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RESUMO 

 

Visão holística de fazendas leiteiras: manejo reprodutivo, programas de inseminação 

artificial em tempo fixo, nutrição e estresse térmico 

 

 O objetivo dessa tese de doutorado foi abordar diferentes aspectos que afetam a 

performance reprodutiva de fazendas leiteiras. O primeiro capítulo é uma revisão que discute 

como o manejo reprodutivo afeta a reprodução, apresentando estratégias para trabalhar o 

primeiro serviço pós-parto e as re-inseminações das vacas. Além disso, a revisão discute 

pontos importantes que afetam a fertilidade dos programas de inseminação artificial em tempo 

fixo (IATF) como promover sincronização de onda folicular no início dos protocolos, alta 

concentração de progesterona (P4) durante o desenvolvimento do folículo pré-ovulatório, e a 

importância do ambiente hormonal no período próximo à inseminação e pós-ovulação. Além 

disso, a revisão discute como a nutrição, genética, estresse térmico, escore de condição 

corporal, saúde e o período de transição afetam a performance reprodutiva. O segundo 

capítulo envolve um experimento no qual foi comparado duas estratégias de pré-sincronização 

e dois protocolos de IATF, estabelecendo 4 programas reprodutivos para a 1ª IATF pós-parto. 

Apesar das diferentes bases farmacológicas, os programas reprodutivos promoveram 

resultados similares e alta fertilidade, e os resultados mostraram uma mesma eficiência de um 

programa estabelecido, o Duplo-Ovsynch, comparado com o programa inovador elaborado 

pelo nosso grupo de pesquisa, o Duplo E-Synch. No estudo do capítulo 3, otimizações durante 

o protocolo de IATF á base de estradiol (E2) e P4 foram avaliadas e observamos um aumento 

na fertilidade quando um tratamento com hormônio liberador de gonadotrofina (GnRH) foi 

adicionado ao início do protocolo convencional iniciado apenas com benzoato de E2. O 

capítulo 4 engloba um artigo em que informações relacionadas a nutrição e reprodução de 

fazendas leiteiras foram avaliadas retrospectivamente. São dados de campo que sugeriram que 

dietas com alta concentração de carboidratos não fibrosos no início da lactação podem ter 

efeito negativo na fertilidade e performance reprodutiva de fazendas comerciais de alta 

produção de leite. O quinto e último capítulo discute outro importante fator que afeta a 

fertilidade, o estresse térmico. Dados foram coletados durante um ano em uma fazenda 

comercial e os resultados mostram efeitos negativos na fertilidade de variáveis associadas ao 

estresse térmico, como temperatura retal no momento da IA, estação do ano e índice de 

temperatura e umidade (THI). Por fim, concluímos que é importante que as fazendas e 

profissionais tenham uma visão holística do sistema de produção, buscando entender e 

controlar fatores que afetam a fertilidade, além de implementar estratégias de manejo 

reprodutivo e programas de IATF otimizados, objetivando atingir alta eficiência reprodutiva 

em conjunto com alta produção de leite. 

 

Palavras-chave: Vaca leiteira, Fertilidade, Inseminação artificial em tempo fixo, Nutrição, 

Estresse térmico 
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ABSTRACT 

 

Holistic vision of dairy herds: reproductive management, timed-artificial insemination 

programs, nutrition and heat stress 

 

 The objective of this PhD dissertation was to address different aspects that affect 

reproductive performance of dairy herds. The first chapter is a review that discusses how 

reproductive management affects reproduction, presenting strategies for the first postpartum 

service and re-inseminations. In addition, the review discusses key points that affect fertility 

of timed-artificial insemination (TAI) programs, such as promoting follicular wave emergence 

at the beginning of the protocols, high concentration of progesterone (P4) during preovulatory 

follicle development, and the importance of the hormonal environment in the periovulatory 

period and post-ovulation. Furthermore, the review discusses how nutrition, genetics, heat 

stress, body condition score, health and the transition period affect reproductive performance. 

The second chapter involves an experiment in which two pre-synchronization strategies and 

two TAI protocols were compared, establishing four reproductive programs for the first TAI 

postpartum. Despite the difference on pharmacological bases, the reproductive programs 

promoted similar results and high fertility, and the results showed a same efficiency of an 

established program, Double-Ovsynch, compared with the novel program developed by our 

research group, Double E-Synch . In the study of chapter 3, optimizations during the estradiol 

(E2) plues P4-based TAI protocol were evaluated, and we observed an increase in fertility 

when a treatment with gonadotropin-releasing hormone (GnRH) was added at the beginning 

of the conventional protocol initiated with only E2 benzoate. Chapter 4 includes an article in 

which information related to nutrition and reproduction from commercial dairy herds was 

retrospectively evaluated. These are field data that suggested that diets with a high 

concentration of non-fiber carbohydrates in early lactation may have a negative effect on 

fertility and reproductive performance in high production commercial dairy farms. The fifth 

chapter discusses another important factor that affects fertility, heat stress. Data were 

collected during one year on a commercial farm and the results confirmed negative effects on 

fertility of variables associated with heat stress, such as rectal temperature at the time of AI, 

season of the year and temperature and humidity index (THI). Finally, we conclude that it is 

important for farms and professionals to have a holistic vision within the herd, looking for to 

understand and control factors that affect fertility, in addition to implementing optimized TAI 

programs and effective reproductive management strategies to guarantee high service rates 

and fertility, aiming to achieve high reproductive efficiency with high milk production. 

 

Keywords: Dairy cow, Fertility, Timed-artificial insemination, Nutrition, Heat stress 
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Review 

Factors That Optimize Reproductive Efficiency in Dairy 

Herds with an Emphasis on Timed Artificial Insemination 

Programs 

Carlos Eduardo Cardoso Consentini , Milo Charles Wiltbank and Roberto Sartori 

 
https://doi.org/10.3390/ani11020301 

 

Abstract 

Reproductive efficiency is closely tied to the profitability of dairy herds, and therefore 

successful dairy operations seek to achieve high 21-day pregnancy rates in order to reduce the 

calving interval and days in milk of the herd. There are various factors that impact 

reproductive performance, including the specific reproductive management program, body 

condition score loss and nutritional management, genetics of the cows, and the cow comfort 

provided by the facilities and management programs. To achieve high 21-day pregnancy 

rates, the service rate and pregnancy per artificial insemination (P/AI) should be increased. 

Currently, there are adjustments in timed artificial insemination (TAI) protocols and use of 

presynchronization programs that can increase P/AI, even to the point that fertility is higher 

with some TAI programs as compared with AI after standing estrus. Implementation of a 

systematic reproductive management program that utilizes efficient TAI programs with 

optimized management strategies can produce high reproductive indexes combined with 

healthy cows having high milk production termed “the high fertility cycle”. The scientific 

results that underlie these concepts are presented in this manuscript along with how these 

ideas can be practically implemented to improve reproductive efficiency on commercial dairy 

operations. 

 
Keywords: cattle; fertility; timed-AI; dairy cows; management; reproductive tools 

mailto:wiltbank@wisc.edu
mailto:robertosartori@usp.br
https://doi.org/10.3390/ani11020301
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1. Introduction 

For decades, genetic selection in dairy cattle was primarily focused on milk production. 

This genetic selection for production, combined with advances in nutrition, management, 

facilities, and veterinary programs have generated the modern dairy herds with high milk 

production (9000 to >12,000 kg of milk in a 305-day period). It has been recognized that 

primary selection for production lead to cows with poorer reproductive efficiency and health 

traits [1]. During the last two decades, increased selection for traits linked to reproduction 

combined with the reliability gains that genomics provided for less heritable traits, such as 

reproduction, has led to tremendous progress among dairy herds regarding genetic potential 

for reproduction in the modern dairy cow [2–4]. Nevertheless, there are so many factors that 

affect reproductive efficiency in dairy cattle that a multifaceted approach is required to 

optimize reproductive performance on high production dairy herds. One approach that has 

been used with great success on many dairy farms across the globe is to have a systematic 

reproductive management program that includes timed artificial insemination (TAI) [5,6]. In 

this review, first, we consider the key physiology that underlies the development of high 

fertility TAI programs (Section 2) and how this physiology can be practically implemented in 

TAI programs (Section 3). Specific high-fertility TAI programs are presented in Section 4. 

Subsequently, key management/cow factors that can alter the efficiency of these reproductive 

programs are considered (Section 5), and then we conclude with thoughts on practically 

combining these concepts in programs that optimize reproductive efficiency on dairy herds 

(Section 6). The goal of this review is to provide scientists, veterinarians, dairy consultants, 

and dairy producers with up-to-date scientific information on reproductive efficiency in dairy 

herds that use TAI. 

