represents the somatic chromosomes, and Y-axis shows the corresponding -log10 q-value. Red and blue lines indicate FDR-
corrected p-values of 0.05 and 0.1, respectively. 
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In Figure 2, each dot represents an animal in the corresponding copy number state (0-3n) on the X-axis 

and the observed phenotypic value on the Y-axis. For the significant CNV segment associated with BW (GGA5: 

12059966-12062666), a decrease in copy number is associated with heavier birth weight. The same trend was 

observed for the significant CNV segment associated with BW35, BW41 and BW42 (GGA3: 97801202-97809208), 

i.e. higher copy number was observed in animals with lower body weight. Conversely, the significant CNV segment 

associated with BWG (GGA3: 64169030-64171297) displayed an opposite behavior.  
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Figure 2. (a) Birth weight, (b) body weight at 35 days, (c) body weight at 41 days and (d) body weight at 42 days and (e) 
body weight gain distribution in each CN state for the significant CNV segment. Each dot represents an animal in the 
corresponding copy number state (0-3n) on the X-axis and the observed phenotypic value on the Y-axis. The legend on the 
right displays the color code for the CN state. See the main text for a detailed description of each segment. 
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2.3.4. qPCR validation 

As CNV breakpoints depended on the segmentation algorithm used in the computational method, results 

may vary between PennCNV and qPCR. The qPCR results (Figure 3) revealed a validation rate of 92.59%, which 

confirms the existence of CNV segments that were associated with performance traits. In addition, it showed that 

for most samples, CNV type was concordant between both methods. For CNVs where at least one breakpoint was 

within the targeted segment tested, PennCNV results were verified by qPCR (i.e., primers 1-6 and primer 9 for each 

animal tested). Conversely, in graph c, considering two testing animals (the third animal used had a copy number 

status estimated by PennCNV of 0n for the segment tested), it is possible that CNV breakpoints for the region 

tested did not coincide between methods (i.e., primers 7 and 8), therefore, in silico results were not verified by qPCR 

for both primer pairs. Primer information and validation rates are presented in APPENDICES B and C, respectively. 

 

 
Figure 3. Quantitative PCR was carried out for significantly associated CNV segments on (a) GGA3 at 64Mb, (b) GGA3 at 
97Mb and (c) GGA5 at 12Mb using two groups (control (2n) and experimental) with three different animal samples per 
group and three distinct primer pairs per CNV. In each panel, bars in different colors represent distinct experimental animals 
for each segment. The right-most bars depict the relative copy number estimated for each animal in PennCNV. Each bar 
was calculated from three technical replicates. The error bars show the minimum and maximum value encountered among 
the replicates. 

 

2.3.5. CNV segments overlapping known QTLs  

The CNV segment significantly associated with body weight gain (GGA3: 64169030-64171297) 

overlapped with a QTL associated with residual feed intake on GGA3: 51848188-64944087 (QTL #64556, [68]). 

Additionally, the significant CNV segments associated with body weight at 35, 41 and 42 days, and body weight gain 

overlapped with 18 out of 27 previously published QTLs for growth-related traits mapped in the Embrapa F2 

Chicken Resource Population ([103], Table 3). None previously reported QTLs overlapped with the CNV segment 

associated with birth weight (GGA5: 12059966-12062666). 

https://www.mdpi.com/2073-4425/9/1/42/htm#fig_body_display_genes-09-00042-f001
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Table 3. CNV segments associated with performance traits overlapping QTL regions previously mapped for growth-related 
traits.  

CNV segments (GGA: first-last position¹) QTL_IDs Associated trait 

3: 64169030-64171297; 3: 97801202-97809208 QTL #1979 Body_weight 
3: 64169030-64171297; 3: 97801202-97809208 QTL #1980 Body_weight 
3: 64169030-64171297; 3: 97801202-97809208 QTL #7180 Body_weight_(35_days) 
3: 64169030-64171297; 3: 97801202-97809208 QTL #55904 Body_weight_(35_days) 
3: 64169030-64171297; 3: 97801202-97809208 QTL #55929 Growth_(0-35_days) 
3: 64169030-64171297 QTL #1957 Body_weight 
3: 64169030-64171297; 3: 97801202-97809208 QTL #1961 Body_weight 
3: 64169030-64171297; 3: 97801202-97809208 QTL #1962 Body_weight 
3: 64169030-64171297 QTL #6611 Body_weight_(112_days) 
3: 64169030-64171297 QTL #6612 Body_weight_(200_days) 
3: 64169030-64171297 QTL #6610 Body_weight_(8_days) 
3: 64169030-64171297 QTL #6613 Growth_(1-8_days) 
3: 64169030-64171297; 3: 97801202-97809208 QTL #9420 Body_weight_(63_days) 
3: 64169030-64171297 QTL #11768 Body_weight_(49_days) 
3: 64169030-64171297 QTL #11772 Body_weight_(63_days) 
3: 64169030-64171297 QTL #1969 Body_weight 
3: 64169030-64171297 QTL #1972 Body_weight 
3: 64169030-64171297 QTL #9127 Growth_(post-challenge) 
¹Map position based on GRCg6a chicken genome assembly (NCBI) 
CNV segments significantly associated with performance traits located within QTL regions for growth-related traits [103]. QTLs 
that overlap genomic intervals covered by CNV segments associated with body weight gain (GGA3: 64169030-64171297) and/or 
body weight at 35, 41 and 42 days (GGA3: 97801202-97809208) are highlighted in bold text. 

 

2.3.6. Candidate genes and gene-set analysis 

A total of 32 genes, including KCNJ11, MyoD1 and SOX6, were annotated within a 1-Mb window in 

genomic regions defined by significant CNV segments associated with BWG, BW35, BW41, BW42 and BW. 

Considering all of the 32 genes, 16 genes were annotated within a 1-Mb window in the genomic region defined by 

the CNV segment associated with BWG, 3 genes were annotated within a 1-Mb window in the genomic region 

defined by the CNV segment associated with BW35, BW41 and BW42, and 13 genes were annotated within a 1-Mb 

window in the genomic region defined by the CNV segment associated with BW (Table 4). No CNV segments were 

located inside a gene. A list with information about the 32 genes is provided in the APPENDIX D. 
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Table 4. List of annotated genes within a 1-Mb window of significantly associated CNV segments. 

GGA: first- 
last position¹ 

Associated  
trait (s)² 

Gene Name (Aliases) Ensembl Gene ID³ Entrezgene ID⁴ 

3: 64169030-64171297 BWG 

RFX6 ENSGALG00000014918 421737 

GPRC6A ENSGALG00000014925 428620 

FAM162B ENSGALG00000019941 100857953 

KPNA5 ENSGALG00000014937 421738 

ZUFSP (ZUP1) ENSGALG00000014940 421739 

SOT3A1L ENSGALG00000014950 421740 

RWDD1 ENSGALG00000014953 421741 

FAM26D (CALHM4) ENSGALG00000014955 421742 

TRAPPC3L ENSGALG00000028539 421743 

FAM26E (CALHM5) ENSGALG00000038162 769904 

FAM26F (CALHM6) ENSGALG00000014962 421744 

DSE ENSGALG00000014963 421745 

NT5DC1 ENSGALG00000014964 421746 

COL10A1 ENSGALG00000014965 100858979 

FRK ENSGALG00000014979 421747 

HS3ST5 ENSGALG00000026594 428621 

3: 97801202-97809208 
BW35 
BW41 
BW42 

GREB1 ENSGALG00000016455 421944 

LPIN1 ENSGALG00000016456 421945 

TRIB2 ENSGALG00000016457 378919 

5: 12059966-12062666 BW 

SOX6 ENSGALG00000006074 423068 

C5H11orf58 ENSGALG00000006077 395520 

PLEKHA7 ENSGALG00000029679 423069 

RPS13 ENSGALG00000006096 414782 

PIK3C2A ENSGALG00000006121 423070 

NUCB2 ENSGALG00000006147 423071 

KCNJ11 ENSGALG00000020505 428846 

ABCC8 ENSGALG00000006172 423072 

USH1C ENSGALG00000006192 423073 

FTL ENSGALG00000028696 378899 

MYOD1 ENSGALG00000006216 374048 

KCNC1 ENSGALG00000006220 423076 

SERGEF ENSGALG00000006231 423077 
¹Map position based on GRCg6a chicken genome assembly (NCBI) 
²BWG: body weight gain from 35-41 days, BW35: body weight at 35 days, BW41: body weight at 41 days, BW42: body weight at 
42 days, BW: birth weight 
³Ensembl gene ID based on GRCg6a genome assembly (Ensembl Genes 101 Database) 

⁴NCBI gene ID based on GRCg6a genome assembly (http://www.ncbi.nlm.nih.gov/gene) 

 

 
Gene enrichment analysis was performed using WebGestalt to search for biological processes, cellular 

components and molecular functions. WebGestalt top 10 most relevant enriched categories for Biological Process, 

Cellular Component and Molecular Function, based upon genes annotated to each category, can be observed in 

Table 5. Considering the top 10 most relevant enriched categories for biological processes, it is possible to observe a 

variety of terms associated with muscle growth and development, such as regulation of striated muscle cell 

differentiation, regulation of muscle cell differentiation and regulation of muscle tissue development.  
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Table 5. WebGestalt to 10 most relevant enriched categories for Biological Process, Cellular Component and Molecular 
Function. 