Quantification of reproductive efficiency on dairy farms can be accomplished through a 

variety of measures. In this review, we primarily use the 21-day pregnancy rate (21 d-PR) 

because of the utility of this measure for making immediate management decisions on a dairy 

farm. The 21 d-PR is defined as the percentage of eligible cows that become pregnant every 

21 d. The 21 d-PR is most efficiently calculated on a computer. First, the number of eligible 

cows during each 21-day period must be calculated (i.e., cows past the voluntary waiting 

period (VWP), that are not pregnant, and not designated as “do not breed”) including whether 

a cow should be included that is eligible for only a portion of the 21-day period (usually, if 

eligible for >11 d in a 21-day period they are included). Thus, it would be better to consider 

“eligible cows” to be “eligible 21-day periods” because a cow can be eligible during multiple 

21-d periods before she becomes pregnant. Next, the number of cows that became pregnant 
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during that 21-d period, either due to AI after estrus or TAI, are determined and divided by 

the number of eligible cows in that 21-day period. Thus, the 21 d-PR can only be determined 

after definitive pregnancy diagnosis. Two other key measures determine the 21 d-PR on a 

dairy and should be calculated when evaluating reproductive efficiency on a dairy farm. The 

21-day service rate (21 d-SR) is a calculation of the percentage of eligible cows that are 

serviced (receive AI) during a 21-day period. The 21 d-SR can be calculated immediately 

after finishing the 21-day period because it does not include determination of whether a cow 

became pregnant. The final key measure is the pregnancies per artificial insemination (P/AI), 

inaccurately called conception rate in some circles. The P/AI should be calculated separately 

for the first AI (first AI P/AI) and second and later AIs (2nd + AIs). This is because programs 

that yield differences in fertility are generally used for the first vs. later services. 

A brief consideration of the link between reproductive efficiency and profitability is 

appropriate, although this is considered in much greater depth in other manuscripts [7–14]. 

One key consideration is that cows in the first third of lactation provide greater income over 

feed cost as compared with cows in the middle or at the end of lactation [15]. In addition, 

multiparous cows generally have much greater milk production during the first third of their 

lactation than primiparous cows. Hence, greater milk production per cow per day and 

efficiency of milk production can be achieved by increasing the percentage of cows in early 

lactation and the percentage of cows in later lactations (older cows). Thus, one goal of 

reproductive management programs is to maximize the number of cows that become pregnant 

early in lactation in order to increase production efficiency and production per cow per day. 

For instance, [15] reported that a reduction in calving interval of 60 d increased milk 

production per day (1.51 and 1.11 kg/d) and during entire lactation (~498 and ~366 

kg/lactation) in both high-production (12,500 kg in 305 d of lactation) and moderate-

production herds (9000 kg in 305 d of lactation), respectively. 

An additional key profit generator from efficient reproduction is a reduction in the need 

for culling high merit cows due to poor reproduction, resulting in either reduced culling or a 

shift in culling to cows with lower milk production, disease problems such as mastitis, and 

udder, genetic, or foot and leg issues. Thus, there is an improvement in the overall quality of 

the herd when reproductive efficiency is improved. Economic benefits may also arise in herds 

with greater reproductive efficiency due to reduction in reproductive costs, such as costs for 

semen, reproductive hormones, and veterinary costs such as pregnancy diagnoses, although 

this will vary with the method used to improve reproductive efficiency [7,11,13]. Finally, as 

discussed in detail later in this review, greater reproductive efficiency will cause a greater 
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percentage of cows to enter “the high fertility cycle” leading to many benefits in terms of 

improved health, production, and reproduction [16]. 

 

2. Five Key Physiologic Factors That Influence Fertility in Timed Artificial Insemination 

(TAI) Protocols 

Protocols for TAI can be broadly divided into two the following pharmacological bases: 

(1) Ovsynch-type protocols using gonadotropin releasing-hormone (GnRH) and (2) protocols 

that use estradiol (E2) compounds plus treatment with progesterone (E2/P4 protocols). 

Regardless of the hormonal combinations, the overall physiological objectives are similar, as 

summarized in Figure 1. First, the protocol attempts to synchronize emergence of a new 

follicular wave either by ovulating a dominant follicle after GnRH treatment or by inhibiting 

gonadotropins after treatment with E2 compounds plus P4 to induce turnover of follicles in 

the current follicular wave. Second, circulating P4 is maintained at elevated concentrations 

during development of the new preovulatory follicular wave. Third, efficient regression of the 

corpus luteum (CL) using prostaglandin F2α (PGF) minimizes P4 and enhances circulating E2 

near TAI. Fourth, a follicle with adequate size and age is synchronously ovulated using either 

GnRH or E2 to correspond with proper scheduling of TAI. Finally, elevated and consistent 

circulating P4 is maintained from properly functioning CL generated after the final ovulation. 
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Figure 1. Key physiology (yellow rectangles) that should occur during timed artificial 

insemination (TAI) protocols in lactating dairy cows. Rectangles with purple lines show 

common treatments that are used to achieve these results and rectangles with dashed black 

lines show the mechanisms that produce increased pregnancy per artificial insemination 

(P/AI) or reduced pregnancy loss in TAI protocols. Corpus luteum (CL), estradiol (E2) 

benzoate (EB), gonadotropin-releasing hormone (GnRH), progesterone (P4), prostaglandin 

F2α (PGF). 

 

Synchronized emergence of a new follicular wave minimizes development of persistent 

follicles during the protocol (Figure 1). Previous studies have shown that ovulation of follicles 

that have prolonged periods of follicular dominance can dramatically reduce fertility of 

lactating dairy cows [17]. Prolonged dominance may reduce fertility by decreasing oocyte 

quality, possibly by allowing premature meiotic resumption due to high luteinizing hormone 

(LH) pulse frequency [18]. Although oocytes from these persistent follicles appear to be 

efficiently fertilized, the embryo stops developing prior to the blastocyst stage [19]. In a study 

that evaluated ovarian dynamics during an E2/P4 TAI protocol, cows without follicle wave 

emergence at the beginning of the protocol that subsequently ovulated persistent follicles at 

the end of the protocol had lower P/AI compared to cows that had emergence of a new 
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follicular wave (21 vs. 43%) [17]. Similarly, in GnRH-based protocols, P/AI was greater in 

cows that ovulated follicles of intermediary size (15–19 mm, 47%) as compared with those 

ovulating smaller (<14 mm, 36%) or larger (>20 mm, 38%) follicles [20]. Thus, optimizing 

the follicle size and oocyte quality near TAI depends on the efficiency of the strategy used to 

initiate emergence of a new follicular wave at the beginning of the protocol. 

Secondly, circulating P4 concentrations during preovulatory follicle development have 

dramatic effects on the subsequent fertility of high-producing lactating dairy cows. Lower 

circulating P4 during follicular growth, either due to an anovulatory condition [21] or due to 

the higher catabolism of this hormone in high-producing cows [22,23], is associated with 

greater pulsatility of LH, which can result in premature resumption of oocyte meiosis and 

germinal vesicle breakdown, decreasing oocyte quality, and consequently fertility [18,24]. A 

study by [25] reported that cows yielding over 40 kg/d of milk that were superstimulated to 

produce multiple ovulations during the first follicular wave (low P4 during follicle growth) 

had a greater percentage of degenerate embryos (23.5%) as compared with cows 

superovulated during the first follicular wave but with P4 supplementation (7.1%) or those 

superovulated during the second follicular wave (3.9%). Moreover, the percentage of 

transferable embryos was much greater after superovulation during the second follicular wave 

(88.5%) and the first wave with supplementary P4 (78.6%) as compared with superovulation 

during the first follicular wave (55.9%). An elegant study evaluated the effect of circulating 

P4 concentration on embryo quality of cows synchronized and with single ovulation [26], in 

which the ovulatory follicle developed under a higher or lower circulating P4 milieu. 

Although fertilization was similar (78% on average), the percentage of grade 1 and 2 embryos 

(high quality embryos) was greater for cows ovulating follicles that developed under higher 

P4 (86.5%) than follicles that developed under lower P4 (61.5%). Moreover, cows with 

higher circulating P4 had fewer degenerate embryos (8.1%) than cows with lower circulating 

P4 (34.6%). 

Many studies have reported greater P/AI when cows were submitted to TAI programs in 

which a CL was present or the P4 milieu during follicle development was high [27–29]. In a 

compilation of data from studies of our laboratory [30] using P4-based protocols, that started 

with estradiol benzoate (EB), GnRH, or both, the presence of CL at the beginning of TAI 

protocols or at the time of PGF increased P/AI by 15–24% (Figure 2), and the best fertility 

was achieved when CL was present at both times of the protocol (Figure 2). 
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Figure 2. Effect of the presence of corpus luteum (CL) during timed artificial inseminations 

(TAI) protocols on pregnancy per AI (P/AI) of lactating dairy cows. a,b Different letters 

represent differences (p < 0.05). Prostaglandin F2α (PGF). Data from 3 experiments from our 

lab in which cows were submitted to TAI protocols initiated with progesterone implant and 

estradiol benzoate, GnRH, or both (from [30]) 

 

Another important aspect of circulating P4 concentration during TAI programs is related 

to double/multiple ovulation and twinning. Double ovulation is more frequent when there is 

low circulating P4 during the protocol [31, 32] and in cows with higher milk yield [33, 34]. 

Another factor that influences double ovulation is parity, in which multiple ovulations have 

been described to be more frequent in multiparous compared to primiparous cows [35], and 

this can be explained by the greater milk production in multiparous cows. Double ovulation in 

dairy cattle is undesirable because it increases the incidence of twin pregnancies [36], which 

are associated with calving problems, calf mortality, freemartins, and problems with calf 

development. Moreover, twinning is associated with greater pregnancy loss after 30 d of 

pregnancy [37, 38]. Thus, during preovulatory follicle development, increasing circulating P4 

optimizes follicle size and oocyte quality and also can decreases development of co-dominant 

follicles, multiple ovulation, and twins; this effect may decrease pregnancy loss. 

The third key physiologic outcome to achieve during TAI programs is to efficiently 

regress the CL, having minimal circulating P4 near TAI. Many studies have reported a 

relationship between circulating P4 concentrations near TAI and ovulation or fertility [17, 20, 

39–42] with even small concentrations of P4 near TAI producing dramatic decreases in 

fertility. For example, in a large data set compiled by [6], there was a 66% relative decrease in 

P/AI for cows with P4 ≥ 0.4 ng/mL (14%, 161/435) as compared with cows with P4 < 0.4 



20 
 

ng/mL (41%, 1125/2713) at the time of the second GnRH treatment (G2) during the Ovsynch 

protocol (Figure 3). This outcome is likely to be due to the negative effects of residual P4 on 

ovulation at the end of a TAI protocol, and on gamete transport [43], hampering fertilization 

efficiency (Figure 1). 

 

 

Figure 3. Pregnancy per AI (P/AI) in lactating dairy cows in relation to progesterone 

concentration at the time of the second gonadotropin releasing-hormone (GnRH) of the 

Ovsynch protocol. a,b,c,d Different letters represent differences (p < 0.05). From [6]. 

 

This residual P4 near AI is due to a lack of complete luteolysis after the PGF treatment 

during the protocols, which may occur in 13 to 44% of cows [44,45], and is more problematic 

when young CL are present at the time of PGF, due to their lower responsiveness to a single 

treatment with PGF [46]. Therefore, new strategies have been used in TAI programs to 

overcome the issue of incomplete CL regression at the end of the protocol, and those 

strategies are discussed later in this manuscript.  

The fourth key point is related to optimal size and synchronized ovulation of the follicle 

in relation to TAI. A more optimal size will result in greater E2 concentrations prior to TAI 

resulting in greater expression of estrus at the end of TAI protocols. In general, cows that 

express estrus before TAI achieve greater P/AI, in both Ovsynch-type [47] and E2/P4-based 

protocols [48]. Another positive effect of expression of estrus is a decrease in pregnancy loss, 

as reported in a study with 5430 cows, in which cows expressing estrus had ~28% lower 

pregnancy loss than cows not expressing estrus [48]. Cows expressing estrus may also have 
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greater fertility due to greater likelihood of ovulation [49], although an analysis of only cows 

that ovulated to an E2/P4 protocol still showed an increase in fertility in cows expressing 

estrus [48]. Similarly, in cows synchronized with GnRH-based protocols, estrus is related to 

circulating E2, which is greater for cows ovulating larger follicles at the end of the protocol 

[20], and higher circulating E2 before AI is also associated with greater fertility [50]. 

Adequate circulating E2 prior to AI is associated with a differential expression of genes in the 

endometrium and conceptus, likely producing conditions that are favorable to pregnancy [51], 

and gamete transport [52]. Thus, ovulation of a more optimal size of follicle will result in 

greater circulating E2 during proestrus and greater expression of estrus. Use of different 

strategies to induce ovulation can also result in more synchronized ovulation in relation to 

TAI and this may help fertility. 

Finally, the absolute requirement for P4 (or the CL hormone) in pregnancy maintenance 

was demonstrated over 100 years ago [53, 54]. The numerous studies investigating whether 

P4 supplementation increased fertility in lactating dairy cows starting in the 1950s [55, 56], 

until today, have been less definitive [17, 57–59]. Among 30 trials that we evaluated for a 

review manuscript [43], the vast majority (25/30) showed a numeric improvement in fertility 

with P4 supplementation, but only six of these trials showed significance (p < 0.05). Only two 

[58, 60] of these trials that found significance had groups of more than 100 animals per 

treatment. 

The most extensive trials to increase P4 have been done by inducing formation of an 

accessory CL with hCG or GnRH treatment. When hCG or GnRH is administered on Day 5 

after AI, there is generally formation of an accessory CL and increased P4 during the mid-

luteal phase [61, 62]. For example, we observed 93% ovulation after treatment with 3300 IU 

of hCG on Day 5 with an increase in circulating P4 by 3 d after hCG treatment from Day 8 

until 16 of the cycle [63]. We performed a meta-analysis of 10 previous trials that analyzed 

the effect of hCG on fertility in a total of 4397 lactating cows [58]. There was a modest (p = 

0.04) increase of 3% comparing hCG (37.0%, 808/2184) to control cows (34.0%, 752/2213). 

On the basis of these results, we designed a manipulative study that included data from 2979 

lactating dairy cows on six commercial dairies [58]. Treatment with hCG 5 d after AI 

increased (p = 0.01) fertility by 3.5% from 37.3% in controls (566/1519) to 40.8% in hCG-

treated cows (596/1460). A surprising observation was that all of the effect of hCG on fertility 

was due to a dramatic increase in primiparous cows (39.5%, 215/544 control primiparous and 

49.7%, 266/535 hCG-treated primiparous) with no change due to hCG treatment in 

multiparous cows (36.0%, 351/975 control multiparous and 35.7%, 330/925 hCG-treated 
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multiparous). A more recent meta-analysis [59], evaluating about 18,000 cows per treatment 

group, reported that buserelin (>10 µg) or hCG (>2500 IU) increased P/AI in primiparous 

cows, particularly, if they had lower fertility (<45% P/AI). Although it is clear that P4 can 

alter many aspects of endometrial gene expression, uterine histotroph, and increased embryo 

elongation [64], none of these experiments provide definitive evidence for the mechanisms 

causing the differences between parities in the fertility effects of hCG. Further research is 

clearly needed to clarify whether the timing of the P4 increase or other factors can explain the 

relatively low effect of hCG on fertility and the unexpected parity influence on the hCG 

effect, or the inconclusive effects of other strategies for P4 supplementation post AI on P/AI 

in dairy cows. 

 

3. Hormonal Strategies to Improve TAI Protocols 

3.1. Hormonal Strategies to Initiate TAI Protocols 

There are two main strategies used to initiate TAI protocols and to promote a new 

follicular wave emergence. The first one aims to synchronize emergence of a new follicular 

wave by causing atresia of the follicles present in the ovaries due to a negative feedback in 

follicle stimulating-hormone (FSH) and LH, promoted by a combination of an increase in 

circulating E2 (from an E2 ester) and P4 (from intravaginal P4 implants, IVP). This is the 

physiologic basis for initiation of E2/P4-based protocols. The second strategy, which is the 

basis for Ovsynch-type protocols, stimulates emergence of a new follicular wave by inducing 

ovulation of a dominant follicle by exogenous GnRH treatment. 

The most used E2 ester along with P4 implants on Day 0 (d0) of TAI protocols is EB 

using a dose of 2 mg. However, this strategy did not properly synchronize emergence of a 

new follicular wave in more than 25% of lactating dairy cows [17]. Another study reported 

24.2% of cows ovulating a persistent follicle at the end of a protocol starting with EB, GnRH, 

and a P4 implant [65]. Therefore, this issue can impair fertility considering that 

older/persistent follicles may ovulate overstimulated oocytes, and therefore result in poorer 

embryo development in lactating dairy cows. 

Studies from our laboratory have focused on strategies to initiate TAI protocols that 

improve synchronization rates and fertility. In one of those studies [17], increasing the dose of 

EB to 3 mg did not improve synchronization of emergence of a new follicle wave as 

compared with treatment with 2 mg (71.4 vs. 81.6%, respectively). Moreover, initiating the 

protocol with EB plus P4 implants in the presence of young (3 d after a GnRH treatment) or 
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dominant follicles (7 d after GnRH) produced similar wave emergence efficiency (78.7 vs. 

82.3%). The overall synchronization rate (follicular wave emergence at the beginning and 

ovulation at the end) for these traditional E2/P4-based protocols was 32 to 60% in studies 

from our lab, and P/AI was much greater for synchronized cows than cows that were not 

properly synchronized (61.3 vs. 15.7%) [17]. 

Another potential negative factor in P4-based TAI protocols that start with E2 protocols 

is that treatment with EB at the beginning is associated with a greater incidence of luteolysis 

between d0 and the time of PGF treatment, decreasing the percentage of cows with CL and 

the number of CL at PGF, which is related to lower circulating P4 during development of the 

preovulatory follicle [29, 66], compromising fertility. About ~40% of the cows that had a CL 

present on d0 underwent CL regression between d0 and PGF when EB treatment was at the 

beginning of a TAI protocol [17, 29, 66]. Table 1 shows a compilation of data from four 

studies that compared treatment with EB vs. GnRH or EB vs. EB plus GnRH at the beginning 

of TAI protocols. Treatment with GnRH increased (22.2%) the percentage of cows with CL at 

the time of PGF, indicating an increase in circulating P4 during the protocol (Table 1). 

 

Table 1. Percentage of lactating dairy cows with a corpus luteum at the time of prostaglandin 

F2α (PGF) treatment comparing timed artificial insemination (TAI) protocols that utilized 

only estradiol benzoate (EB) vs. protocols with gonadotropin releasing-hormone (GnRH) 

either alone or combined with EB. 