 

Biological Process GO Terms 

GO ID Description p-value Significant Associated Gene(s) 

GO:0051153 
regulation of striated muscle cell 
differentiation 

0.0015 SOX6;MYOD1 

GO:0051147 regulation of muscle cell differentiation 0.0030 SOX6;MYOD1 

GO:0016202 
regulation of striated muscle tissue 
development 

0.0031 SOX6;MYOD1 

GO:0048634 regulation of muscle organ development 0.0034 SOX6;MYOD1 

GO:1901861 regulation of muscle tissue development 0.0034 SOX6;MYOD1 

GO:1901700 response to oxygen-containing compound 0.0048 GPRC6A;RWDD1;KCNJ11;MYOD1 

GO:0014070 response to organic cyclic compound 0.0071 RWDD1;KCNJ11;MYOD1 

GO:0055026 
negative regulation of cardiac muscle tissue 
development 

0.0085 SOX6 

GO:0048743 
positive regulation of skeletal muscle fiber 
development 

0.0085 MYOD1 

GO:1905208 
negative regulation of cardiocyte 
differentiation 

0.0085 SOX6 

Cellular Component GO Terms 

GO ID Description p-value Significant Associated Gene(s) 

GO:0005887 integral component of plasma membrane 7.9726e-4 
GPRC6A;CALHM4;CALHM5; 
CALHM6;KCNJ11 

GO:0031226 intrinsic component of plasma membrane 9.6402e-4 
GPRC6A;CALHM4;CALHM5; 
CALHM6;KCNJ11 

GO:0044459 plasma membrane part 0.0017 
GPRC6A;CALHM4;CALHM5; 
CALHM6;FRK;KCNJ11 

GO:0071944 cell periphery 0.0073 
GPRC6A;CALHM4;CALHM5; 
CALHM6;COL10A1;FRK;KCNJ11 

GO:0030008 TRAPP complex 0.0116 TRAPPC3L 

GO:0030315 T-tubule 0.0132 KCNJ11 

GO:0005886 plasma membrane 0.0276 
GPRC6A;CALHM4;CALHM5; 
CALHM6;FRK;KCNJ11 

GO:0005801 cis-Golgi network 0.0376 TRAPPC3L 

GO:0022627 cytosolic small ribosomal subunit 0.0440 RPS13 

GO:0005844 polysome 0.0488 RWDD1 

Molecular Function GO Terms 

GO ID Description p-value Significant Associated Gene(s) 

GO:0008146 sulfotransferase activity 0.0012 SOT3A1L;HS3ST5 

GO:0016782 
transferase activity, transferring sulfur-
containing groups 

0.0019 SOT3A1L;HS3ST5 

GO:0008199 ferric iron binding 0.0091 FTL 

GO:0034483 heparan sulfate sulfotransferase activity 0.0109 HS3ST5 

GO:0070181 small ribosomal subunit rRNA binding 0.0127 RPS13 

GO:0016722 
oxidoreductase activity, oxidizing metal 
ions 

0.0182 FTL 

GO:0008198 ferrous iron binding 0.0182 FTL 

GO:0030506 ankyrin binding 0.0182 KCNJ11 

GO:0008253 5'-nucleotidase activity 0.0182 NT5DC1 

GO:0005242 inward rectifier potassium channel activity 0.0182 KCNJ11 
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Complementary, STRING databases were used to search for enriched pathways and protein domains on 

genes annotated within a 1-Mb window of significant CNV segments (Figure 4, Table 6). In figure 4, the larger 

network, in the middle, and smaller networks, on the right and left extremes, both relate to cell differentiation and 

muscle functioning. In table 6, considering the enriched pathways for CNV candidate genes related to performance 

traits, terms associated with potassium channels and regulation of insulin secretion can be observed. In addition, 

regarding protein domains, we can observe an enriched cluster for calcium homeostasis modulator family, consisting 

of three members of the FAM26 gene family. Furthermore, 78 publications significantly enriched in STRING 

containing gene interactions present in the network are presented in APPENDIX E. 

 

 

Figure 4. Confidence view of the network created by the STRING software. Nodes represent proteins produced by a single 
protein-coding gene locus. Edges represent protein-protein associations. Line colors indicate types of interaction evidence: 
known interactions from curated databases (cyan) or experimentally determined (pink); predicted interactions from gene 
neighborhood (green); and other sorts of interactions such as co-expression (black).  
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Table 6. STRING enriched pathways and protein domains for CNV candidate genes related to performance traits. 