1 The difference is in absolute percentage points. 2 Comparison between EB vs. EB plus 

GnRH on d0 of FTAI protocols. 3 Comparison between EB vs. GnRH on d0 of FTAI 

protocols. 

 

The objective of TAI protocols that begin with GnRH is to induce ovulation, resulting in 

emergence of a new follicular wave and increasing circulating P4 during preovulatory follicle 

development. Ovulation to GnRH increased circulating P4 at PGF in multiple studies [41, 65, 

69] and increased P/AI [69,70]. Ovulation to GnRH primarily increases P/AI in cows 

initiating the protocol without CL or with low circulating P4 [66, 69, 70]. 

Study n 
EB on d0 of the 

TAI Protocol 

GnRH on d0 of 

the TAI Protocol 
Difference 1 p-

Value 

[67] Pereira et al. (2013) 2 1190 43.3% 72.5% 29.1% <0.01 

[68] Pereira et al. (2015) 3 1474 55.4% 69.5% 14.1% <0.01 

[29] Melo et al. (2016) 3 417 57.3% 76.4% 19.0% <0.01 

[66] Consentini et al. (2020)3 369 56.6% 89.8% 33.2% <0.01 

Total 3450 52.0% 74.3% 22.2% <0.001 
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Since ovulation after d0 is associated with greater circulating P4 during follicle 

development and greater P/AI, optimized TAI programs seek to maximize this response. One 

strategy is to use presynchronization strategies. Another approach to increase ovulation after 

d0 of a FTAI protocol is related to the dose and analogue of GnRH. When increased the dose 

of gonadorelin acetate from 100 to 200 µg [71], there was a greater LH peak, and this was 

particularly important in cows with greater circulating P4, due to an inhibitory effect of P4 on 

the GnRH-induced LH peak. In fact, in a study using nonlactating Holstein cows, the dose of 

100 µg of gonadorelin induced ovulation in only 58.1% of cows with a 7-day-old CL present 

compared to 95.5% ovulation in cows without a CL [72]. 

When comparing two analogues of GnRH, studies from our laboratory [73] have shown 

that 100 µg gonadorelin acetate produced a lower LH peak compared to 10 µg buserelin 

acetate in Nelore (Bos indicus) heifers (5.4 vs. 11.7 ng/mL) and cows (3.4 vs. 6.9 ng/mL) on 

Day 7 of the estrous cycle. When the dose of these two analogues was doubled, buserelin 

increased the LH peak in heifers (11.7 vs. 23.2 ng/mL) and cows (6.9 vs. 13.2 ng/mL), 

whereas the double dose of gonadorelin only increased the LH peak in cows (3.4 vs. 6.3 

ng/mL) but not in heifers (5.4 vs. 5.2 ng/mL). Considering the main effects of the study, 

buserelin induced a greater LH peak and ovulation than gonadorelin [73]. Other studies have 

reported greater efficiency of buserelin and lecirelin than gonadorelin [74, 75]. 

Table 2 presents fertility data of studies that compared protocols initiated only with EB 

vs. GnRH alone or EB plus GnRH, all associated with insertion of a P4 implant. There was 

greater P/AI (6.1 absolute percentage increase, on average, ranging from 4.5 to 9.5) and 

18.5% (relative P/AI) in protocols initiated with GnRH or GnRH plus EB compared to those 

initiated only with EB. Therefore, it is recommended that TAI protocols in lactating dairy 

cows should be initiated with GnRH instead of EB, or at least a GnRH treatment should be 

included at the beginning of the protocol. In addition, doubling the dose of GnRH at the 

beginning of a TAI protocol may be advantageous to increase the ovulatory response, 

especially in cows expected to have a CL on d0. 
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Table 2. Pregnancy per AI (P/AI) of lactating dairy cows submitted to timed artificial 

insemination (TAI) protocols initiating with estradiol benzoate (EB), gonadotropin releasing-

hormone (GnRH), or including a GnRH at the beginning. In all treatments, a progesterone 

(P4) implant was inserted on d0. 

Study n Only EB on d0 GnRH on d0 Difference 1 p-Value 

[68] Pereira et al. (2015) 1808 30.7% 36.8% 5.9% (19.2%) <0.05 2 

[29] Melo et al. (2016) 1035 33.7% 38.2% 4.5% (13.4%) 0.07 3 

[76] Carneiro et al. (2017) 871 
28.7% 38.2% 9.5% (33.1%) <0.05 4 

28.7% 34.5% 5.8% (20.2%) 0.10 2 

[66] Consentini et al. (2020) 943 

37.5% 42.8% 5.3% (14.1%) NS 3 

37.5% 42.0% 4.5% (12.0%) NS 5 

37.5% 44.3% 6.8% (18.1%) <0.05 4 

Total 4657 33.5% 39.5% 6.1% (18.2%) <0.05 
1 The difference is in absolute percentage points (relative % increase and difference/only EB). 

2 Comparison between EB vs. EB plus GnRH on d0 of TAI protocols. 3 Comparison between 

EB vs. GnRH on d0 of TAI protocols. 4 Comparison between EB vs. EB on d0 plus GnRH on 

d2 of TAI protocols. 5 Comparison between EB vs. GnRH on d0 and d2 of TAI protocols. 

 

3.2. Intravaginal P4 Implants during TAI Protocols 

Although intravaginal P4 implants may be used to improve fertility during TAI protocols, 

it should be noted that P4 implants do not increase circulating P4 in lactating dairy cows 

compared to the concentrations that are achieved in cows with an active CL. For example, in 

the study by [77], circulating P4 on d7 and d14 of an estrous cycle in lactating dairy cows was 

2.1 and 4.2 ng/mL, respectively. In contrast, in a study from our laboratory, when comparing 

two commercial P4 devices (1.9 and 2.0 g of P4) in postpartum cows without CL and 

producing 40.0 kg of milk per day, the peak of circulating P4 was similar between devices 

(1.6 ng/mL) and the mean P4 during Day 9 of insertion was 0.85 ng/mL (unpublished data). 

Studies by [27, 28] reported greater circulating P4 in cows with a CL during the protocol 

compared to those without CL that were supplemented with two P4 devices (1.38 g), even 

though P4 supplementation increased circulating P4 to 1.9 ng/mL. Therefore, TAI protocols 

can be improved by increasing the proportion of cows that initiate the protocol with a CL, 

either by decreasing anovulatory conditions or by using presynchronization programs. 

A study [28], with more than 600 cows per group, compared cows initiating the Ovsynch 

protocol with a CL present on d0 to cows without CL on d0 supplemented or not with two P4 

implants with 1.38 g of P4, each. Cows without CL at the beginning of the protocol had the 

lowest fertility (31.3%), but P/AI on d32 did not differ between cows with CL and those 

without CL, but supplemented with P4 (38.4 and 42.2%, respectively). In a study with ~160 
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cows per group, using E2/P4-based TAI protocols and analyzing only cows that ovulated at 

the end of the TAI protocol, cows treated with two P4 implants tended to have greater P/AI on 

d60 compared to cows receiving only one implant (48.1 vs. 37.7%) [78]. 

In a meta-analysis done in 2015 [79], with 25 studies and more than 16,000 cows 

supplemented or not with one P4 implant, there was a greater risk of pregnancy on d32 and 

d60 in P4-supplemented cows, but mainly in cows without CL at the beginning of the TAI 

protocol. Moreover, P4 supplementation tended to reduce pregnancy loss. It is important to 

mention that in the meta-analysis, cows inseminated in estrus during the TAI program had no 

benefit from P4 supplementation [79]. 

Therefore, besides the need for P4 implants in E2/P4-based protocols, Ovsynch-type 

protocols may also benefit by the addition of P4 implants due to better synchronization of 

wave emergence, improved oocyte quality, improved luteolysis after single PGF treatments, 

and reduced double ovulation and twins. 

 

3.3. Additional PGF Treatment during TAI Protocols 

Complete luteolysis is essential for optimal fertility during TAI protocols (Figure 3). 

Therefore, the following two strategies have been used to achieve this outcome: (1) increasing 

the dose of PGF [45,69], and (2) adding a second treatment with PGF, in general, 24 h after 

the first one [39, 41, 44, 45, 80, 81]. 

Increasing the dose of cloprostenol sodium from 500 to 750 µg during a double-Ovsynch 

program increased the percentage of multiparous cows with complete luteolysis (87.7 vs. 

79.2%) but not primiparous cows (92.8 vs. 89.7%) [69]. Interestingly, doubling the dose of 

dinoprost tromethamine from 25 to 50 mg during the Ovsynch protocol [45] did not increase 

the percentage of cows with complete luteolysis (88 vs. 88%) and did not increase P/AI (30.2 

vs. 32.4%). However, two treatments with PGF 24 h apart increased the proportion of cows 

with complete luteolysis (88 vs. 94%) and increased P/AI (30.2 vs. 35.4%). 

A meta-analysis with seven studies, 5356 cows analyzed for P/AI and 1856 cows 

analyzed for luteolysis, evaluated the effect of an additional treatment with PGF during the 

Ovsynch protocol [82]. This analysis reported that 11.6% (6 to 14%) more cows had complete 

luteolysis when two PGF treatments were employed, and there was a 4.6% increase in P/AI 

(13.5% relative P/AI, Table 3). 
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Table 3. Effect of an additional treatment with prostaglandin F2α (PGF) during the Ovsynch 

protocol on complete luteolysis at the end of the protocol and on pregnancy per artificial 

insemination (P/AI). 

Item 
1 PGF during 

Ovsynch 

2 PGF during 

Ovsynch 
Range p-Value 

Complete luteolysis at the 

end of Ovsynch, % (n/n) 
83.5 (788/944) 95.1 (867/912) 6–14 <0.001 

P/AI, % (n/n) 34.0 (915/2689) 38.6 (1029/2667) 3–9 <0.001 

Adapted from [82]. Meta-analysis with seven studies with randomized controlled designs. 

 

3.4. Strategies to Induce Final Ovulation in TAI Programs 

Synchronized ovulation of the dominant follicle at the end of TAI protocols can be 

induced by E2 esters, such as EB or E2 cypionate (EC) [29], or with GnRH, as in Ovsynch 

[83], potentially altering fertility. The use of EC is convenient because it can be administered 

concomitant with the final PGF of the protocol or P4 implant withdrawal [29]. However, the 

timing of ovulation induced by EC is more variable than when GnRH is used [84,85]. On the 

other hand, when GnRH is used at the end of TAI protocols, optimal fertility is only achieved 

if cattle are handled one additional time. Moreover, expression of estrus is reduced. 

Our group designed a large experiment to compare fertility in response to different 

inducers of ovulation that were administered at times that were considered to be ideal for 

fertility in TAI protocols [86]. A protocol for synchronization of ovulation was initiated (d0) 

after a novel presynchronization with 16.8 µg of buserelin acetate and insertion of a 2.0 g P4 

implant, followed by a PGF treatment on d6, and a second PGF on d7, concomitant with the 

removal of the P4 implant. In Group EC, cows received 1.0 mg EC on d7 as an inducer of 

ovulation. In Group G, cows received 8.4 µg GnRH at 56 h after the first PGF (16 h before 

TAI). In Group EC/G, cows received both EC and GnRH. The TAI was performed on d9 (48 

h after P4 withdrawal) in all experimental treatments, and pregnancy diagnosis was performed 

31 and 60 d after TAI. 

Our hypothesis was that the EC/G group would have the greatest P/AI, due to a more 

synchronized ovulation in response to GnRH plus greater estrus expression because of E2 

supplementation, but this idea was not supported. Pregnancy per AI on d31 was not different 

among the strategies to induce final ovulation (~43%). Other studies that compared EC to 

GnRH as ovulation inducers also reported similar fertility between treatments [84,85]. 

Although pregnancy loss tended (p = 0.09) to be greater in cows receiving only GnRH as 
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ovulation inducer (Table 4), there was no detectable difference (p = 0.54) in P/AI on d60 

among treatments. Additionally, when the two groups that received EC (EC and EC/G) were 

combined, there was lower pregnancy loss compared to cows receiving only GnRH [11.2 

(21/188) vs. 19.8 (17/86), p = 0.05). The potential for greater pregnancy loss in group G is 

rationally explained by a lower circulating E2 concentration during proestrus. This could alter 

the oviductal or uterine environment, potentially increasing pregnancy loss, similar to the 

increased pregnancy loss observed in cows that did not express estrus during E2/P4 protocols 

[48]. Therefore, the traditional strategies to induce final ovulation in TAI programs such as 

GnRH 16 h and EC 48 h before TAI, in general, provide good overall fertility and can be 

chosen by dairy operations according to management and costs. 

 

Table 4. Pregnancy per artificial insemination (P/AI) 31 and 60 d after timed AI (TAI) and 

pregnancy loss according to the strategy to induce final ovulation. EC (estradiol cypionate 48 

h before TAI), EC/G (estradiol cypionate 48 and GnRH 16 h before TAI), and G (GnRH 16 h 

before TAI). 

Item 

Strategy to Induce Final Ovulation 

in the TAI Protocol p-Value 

EC EC/G G 

P/AI on d31, % (n/n) 42.5 (99/233) 43.0 (95/221) 42.8 (89/208) 0.45 

P/AI on d60, % (n/n) 37.1 (86/232) 37.5 (81/216) 33.7 (69/205) 0.42 

Pregnancy loss, % (n/n) 12.2 (12/98) A 10.0 (9/90) A 19.8 (17/86) B 0.09 
A,B Different letters represent differences (p < 0.05). When the two groups that received EC 

(EC and EC/G) were combined, there was lower pregnancy loss compared to cows receiving 

only GnRH [11.2 (21/188) vs. 19.8 (17/86), p = 0.05). Adapted from [86]. 

 

4. Fertility Programs: First AI and Resynch Protocols with Improved Fertility 

4.1. Protocols for First TAI That Produce Better Fertility than AI to Estrus 

It is well known that one of the greatest benefits of reproductive programs using TAI is 

the increase in service rate. In addition, optimized TAI protocols can provide extra benefits 

associated with greater P/AI when compared to programs for AI after estrus 

synchronization/detection. Thus, those optimized TAI protocols have been termed “fertility 

programs” [5, 6] and four of these programs that are discussed below are presented in Figure 

4. 
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Figure 4. Hormonal treatments used in four fertility programs that are discussed in the text. 

These programs can be used to achieve 100% service rate and improved pregnancy per 

artificial insemination compared to the first postpartum timed artificial insemination (TAI) in 

lactating dairy cows. Voluntary waiting period (VWP), gonadotropin-releasing hormone 

(GnRH), prostaglandin F2α (PGF), progesterone (P4), and estradiol cypionate (EC). 

 

Fertility programs use many of the principles and strategies discussed above to optimize 

synchronization, ovarian dynamics, and hormonal environment during TAI protocols. A 

critical aspect of these programs is the use of a presynchronization strategy in order to ensure 

that most of the cows initiate the breeding protocol (initiated with GnRH) at an ideal stage of 

the estrous cycle (6–8 d of the cycle), in which cows have an approximately seven-day-old 

CL and the first wave dominant follicle that will be responsive to the first GnRH. As 

previously discussed, increasing ovulation response to the first GnRH will increase the 

percentage of cows with synchronized emergence of a follicular wave. Causing a new 

ovulation in the presence of a seven-day-old CL results in cows with two CL throughout the 

protocol, thus, increasing circulating P4 during the development of the preovulatory follicle. 

Due to the longer duration of these fertility programs, in general, they are used exclusively for 

the first postpartum AI, especially because presynchronization strategies can be applied 

before the end of the VWP, resulting in no delay in receiving the first AI. 
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One of the earlier presynchronization programs developed was based on PGF 

administrations, known as the Presynch-Ovsynch protocol (PO) [87]. The PO is based on a 

PGF treatment, followed by a second PGF 14 days later, and initiation of an Ovsynch-type 

protocol 10 to 14 days after the second PGF [87–90]. In general, PO increased fertility 

compared to Ovsynch [88, 89]. In the study by [87] P/AI was 42.8 (113/264) vs. 29.4% 

(80/272) for PO and Ovsynch, respectively, but it should be mentioned that PO only increased 

fertility in cyclic cows. Therefore, one disadvantage of the PO is that it is only effective in 

cyclic cows. Thus, if the percentage of cows that are anovular is high in the herd during early 

lactation, other strategies that induce ovulation during the presynchronization are likely to be 

more efficient. In addition, PO does not precisely synchronize cows to be in the ideal day of 

the cycle on d0 of Ovsynch, because it is based on inducing cows to be in estrus with variable 

timing after PGF treatments [90, 91]. This may produce a less than ideal timing for starting 

the Ovsynch protocol (6–8 d). A final aspect to be considered is whether cows that are 

observed in estrus during the Presynch-Oyvsynch protocol should receive AI. The percentage 

of cows detected in estrus after the second PGF can be over 50% [90–92], and it is common 

for dairy operations to inseminate those cows. Although the cows are being inseminated 

earlier postpartum, fertility is generally lower compared to not breeding cows that show estrus 

and inseminating all cows at the TAI after PO [93]. Thus, if the herd submits cows to TAI at 

the end of the PO, this can be considered to be a fertility program, even with the 

considerations regarding anovulatory condition and accuracy of the presynchronization with 

PGF. 

The second fertility program presented in this manuscript is the G6G or G7G. 

Commonly, cows receive a PGF treatment and 2 days later a GnRH treatment, 6 or 7 dayds 

before initiating the Ovsynch protocol. Therefore, the G6G/G7G should increase the 

percentage of cows at the ideal stage of the estrous cycle to initiate Ovsynch. In addition, the 

inclusion of GnRH during the presynchronization may benefit anovular cows. The G6G/G7G 

is commonly used in commercial dairy herds and several studies have tested this strategy [44, 

94, 95]. One of them [50] reported greater ovulation to the first GnRH (85 vs. 54%), greater 

response to PGF (96 vs. 69%), better synchronization rate (92 vs. 69%), and greater P/AI (50 

vs. 27%) in cows submitted to G6G compared to Ovsynch initiated at random days of the 

estrous cycle. 