Reactome Pathways 

#term ID Term Description FDR¹ Matching proteins IDs² 
Matching proteins 
labels³ 

GGA-1296025 
ATP sensitive Potassium 
channels 

0.0043 
ENSGALP00000009950, 
ENSGALP00000032081 

ABCC8, KCNJ11 

GGA-1296071 Potassium Channels 0.0145 
ENSGALP00000009950, 
ENSGALP00000010023, 
ENSGALP00000032081 

ABCC8, KCNC1, 
KCNJ11 

GGA-1296065 
Inwardly rectifying K+ 
channels 

0.0214 
ENSGALP00000009950, 
ENSGALP00000032081 

ABCC8, KCNJ11 

GGA-422356 
Regulation of insulin 
secretion 

0.0384 
ENSGALP00000009950, 
ENSGALP00000032081 

ABCC8, KCNJ11 

PFAM Protein Domains 

#term ID Term Description FDR Matching proteins IDs 
Matching proteins 
labels 

PF14798 
Calcium homeostasis 
modulator 

3.35e-05 
ENSGALP00000024076, 
ENSGALP00000024082, 
ENSGALP00000024083 

FAM26D, FAM26E, 
FAM26F 

INTERPRO Protein Domains and Features 

#term ID Term Description FDR Matching proteins IDs 
Matching proteins 
labels 

IPR029569 
Calcium homeostasis 
modulator family 

6.17e-05 
ENSGALP00000024076, 
ENSGALP00000024082, 
ENSGALP00000024083 

FAM26D, FAM26E, 
FAM26F 

¹ False Discovery Rate 
² matching proteins IDs in the network 
³ matching proteins labels in the network 

 

 

2.4. Discussion 

To investigate the effect of CNVs on production-related traits in broilers, we analyzed a Brazilian 

population, selected for body weight, carcass and cuts yield, feed conversion, fertility, chick viability and reduced 

abdominal fat. In addition, the known family structure of this population allowed the identification of family-based 

CNVs. 

CNVs are significant sources of genetic variation [8] and have been associated with disease, abnormal 

development, physical appearance as well as many other economic traits in livestock animals [100, 109-111]. CNV 

mapping can be based on different reference genome assemblies, populations and platforms. Hence, variability of 

CNV breakpoints (i.e., genomic coordinates) can happen due to different biological and technical influences [17, 

112]. Therefore, CNV comparison among studies is not prosaic, even in the same species, and, as a consequence, 

different approaches may be complementary to each other [41, 74, 79, 80].  

In our population, copy number gains were more abundant than losses. Likewise, Yi et al. [79], Gorla et 

al. [41] and Sohrabi et al. [113] reported more gains than losses and mixed regions in chicken populations. One 

reason is that, duplications are more likely to be conserved than deletions because deletion regions are relatively 

gene-poor and therefore these regions are prone to purifying selection [114]. Nonetheless, deletion polymorphisms 

might have a significant role in the genetics of complex traits, even though not directly observed in several gene 

mapping studies [114].   
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In the present study, significant CNV segments associated with performance traits on chromosome 3, for 

body weight at 35, 41 and 42 days and body weight gain from 35-41 days, and on chromosome 5, for birth weight 

were identified. Given that these traits are not independent, and genetic correlations between performance traits have 

been widely reported in chickens [115-119], it is expected that certain CNV regions may be concomitantly associated 

with more than one trait, especially body weight measured in different ages (Figure 1). 

In the qPCR validation, we systematically assessed the overall agreement rate of the significant CNV 

segments detected in silico with qPCR results. The validation results indicated that all CNV segments were confirmed 

in at least one qPCR assay, consequently all CNVs may be real. Our results indicated that there is a small discrepancy 

(7.41%) between qPCR and PennCNV callings, since CNV’s exact genomic coordinates may vary and therefore, 

influence the hybridization of the qPCR primers and the amplification efficiency. 

We identified one overlap of the significant CNV segment associated with body weight gain with a 

previously mapped QTL for residual feed intake (RFI). RFI is defined as the difference between actual feed intake 

and predicted feed intake based on energy requirements for body weight gain and maintenance [120]. Moreover, we 

found genomic windows defined by significant CNV segments overlapping published QTLs for growth-related traits 

in the Embrapa F2 Chicken Resource Population [60]. Many studies, conducted with different chicken lines, have 

successfully identified QTLs and genes associated with economically important traits [121]. Given that QTLs and 

genes underlie functional regions of the genome, they may not be prone to structural rearrangements and thus not 

expected to be subject to CNVs [51]. Therefore, QTLs and genes located inside or nearby CNVs are of special 

interest.  

Noticeably, SNP-based studies [103, 120, 122] have identified many more QTLs associated with the traits 

analyzed in our study than the CNV-based approach applied here. Indeed, Pértille et al. [103] identified 88 QTLs 

associated with feed conversion, feed intake, birth weight, and body weight at 35 and 41 days of age in the Embrapa 

F2 Chicken Resource Population. Mebratie et al. [120] and Moreira et al. [122] identified, respectively, 11 and 19 

QTLs associated with body weight traits in a commercial broiler chicken population and in the Embrapa F2 Chicken 

Resource Population. This difference in QTL mapping is expected since CNVs are more frequently associated with 

deleterious effects than favorable ones, and this is not the case of SNPs, at least those included in the SNP arrays 

[123]. In addition, since known QTLs were (mostly) mapped using microsatellite markers and SNPs, they will not 

necessarily capture the same effect as CNVs. If associated CNVs do not overlap with QTLs previously found in 

other studies, that could occur because specific CNV probes can be excluded from a SNP-GWAS due to Hardy-

Weinberg equilibrium deviation or rigorous multiple testing corrections [51]. 