The third fertility program is the double-Ovsynch program (DO) [96]. The DO was 

developed to optimize the response to hormonal treatments during the breeding Ovsynch 

protocol, increasing synchronization and the hormonal milieu during follicle development. In 
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the study by [96], when compared to PO, DO decreased the percentage of cows with P4 < 1.0 

ng/mL (9.4 vs. 33.3%) at the time of the first GnRH of the breeding Ovsynch, increased 

circulating P4 at PGF (4.2 vs. 3.2 ng/mL), and increased P/AI (49.7 vs. 41.7%). In a study, 

which compared the DO and the PO, in relation to circulating P4 concentrations and ovulation 

to GnRH treatments [97], 94% of the cows in the DO had CL at the time of the first GnRH 

compared to 68% of the cows in the PO. Moreover, ovulation to the first GnRH was greater in 

the DO (80%) compared to the PO (69.9%), and the percentage of cows with P4 ≥ 1.0 ng/mL 

at PGF was greater in the DO than the PO (88 vs. 76%). Another study, with ~1700 cows, 

which compared the DO and the PO, reported a greater uniformity of intermediary P4 

concentrations at first GnRH treatment of the breeding Ovsynch protocol in cows submitted 

to the DO, and only ~6% of the cows had P4 < 0.5 ng/mL at the beginning of the breeding 

protocol compared to ~25% in the PO program [98]. There was a clear benefit of the DO to 

anovular cows and greater incidence of ovulation in response to the presynchronization 

treatments. In this study, P/AI was greater with the DO (46.3 vs. 36.8%), with a greater effect 

in primiparous (52.5 vs. 42.3%, p = 0.02) than multiparous (40.3 vs. 34.3%, p = 0.07) cows. 

This increased fertility in cows synchronized with DO has also been described in an elegant 

study that submitted cows to TAI after the DO compared to a protocol designed to increase 

expression of estrus, with all cows being inseminated at similar days in milk (DIM) (~77 

DIM) [99]. Cows in the DO group for first AI had 100% service rate compared to 77.5% in 

cows bred to estrus. There was also an increase in P/AI from 38.6 to 49.0%, and a 27% 

relative increase in P/AI when the DO was used (Table 5). Due to the increase in both service 

rate and P/AI with DO, there was more than a 50% increase in the 21-day PR (Table 5). 

 

Table 5. Effect of Double-Ovsynch or management aimed to inseminate cows in estrus on 

submission rate, pregnancies per artificial insemination (P/AI) 33 and 63 d after insemination, 

and percentage of pregnant cows at 33 and 63 d after first insemination in lactating Holstein 

cows with similar days in milk. 

Item 
Strategy for first AI Difference, % 

(p-Value) Double-Ovsynch Estrus 

No. of cows 294 284  

Submission rate, % (n/n) 100.0 (294/294) 77.5 (220/284) 29 (<0.01) 

P/AI at 33 d, % (n/n) 49.0 (144/294) 38.6 (85/220) 27 (002) 

Pregnant cows at 33 d, % (n/n) 49.0 (144/294) 29.9 (85/284) 64 (<0.01) 

P/AI at 63 d, % (n/n) 44.6 (131/294) 36.4 (80/220) 23 (0.05) 

Pregnant cows at 63 d, % (n/n) 44.6 (131/294) 28.2 (80/284) 58 (<0.01) 

Adapted from [99]. 
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Recent experiments from our laboratory used a novel presynchronization strategy prior to 

breeding protocols that are initiated with GnRH [86]. The presynchronization was based on 

E2 and P4, using an intravaginal P4 implant that was removed after 7 d. At the time of P4 

implant withdrawal, cows were treated with PGF and EC to induce estrus and ovulation. Eight 

to 10 d later, the cows were treated with GnRH to initiate the first postpartum TAI protocol 

and an intravaginal P4 implant was inserted and kept for 7 or 8 d. One d before and at the time 

of P4 implant removal, PGF treatments were given. Ovulation at the end of the protocol was 

synchronized with EC (given at the time of P4 implant withdrawal), GnRH (given 16 h prior 

to FTAI), or both. The P/AI varied from 32 to 58% among six farms, with an overall P/AI of 

43%. Compared to regular TAI protocols that were initiated at random stages of the estrous 

cycle, the fertility program increased P/AI (59.9 vs. 43.9% [n = 663] and 46.4 vs. 30.1% [n = 

416], for data set 1 and 2, respectively). 

Therefore, use of TAI protocols can increase SR by allowing AI of all cows without the 

need for detection of estrus. Use of more optimized TAI protocols have the advantage of 

increasing P/AI compared to AI to detected estrus and thereby can dramatically increase the 

percentage of cows that become pregnant during the first week after the end of the VWP. 

 

4.2. Reinsemination Strategies: Reducing the Interval between AI and Optimizing Fertility 

After submitting cows to the first postpartum AI, it is imperative to identify nonpregnant 

cows as soon as possible and to reinseminate them as early as possible. The most common 

strategies to reinseminate nonpregnant cows in dairy herds are either detecting estrus or 

inseminating them using TAI programs after nonpregnant diagnosis (NPD). Several strategies 

were developed to increase reinsemination rates of cows by detection of estrus [100–102]. In 

general, it was concluded that, in herds with relatively high estrus detection rates and good 

fertility at AI by estrus, the reproductive performance can be similar to those using or 

including TAI. However, the herd will always have less control of the interval between 

inseminations, which can be longer than when submitting cows to TAI Resynch programs. 

Regarding resynchronization of ovulation to reinseminate cows using TAI, many studies 

have been carried out to either understand the physiology or to improve the efficiency of 

resynchronization (Resynch) programs. It is common to initiate the resynchronization 

protocol at the time of the NPD. However, there are strategies that initiate the TAI protocol 

before NPD, which include presynchronization protocols or use P4 supplementation [40, 41, 

102–109]. 
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Initiating the resynchronization protocol at NPD diagnosis either at d32 or d39 after a 

previous AI did not differ in terms of P/AI [40, 110]. However, presynchronization with a 

GnRH treatment 7 days before the onset of the protocol improved fertility [40,110], and P4 

supplementation increased P/AI, especially in cows without CL or with P4 < 1.0 ng/mL at the 

beginning of the resynchronization protocol [109, 110]. 

In one study [111], cows received a GnRH treatment 32 days after a previous AI, and 7 

days later (time of NPD, 39 d after a previous AI), and were divided into three groups as 

follows: (1) no CL, CL < 15 mm or cystic (cows initiated an Ovsynch + P4 protocol and were 

inseminated on d49); (2) cows with CL > 15 mm (cows received the final treatments of the 

Ovsynch, with PGF at NPD, GnRH 16 h before TAI, and were inseminated on d42); (3) no 

CL, CL < 15 mm or cystic (cows received a GnRH on d39 and had the Ovsynch initiated on 

d46, being reinseminated 56 days after the previous AI). Cows in suboptimal conditions for 

fertility, when received an Ovsycnh + P4 protocol or a presynchronization with a GnRH 

treatment before the Ovsynch, had their fertility restored [111]. However, the authors did not 

observe improved performance for Ovsynch + P4 (cows reinseminated earlier) as compared 

with cows reinseminated after the presynch + Ovsynch program. It should be mentioned that 

all protocols in that study included only one PGF treatment at the end. 

Another study [108] evaluated whether the interbreeding interval could be shortened by 

using a shortened resynchronization strategy that used treatments based on ovarian structures 

found at the D32 NPD. Thus, two strategies were compared as follows: (1) Resynch-32, a 

conventional Resynch-32 (with only one PGF) and TAI at d42 after previous AI and (2) 

shortened Resynch. Cows were evaluated for ovarian structures at the D32 NPD, cows with a 

CL ≥ 15 mm and a follicle ≥ 10 mm were treated with two PGF, 24 h apart, and GnRH 16 h 

before TAI, and received TAI at d35 after previous AI or cows that did not have a CL > 15 

mm at NPD were treated with an Ovsynch + P4 protocol that included two PGF and were 

inseminated on d42 after previous AI. The shortened Resynch strategy reduced time to 

pregnancy by 16 days (79 vs. 95 days), improved the likelihood of achieving pregnancy (1.18 

hazard ratio), but did not affect overall P/AI (33.9 vs. 31.0%) compared to the conventional 

Resynch-32 protocol [108]. This could be an efficacious Resynch program for herds that use 

ultrasound for NPD at d32 after AI. 

A more recent study [109] compared Resynch-32 (with two PGF treatments) to a 

management strategy in which nonpregnant cows with CL at NPD received two PGF 24 h 

apart, and GnRH 16 before TAI (on Day 35), while cows without CL at NPD were enrolled in 

a Ovsynch + P4 protocol, with two PGF at the end, and were reinseminated 42 days after a 
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previous AI. The authors reported that the management strategy that evaluated ovarian 

structures to enroll cows in the selected Resynch strategies was a viable alternative to reduce 

inter-insemination intervals [109]. 

Most of the studies discussed above included detection of estrus as part of their 

management strategy. Therefore, the efficacy of the TAI Resynch programs can be 

confounded by differences in detection of estrus before NPD and the potential that fertility 

would be different in cows that were detected in estrus compared to if all the cows had 

entered the Resynch TAI program. 

Thus, dairy operations have several options for managing their reinsemination program 

including using strategies that utilize or do not utilize detection of estrus and TAI programs 

that reduce the interval between inseminations. In addition, strategies can be used that 

optimize fertility by identifying cows that were not properly synchronized by the Resynch 

strategy. Figure 5 shows two common Resynch strategies. The upper strategy is the classical 

Resynch-32 strategy with Ovsynch initiated at the NPD at d32 after previous AI and TAI 

done at d42 after previous AI. The lower panel shows a more aggressive Resynch strategy 

using GnRH treatment at d25 after previous AI and 1 week later (D32) using ultrasound for 

NPD and to perform a “CL check”. Cows with a CL continue the Ovsynch protocol with TAI 

at d35 after previous AI (80–85% of non-pregnant cows). Cows without a CL at the NPD 

would have very low fertility if they continued in the Ovsynch protocol (<10%), and therefore 

are resynchronized with an Ovsynch + P4 protocol to receive TAI at d42 after previous AI 

(15–20% of non-pregnant cows). By eliminating non-synchronized cows (no CL at NPD) and 

by using two doses of PGF in the protocol, the P/AI can be increased by 10–15%, thereby 

producing a higher fertility Resynch program. 
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Figure 5. Schematic representation of two commonly used reinsemination programs, 

designed to reduce the interval between timed artificial insemination (TAI) and optimize 

fertility. The timing of nonpregnancy diagnosis (NPD) is the same in both protocols (32 days 

after AI) and is a commonly used timing in herds using transrectal ultrasound for pregnancy 

diagnosis. The upper strategy is Resynch-32, while the lower strategy is designed to produce 

earlier TAI in most non-pregnant cows and to improve fertility to the TAI by using a corpus 

luteum (CL) evaluation at the NPD ultrasound. Gonadotropin-releasing hormone (GnRH), 

prostaglandin F2α (PGF), progesterone (P4). 

 

5. Key Factors That Alter Reproductive Efficiency in Dairy Herds 

As shown in Figure 6, there are multiple factors that determine the success of a 

reproductive management program. In herds using exclusively TAI programs (right side in 

purple), anovulation is less of a problem than in herds using exclusively AI to estrus (left side 

in blue). This is because TAI programs can induce cyclicity leading to AI in all cows, 

including anovular cows. In herds using TAI, the DIM at first AI can be chosen by the design 

of the program. In addition, herds using fertility programs such as double-Ovsynch can have 

high fertility at first TAI. The efficiency of the rebreeding program will depend on the timing 

of NPD and the design of the Resynch program. In contrast, herds that use AI to estrus are 

dependent upon cows returning to cyclicity (making anovulation a critical problem) and 

detection of estrus in these cows with proper timing of AI during all days of the week. 

Similarly, the rebreeding program is dependent upon detection of estrus. The fertility after AI 

to estrus may be more controlled by certain factors such as level of milk production than 
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observed in TAI programs that more fully control the follicle size, length of dominance, and 

hormonal environment [5, 6, 99]. 

 

 

Figure 6. Representation of the key reproductive factors that directly affect a reproductive 

management program using artificial insemination (AI) to estrus (left a) or timed AI (right b). 

Some of the key factors that affect reproductive efficiency in either or both types of programs 

are shown (center c). Factors shown in red squares tend to decrease fertility, whereas factors 

shown in green rectangles tend to increase fertility. (Bottom d) Shows that implementation of 

effective reproductive management programs, combined with optimization of factors that alter 

reproductive efficiency allows farms to reach the goal of improved reproductive efficiency 

and profitability on a high-producing dairy farm. Days in milk (DIM). 

 

In the center section of Figure 6 is shown four categories (brown rectangles) of factors 

that can affect reproductive efficiency in herds that use TAI, AI to estrus, or a combination of 

the two methods in their reproductive management program. Some of these factors are 

expected to increase reproductive efficiency (shown in green rectangles), while other factors 

tend to decrease reproductive efficiency (shown in red rectangles). These factors are discussed 

in more depth in this section of the manuscript. At the bottom is shown the overall goals for 
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optimizing all of these factors into an efficient reproductive management system so that there 

is an increase in 21 d-PR, decreased calving interval, increased percentage of cows in the high 

fertility cycle, and ultimately increased profitability for the dairy operation. 

 

5.1. Genetic Selection for Health and Reproductive Traits 

One key change in genetic selection during the last 20 years has been the shift to 

selection for reproductive and health traits rather than milk production alone [1–4]. This has 

been a key factor related to the increase in daughter pregnancy rate (DPR) that has been 

observed since 2000. The more dramatic increase in phenotypic DPR since 2000 compared to 

genotypic DPR indicates that management factors, along with selection for high fertility 

genetics, have played a key role in the improvement in phenotypic DPR, including 

development of systematic breeding programs using TAI [5, 112]. A recent study reinforced 

the importance of genetics in reproductive performance by evaluating primiparous and 

multiparous cows based on their genomic DPR, using quartiles [113]. The herds used the 

same reproductive management program on all cows but found greatly improved reproductive 

performance using multiple measures (P/AI at first AI, number of services/pregnancies, 

percentage of cows pregnant at the end of lactation, and interval between calving and 

pregnancy) for cows in the top 25% for DPR as compared with the lowest 25%. For example, 

primiparous cows in the top quartile for DPR became pregnant 30 days earlier (165 vs. 195 d) 

and multiparous cows became pregnant 36 days earlier (140 vs. 176 d) as compared with 

cows in the lowest quartile [113]. Another recent study [114] randomized ~2400 primiparous 

cows by genetic merit for fertility (high, medium, and low) and to reproductive management 

strategy (TAI vs. primarily AI to estrus). Although fertility was greater for TAI (double-

Ovsynch TAI) than for AI to estrus, the cows with the highest genetic merit for fertility had 

greater P/AI than the cows with lower genetic potential for fertility in either type of 

reproductive management strategy. Thus, selection of cows with high genetic potential for 

fertility is a strategy that can and should be utilized by all dairy herds regardless of whether 

they manage reproduction primarily with TAI or using estrus. 

 

5.2. Optimizing Cow Comfort and Reducing Heat Stress 

Many physiological, production and reproduction responses can be influenced by 

management and facilities, and in this section, we focus on heat stress, which has a 

tremendous negative impact on dairy operations, especially in tropical and subtropical 
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regions. The negative impact of heat stress on reproduction is extensively reported in the 

literature, with the P/AI of hot seasons being 20 to 50% lower than cooler months of the year 

[115–117]. However, in addition to reproduction, the negative impacts of heat stress can also 

impact many other aspects of production, health, and profitability in dairy operations. For 

example, heat stress of dairy cows can influence dry matter intake [118], animal welfare 

[119], immune system and health [120], and have carryover effects into the next generation 

[121]. Effects of heat stress on reproduction can impact reproduction in the short term but also 

may have effects on oocyte quality for 40 to >100 days after the end of heat stress [122, 123]. 

Lactating dairy cows under heat stress had reduced oocyte competence and quality, reduced 

fertilization rates, and poorer embryo quality [23, 124]. 

Thus, heat abatement strategies are needed on all types of dairies, particularly, in areas 

with greater heat index and humidity. Some of the most common strategies for cooling cows 

are fans, shade, natural ventilation, and water-cooling-systems, such as misters and sprinklers. 

For instance, a study that compared shade with water-cooling systems, over 18 weeks, 

reported a greater efficiency of water-cooling systems in reducing rectal temperature and 

respiration rate [125]. In a study using cows on a pasture-based system, cooling for a short 

period of time (90 min before afternoon milking) or providing shade reduced body 

temperature and respiration rate compared to control cows; however, combining shade with 

sprinklers was the most efficient system during days with more intense heat stress 

(temperature-humidity index ≥69) [126]. 

The duration and location for cooling cows can vary, with some herds cooling cows in 

the holding pen, the feed line, or both. Using data from Israel dairy herds [127], cows not 

cooled compared to those cooled for 7.5 h/d (holding pen + feed line), or 4.5 h/d (only 

holding pen) had a greater decrease in summer milk production (3.6, 1.6, and 0.6 kg/d, 

respectively), lower summer/winter production ratio (90.7, 96.1, and 98.5%, respectively), 

and lower P/AI at first AI of the summer (15, 34, and 34%, respectively). 

In herds that are implementing strategies to cool the cows, there are different issues to 

consider including volume of water used, water size droplet, sprinkler flow rate, length of 

time spent dampening compared to drying during the cooling cycle, among others, which 

have been extensively discussed in the scientific literature [128–131]. 

One exciting aspect, which has been introduced and discussed in the past few years, is the 

benefit of minimizing heat stress of dry-pregnant cows during the dry period. [121] reported 

interesting results on the impact of cooling multiparous dams with shade, fans, and water 

soakers during the dry period on the performance of the daughters and granddaughters. In the 
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study, there was greater culling before first calving and productive life was reduced in 

daughters from dams that were not cooled compared to dams that were cooled. In addition, 

more granddaughters were culled before first breeding from dams that were not cooled. In 

terms of milk production, daughters from heat-stressed dams produced less milk in the first, 

second, and third lactations (2.2, 2.3, and 6.5 kg/d, respectively), and the granddaughters 

produced 1.3 kg less milk/d in their first lactation. Thus, the results highlight the importance 

of cooling cows to optimize their own production and reproduction, but also to improve 

performance of their offspring. 