CNVs that comprise functional genes may induce phenotypic variation by altering gene structure, dosage 

and regulation, as a consequence of natural evolutionary processes [19], such as genetic drift [124] or artificial 

selection. We identified 32 genes annotated within a 1-Mb window of significant CNV segments associated with 

birth weight, body weight at 35, 41 and 42 days and body weight gain from 35-41 days.  

Note that, regarding birth weight and body weight at 35, 41 and 42 days, copy number increase of each 

respective significant CNV segment was observed in animals with lower body weight at these different ages (Figure 

2). Conversely, considering body weight gain, copy number increase of the respective significant CNV segment was 

positively associated with the phenotype (Figure 2). Since these CNV segments are located in proximity of several 

genes (Table 4) and, as it has been shown that the expression of a gene may be affected by their presence [112], 

CNVs may act as important modulators of gene expression. If inserted in an intronic or intergenic region, they could 

regulate enhancer activity, whereas if located in a promoter region or in the 3’ UTR region of a gene, they may 
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modify binding sites to transcription factors or miRNAs, respectively. In this way, CNVs may have potential to 

calibrate core regulators located in their proximity, propagating such effects to genome-wide gene expression [125] 

and account for differences manifested at the phenotype level (Figure 2). Near to the CNV segment associated with 

birth weight (GGA5: 12059966-12062666), we identified KCNJ11, MyoD1, PIK3C2A and SOX6 genes, which might 

have important effects on chicken growth and development regulation. 

 The KCNJ11 gene, found to be 2,217 base pairs downstream of the significant CNV segment cited 

above, is known to regulate insulin secretion [126]. A glucose metabolism disorder is usually linked as a cause of 

reduced development of chicken muscle tissue under stress, especially in broilers [127]. This gene was enriched to 

the ATP-sensitive potassium channel (KATP) pathway. KATP subunits are, among other genes, encoded by 

KCNJ11. KATP channels have a high activity in rat fast-twitch fibers, distinguished by raised muscle strength, and a 

low activity in slow-twitch fibers, characterized by weakness, fragility and lowered muscle strength [128]. KCNJ11 

gene knockout mice present reduced glycogen, slender phenotype and weakness [128]. It has been reported that the 

effect of the KCNJ11 gene on muscle may occur due to alterations in the KATP channel activity, which, in turn, 

affects the potassium flow inside the cell, settling the membrane potential needed for muscle activity [129]. For this 

reason, this gene may promote early growth and muscle development in chickens. In fact, it was found to be highly 

expressed in the muscle tissue of one-week-old chicks [126], which supports our findings that this gene, closely 

located to a significantly associated CNV segment, can play a role in the regulation of birth weight. In addition, a 

novel 163-bp indel in the downstream region of this gene was significantly associated with growth traits in chickens 

[130]. In the same study, synteny analyses found that KCNJ11 maintains a close connection with its neighboring 

genes. It is interesting to note that one of these genes is the Myogenic differentiation 1 (MyoD1).  

The myogenic regulatory factors are a family of vertebrate proteins (MyoD, Myf5, Mrf4 and Myog) that are 

robust transcription factors for muscle genes [131]. The MyoD1 gene can promote myoblast differentiation and have 

relevant effects on muscle development [132, 133]. Previous study in quail lines revealed that a delay in MyoD1 

expression is associated with increased body weight and muscle mass [134]. A very high degree of synteny is 

maintained between MyoD1 containing regions of human chromosome 11 and chicken chromosome 5, comprising 

ABCC8, KCNJ11, PIK3C2A, RPS13, SERGEF, NUCB2 and PLEKHA7 genes [135]. Mutations in PIK3C2A gene 

were discovered to cause a growth-related genetic syndrome in humans, consisting of dysmorphic features, short 

stature and skeletal abnormalities [136]. This gene has been attributed to biological functions such as glucose 

transport, Akt pathway activation, endosomal trafficking, phagosome maturation, mitotic spindle organization, 

exocytosis and autophagy [137-143]. 

MyoD1 was enriched in biological processes associated with the SOX6, a gene related with muscle 

physiology, such as regulation of striated muscle cell differentiation and development, regulation of muscle cell 

differentiation and regulation of muscle organ development. The expression level of the SOX6 gene was positively 

associated with CNV and increased during skeletal muscle cell differentiation, by upregulating expression levels of 

muscle-growth-related genes in chickens as well as in other animal species [144]. 

We found genes nearby significant CNV segments associated with body weight at 35, 41 and 42 days 

(LPIN1 and TRIB2) and body weight gain (GPRC6A and NT5DC1) that may be of special importance and have 

potential effects on chicken growth. A significant association was found between a variant in the 3′ UTR of chicken 

LPIN1 gene and breast muscle fiber diameter [145], suggesting that this gene has a potential effect on muscle fiber 

development. The TRIB2 gene, a novel regulator of thymocyte cellular proliferation, was found to be involved in 

reproduction and growth in White Leghorn chickens, and consequently might represent footprints of the selection 
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process [146]. The GPRC6A gene was found to have functions related to testis growth and development in broilers 

[147]. In addition, another interesting gene is the NT5DC1, previously related to muscle tissue, angiogenesis and 

amino acid metabolism [148]. We found an enriched cluster for calcium homeostasis modulator (CALHM) gene 

family, which included three members: FAM26D, FAM26E and FAM26F. Even though CALHMs have been 

classified as pore-forming subunits of plasma membrane ion channels, questions about their function remain 

unanswered, hence their role needs to be ascertained on further investigations [149]. 

In summary, from SNP-chip data of a broiler population, we identified novel structural variation regions 

in the genome that, based on gene enrichment and literature information, harbor potential candidate genes, with 

important roles in a wide range of biological, cellular, and molecular processes, linked with muscle differentiation, 

growth, and development. Our findings reveal that alterations in copy number within or nearby these genes could 

result in phenotypic variation, thus contributing to a better understanding of performance regulation in chickens.  

 

2.5. Conclusions 

This study reports structural variations along the chicken genome associated with five complex traits of 

economic interest in a broiler population using a probe-level based CNV association approach. We identified CNV 

segments significantly associated with birth weight, body weight at 35, 41 and 42 days and body weight gain, 

spanning genes that play known key roles in a wide spectrum of molecular and biological processes linked with 

chicken growth, muscle differentiation and cellular processes regulation. Our results provide substantial information 

about the potential CNV impacts on animal production, growth, development, and performance-related traits, laying 

a foundation for incorporating CNVs into the future poultry breeding programs and contributing to expand 

scientific research on genetics, particularly on structural variations involved in animal biology and physiology.  
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APPENDIX 

APPENDIX A.              QQ-plots show the relation of normal theoretical quantiles of the probability distributions 

between expected (X-axis) and observed (Y-axis) p-values from (a) birth weight, (b) body weight at 35 days, (c) body weight at 41 
days, (d) body weight at 42 days and (e) body weight gain. 
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APPENDIX B. Information of the CNV segments validated by qPCR and the primers used for qPCR. 

CNVSegment_ID GGA Start (bp) End (bp) Length (bp) Type Primer_ID Forward (5'-3') Reverse (5'-3') 
Amplication 

Length (bp) 

Left-Right Position 

(bp) - Forward 

Left-Right Position 

(bp) - Reverse 

GGA3_64Mb 3 64169030 64171297 2268 deletion 

1 AATGCAGTGAGCTACGAGAAGA TCCTTCTTGCACAGACTACACA 91 64169267 - 64169288 64169336 - 64169357 

2 GTGGGAAAATAGATGGATGAGG CAGGGTAAAGACAGGACAAACA 94 64170053 - 64170074 64170125 - 64170146 

3 TGCAGTTTTGACAGGTGCTT CCTGCAACAGTTCAAGAGAGAA 91 64170717 - 64170736 64170786 - 64170807 

GGA3_97Mb 3 97801202 97809208 8007 deletion 

4 GAAGACAAACACACAGGGTGAG GGCAGACATAGAACAGCTTCAG 100 97802574 - 97802595 97802652 - 97802673 

5 CAAATGATGATTGCCTCCAG AAGCAAGTAAAGGGAAGGTGAG 87 97805528 - 97805547 97805593 - 97805614 

6 AGGGCCTGATGTTTATTTGG CCAAGTGATGAGCACAGTATCA 100 97808547 - 97808566 97808625 - 97808646 

GGA5_12Mb 5 12059966 12063208 3243 deletion 

7 CAGTGTGCTGTGCTGACTTCTA TGCAGAAGACATTCTTGAGAGG 93 12060133 - 12060154 12060204 - 12060225 

8 AACTAGCCACAAGAACCAGTCA GTGGGTAAATACTGCTGTGTGC 94 12061132 - 12061153 12061204 - 12061225 

9 TGAAAGGGTCCTCCAAAATA TTATTCTTCCCCCACTTTCAAC 91 12062215 - 12062234 12062284 - 12062305 

PCCA 1 

 
CAGACACACAGAGCCCATCTCT TGGAGCAGTGGTGGCTGTT 65 143245276 143245340 
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APPENDIX C.  Validation rates of 9 samples. 

CNVSegment_ID: GGA3_64Mb 

Primer_ID sample11C2 sample11C3 sample11D2 

1 yes yes yes 

2 yes yes yes 

3 yes yes yes 

    

CNVSegment_ID: GGA3_97Mb 

Primer_ID sample5D2 sample10C9 sample11D1 

4 yes yes yes 

5 yes yes yes 

6 yes yes yes 

    

CNVSegment_ID: GGA5_12Mb 

Primer_ID sample2F4 sample4C6 sample11D12 

7 no yes yes 

8 no yes yes 

9 yes yes yes 

Confirmed 7 9 9 

Totals 9 9 9 

Validation Rate 0.7778 1.0000 1.0000 

Average 
  

0.9259 
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APPENDIX D.  List with the 32 genes annotated within a 1-Mb window of significant CNV segments.  

Gene stable ID Gene name Description Chr. Gene start (bp) Gene end (bp) 

ENSGALG00000006074 SOX6 SRY-box 6 5 11366630 11601652 

ENSGALG00000006077 C5H11orf58 chromosome 5 C11orf58 homolog 5 11765074 11770877 

ENSGALG00000006096 RPS13 ribosomal protein S13 5 11951870 11956268 

ENSGALG00000006121 PIK3C2A 
phosphatidylinositol-4-phosphate 3-kinase 
catalytic subunit type 2 alpha 

5 11958466 12018064 

ENSGALG00000006147 NUCB2 nucleobindin 2 5 12022253 12051047 

ENSGALG00000006172 ABCC8 ATP binding cassette subfamily C member 8 5 12070315 12134884 

ENSGALG00000006192 USH1C USH1 protein network component harmonin 5 12148432 12193954 

ENSGALG00000006216 MYOD1 myogenic differentiation 1 5 12395624 12398842 

ENSGALG00000006220 KCNC1 
potassium voltage-gated channel subfamily C 
member 1 

5 12414763 12510791 

ENSGALG00000006231 SERGEF 
secretion regulating guanine nucleotide 
exchange factor 

5 12523791 12654177 

ENSGALG00000014918 RFX6 regulatory factor X6 3 63709871 63742912 

ENSGALG00000014925 GPRC6A 
G protein-coupled receptor class C group 6 
member A 

3 63761182 63771757 

ENSGALG00000014937 KPNA5 karyopherin subunit alpha 5 3 63782064 63799496 

ENSGALG00000014940 ZUP1 
zinc finger with UFM1 specific peptidase 
domain 

3 63799081 63805160 

ENSGALG00000014950 SOT3A1L sulfotransferase family 3A member 1-like 3 63813421 63820420 

ENSGALG00000014953 RWDD1 RWD domain containing 1 3 63823638 63834723 

ENSGALG00000014955 FAM26D family with sequence similarity 26 member D 3 63835589 63839410 

ENSGALG00000014962 CALHM6 family with sequence similarity 26 member F 3 63868068 63871243 

ENSGALG00000014963 DSE dermatan sulfate epimerase 3 63884722 63905439 

ENSGALG00000014964 NT5DC1 5'-nucleotidase domain containing 1 3 63927963 64048903 

ENSGALG00000014965 COL10A1 collagen type X alpha 1 3 64024537 64031213 

ENSGALG00000014979 FRK fyn related Src family tyrosine kinase 3 64064317 64109976 

ENSGALG00000016455 GREB1 growth regulating estrogen receptor binding 1 3 97305446 97393711 

ENSGALG00000016456 LPIN1 lipin 1 3 97402679 97470693 

ENSGALG00000016457 TRIB2 tribbles pseudokinase 2 3 97859114 97880210 

ENSGALG00000019941 FAM162B 
family with sequence similarity 162 member 
B 

3 63775429 63778379 

ENSGALG00000020505 KCNJ11 
potassium inwardly rectifying channel 
subfamily J member 11 

5 12064883 12066076 

ENSGALG00000026594 HS3ST5 
heparan sulfate-glucosamine 3-
sulfotransferase 5 

3 64588327 64784997 

ENSGALG00000028539 TRAPPC3L trafficking protein particle complex 3 like 3 63834724 63863461 

ENSGALG00000028696 FTL ferritin light polypeptide 5 12387716 12391494 

ENSGALG00000029679 PLEKHA7 pleckstrin homology domain containing A7 5 11778632 11840720 

ENSGALG00000038162 FAM26E family with sequence similarity 26 member E 3 63853190 63861087 
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APPENDIX E. 78 reference publications significantly enriched in the STRING network. 

#term ID FDR¹ matching proteins in network (labels) 

PMID:18253507 6.48e-12 ABCC8,KCNC1,KCNJ11,NUCB2,PIK3C2A,RPS13,SERGEF 

PMID:30984245 6.61e-05 ABCC8,MYOD1,NUCB2,PIK3C2A 

PMID:21544516 0.0023 ABCC8,KCNJ11,RFX6 

PMID:22701481 0.0076 ABCC8,KCNC1,KCNJ11 

PMID:23266642 0.0098 LPIN1,MYOD1 

PMID:26901059 0.0098 ABCC8,KCNJ11,RFX6 

PMID:30857219 0.0098 KCNC1,NUCB2,USH1C 

PMID:25051960 0.0103 ABCC8,KCNJ11,RFX6 

PMID:28389584 0.0103 ABCC8,KCNJ11 

PMID:31292350 0.0103 ABCC8,KCNJ11 

PMID:18723823 0.0113 ABCC8,KCNJ11 

PMID:26226329 0.0113 ABCC8,KCNJ11 

PMID:15647111 0.0133 ABCC8,KCNJ11 

PMID:19437544 0.0133 COL10A1,MYOD1,SOX6 

PMID:22662242 0.0133 GPRC6A,RFX6 

PMID:24409153 0.0133 ABCC8,KCNJ11 

PMID:25501044 0.0133 NUCB2,PIK3C2A 

PMID:30655517 0.0133 ABCC8,KCNJ11 

PMID:31988092 0.0133 GREB1,MYOD1 

PMID:19403831 0.0148 ABCC8,KCNJ11 

PMID:21049026 0.0148 ABCC8,KCNJ11 

PMID:21984445 0.0148 ABCC8,KCNJ11 

PMID:27956473 0.0148 ABCC8,KCNJ11 

PMID:15569391 0.0154 KCNC1,MYOD1 

PMID:20376350 0.0154 MYOD1,SOX6 

PMID:21035764 0.0154 ABCC8,KCNJ11 

PMID:21615117 0.0154 ABCC8,KCNJ11 

PMID:23173756 0.0154 ABCC8,KCNJ11 

PMID:23346115 0.0154 ABCC8,KCNJ11 

PMID:23691027 0.0154 ABCC8,KCNJ11 

PMID:23974906 0.0154 ABCC8,KCNJ11 

PMID:24763754 0.0154 MYOD1,RPS13 

PMID:28417917 0.0154 COL10A1,SOX6 

PMID:20676705 0.0159 COL10A1,SOX6 

PMID:25564733 0.0159 ABCC8,KCNJ11 

PMID:23610594 0.0177 FRK,MYOD1 

PMID:20465544 0.0201 ABCC8,KCNJ11 

PMID:26243583 0.0201 KCNJ11,MYOD1 

PMID:27246103 0.0201 ABCC8,KCNJ11 

PMID:25397325 0.0214 ABCC8,KCNJ11 

PMID:29670283 0.0214 ABCC8,KCNJ11 

PMID:19272164 0.0217 COL10A1,MYOD1,SOX6 
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PMID:24831221 0.0227 ABCC8,KCNJ11 

PMID:27926480 0.0227 C5H11ORF58,MYOD1 

PMID:28877214 0.0227 ABCC8,KCNJ11 

PMID:30518151 0.0227 MYOD1,SOX6 

PMID:31159511 0.0227 MYOD1,SOX6 

PMID:15492776 0.0231 COL10A1,SOX6 

PMID:17051351 0.0231 MYOD1,NT5DC1 

PMID:23064164 0.0231 ABCC8,KCNJ11 

PMID:25909383 0.0231 ABCC8,RFX6 

PMID:26707643 0.0231 MYOD1,SOX6 

PMID:26806292 0.0231 COL10A1,SOX6 

PMID:29342086 0.0231 MYOD1,SOX6 

PMID:29518216 0.0231 RFX6,SOX6 

PMID:16504022 0.0248 COL10A1,SOX6 

PMID:19306868 0.0248 COL10A1,SOX6 

PMID:23118920 0.0248 ABCC8,KCNJ11 

PMID:27434733 0.0248 KPNA5,MYOD1 

PMID:21423376 0.0257 ABCC8,KCNJ11 

PMID:21529371 0.0257 GREB1,MYOD1 

PMID:20213696 0.0274 COL10A1,SOX6 

PMID:30303066 0.0274 ABCC8,KCNJ11 

PMID:19334283 0.0319 ABCC8,KCNJ11 

PMID:22428055 0.0319 COL10A1,SOX6 

PMID:30467957 0.0319 ABCC8,KCNJ11 

PMID:24421874 0.0332 COL10A1,SOX6 

PMID:25802528 0.0332 MYOD1,SOX6 

PMID:25210496 0.0350 MYOD1,SOX6 

PMID:21040371 0.0374 MYOD1,SOX6 

PMID:22150363 0.0397 ABCC8,KCNJ11 

PMID:24664432 0.0397 MYOD1,SOX6 

PMID:22676585 0.0446 FTL,RPS13 

PMID:28642850 0.0471 COL10A1,SOX6 

PMID:30760930 0.0471 ABCC8,USH1C 

PMID:29616080 0.0489 MYOD1,SOX6 

PMID:30836719 0.0489 LPIN1,MYOD1 

PMID:32110997 0.0489 LPIN1,MYOD1 

¹false discovery rate 

  

 

 
 