Lastly, thinking about reproductive management strategies to improve performance 

during heat stress periods, an interesting manuscript reported that embryo transfer (ET) could 

be an alternative tool for improving fertility [117]. The fertility was reduced in hot seasons of 

the years using either TAI or ET; however, P/ET was notably greater than P/AI in hot seasons 

and had less variation throughout the year compared to P/AI [117]. Thus, use of ET can 

reduce the negative impact of heat stress on fertility, and this may be especially important in 

tropical regions. 

 

5.3. Importance of the Transition Period on Subsequent Fertility 

Another critical factor for optimizing fertility in dairy herds is related to the transition 

period, defined as the period from 21 days before calving to 21 days after calving. Issues 

during the transition period can impact health during the subsequent lactation [132, 133] body 

condition score (BCS) change, and fertility [134, 135]. These factors impact the likelihood for 

a cow becoming pregnant early in lactation and entering “the high fertility cycle” [16], as 

discussed in Section 6. 

A healthier transition period is key to the profitability of a dairy herd, due to the usually 

high incidence of diseases and associated costs [133, 136], high incidence of culling and 

mortality [137, 138], and the impact on production and reproduction [133, 135]. For example, 

cows that did not have diseases within the first 21 DIM reached the peak of milk production 

earlier, produced more milk at peak, and produced ~360 and ~703 more kg of milk in a 305-

day period compared to cows with one or more than one disease, respectively (10,453 vs. 

10,096 vs. 9750 kg) [133]. 

Return to cyclicity during the postpartum period is critical for the success of reproductive 

programs, and the nutrition and management during the transition period is a critical 

determinant of time to first ovulation. Anovulation at ~60 DIM can range from 5 to 45% in 

different dairy herds [139] and is greater in cows that have a greater incidence of health 
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problems and cows losing excessive BCS during the postpartum period [133,135,140]. For 

example, one recent study by [140] evaluated 943 Holstein cows during the postpartum period 

and reported that, at 50 DIM, a 17.9% prevalence of anovulation in healthy cows (38.4% of 

the cows) as compared with 29.8% prevalence in cows with one disease (33.7% of the cows) 

and 39.5% prevalence in those that had more than one disease (27.9% of the cows). As in 

many dairy herds, most (~60%) cows had at least one health problem in this study. 

The timing of return to cyclicity can influence the timing of first AI and also the fertility 

to the first AI. For example, if a farm uses AI after detection of estrus as the main 

reproductive strategy for first service, anovulatory cows will receive their first AI later in 

lactation and may also have lower fertility to first AI as compared with cows that had 

undergone more cycles prior to first AI. In herds that use TAI, the synchronization strategy 

may allow early first AI, but the fertility is lower in cows that initiate TAI protocols in the 

absence of a CL or in low P4 concentrations as illustrated in Figure 1. 

Diseases also negatively impact fertility. [132] evaluated 5719 cows from seven herds 

and reported greater P/AI at first service in healthy cows compared to those having one or 

more than one disease in early lactation (51.4 vs. 43.3 vs. 34.7%, respectively). Pregnancy 

loss (PL) was also affected by diseases, with 8% of PL in healthy cows compared to 13.9% 

and 15.9% in cows with one and more than one disease [132]. 

A large study that evaluated ~5000 cows reported a long-term negative effect of diseases 

on reproductive performance [133]. Cows, up to 150 DIM, that had diseases during the first 

21 DIM had lower P/AI in early lactation and when inseminated. Moreover, the PL of those 

cows that had diseases was elevated. The lower P/AI combined with the greater PL among 

cows with diseases resulted in fewer cows calving/AI from those inseminated, up to 200 DIM. 

In addition, days open was lower in healthy cows (133.5 d) compared to cows with one 

disease (145.5 d) or multiple diseases (157.2 d). The percentage of cows calving again in the 

farm was greater for healthy cows than those with one or multiples diseases (72.8 vs. 59.6 vs. 

47.3%, respectively). Therefore, these results show a clear and important impact of diseases 

during the transition period on early lactation and first AI, and a long-term negative impact on 

P/AI and PL, affecting the reproductive efficiency of cows during the entire lactation. 

Continuing the discussion on the importance of the transition period, several studies have 

evaluated the physiology of energy and BCS changes of high-producing dairy cows, during 

the transition period and beginning of lactation. Two of those studies [134, 135], discussed 

below, had a similar experimental design that focused on evaluations of cows that lost, 

maintained, or gained BCS during the transition period. 
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One initial interesting result is that only 50% or fewer cows lost BCS during the 

transition period. The percentage of cows that gained, maintained, or lost BCS during the 

transition period was 22.4, 35.8, and 41.8% in one of the studies [134] and 28, 22 and 50% of 

cows in the other study [135]. In both studies, the BCS in the prepartum or at calving was 

lower for cows gaining BCS compared to cows that lost BCS in the transition period (2.57 vs. 

2.97 [135] and 2.85 vs. 2.93 [134]). These results show that not all high-producing dairy cows 

lose BCS after calving and that cows with BCS of 3.0 or greater were the most likely to lose 

BCS. 

Barletta et al. [135] reported that postpartum cows with increasing BCSs resumed 

cyclicity earlier than cows with decreasing BCSs (33.9 vs. 47.1 d), and that 100% of the cows 

with increasing BCSs as compared with 81.1% of the cows with decreasing BCSs were cyclic 

around 50 DIM. Moreover, the percentage of cows with more than one disease in early 

lactation was lower in cows gaining BCS compared to cows losing BCS (39.4 vs. 62.9%). 

The P/AI at first service was approximately three times greater for cows that gained BCS than 

cows that lost BCS during the transition period (53.9 vs. 18.3%). In the study by [134], with 

1887 Holstein cows, the P/AI at first FTAI postpartum was 25%, 38%, and 84% for cows that 

lost, maintained, or gained BCS during the postpartum period. Therefore, these studies 

indicate that cows gaining BCS during the transition period have better health and cyclicity 

status in early lactation, and excellent fertility in the first service compared to cows losing 

BCS. 

In summary, to optimize the transition period and reduce postpartum BCS loss, it is 

critical that cows calve with a relatively low BCS. On the one hand, overconditioned cows at 

calving (>3.25) will have greater BCS loss, more health problems, later resumption of 

cyclicity, and lower fertility. Nevertheless, it is not advantageous for overconditioned cows to 

lose BCS during the dry period in an attempt to reduce BCS at calving. Loss of BCS during 

the dry period was associated with greater incidence of disease and lower fertility after 

calving [141]. On the other hand, underconditioned cows at calving (<2.5) will have much 

later return to cyclicity, greater health problems, and lower fertility. In addition, other 

nutritional and management strategies can be implemented to prevent or decrease BCS loss 

and health problems in early lactation and this will improve performance and health of dairy 

cows and increase the likelihood of early pregnancy. 
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5.4. Nutritional Strategies to Optimize Reproductive Performance 

Diets for lactating cows should be balanced to provide the required nutrients for milk 

production and for the reproductive process. Any deficiencies, whether in required vitamins, 

minerals, or nutrients, could produce nutritional conditions that might compromise 

reproduction. Nevertheless, provision of nutritional components in excess of requirements are 

not likely to lead to increased reproductive efficiency. This was clearly demonstrated by 

overfeeding of phosphorus (P) in dairy cattle diets during the 1980s and 1990s. On the basis 

of early studies that suggested cattle maintained on P deficient pastures had decreased calf 

crop, prolonged periods of anestrus, and poor reproductive performance, many nutritionists 

recommended feeding P in excess of requirements to improve reproductive performance. 

However, when we evaluated cows fed two levels of P (0.37%, recommended and 0.57%, 

excess), we found no differences in any measure of reproduction including return to cyclicity, 

expression of estrus, length of estrus, P/AI, or time to pregnancy [142–144]. Thus, although 

deficiencies of many nutrients may reduce reproductive performance, supplementing nutrients 

in excess of requirements may be expensive and is unlikely to improve fertility. 

Nutrition during the dry period can have important implications for subsequent 

reproductive performance. A retrospective analysis of seven studies that compared higher 

energy diets and controlled energy diets (higher fiber) found that cows fed higher energy diets 

during the prepartum period had lower DIM during the postpartum period, greater BCS loss, 

and increased days open [145]. Thus, higher energy diets during the dry period should not be 

recommended. In some herds, vitamin E may be limiting during the dry period. In a study 

from our lab, dry dairy cows were receiving supplementation with less than the dietary 

recommendation for vitamin E and were randomized to either receive no treatment or to be 

treated weekly with three injections of 1000 IU each of DL-α-tocopherol administered during 

the last 3 prepartum weeks [146]. Vitamin E supplementation reduced the incidence of 

retained placenta (13.5 vs. 20.1%) and stillbirth (6.8 vs. 14.9%). Additionally, after first 

postpartum AI, for cows receiving vitamin E, pregnancy loss was reduced (12.5 vs. 20.5%) 

and considering all inseminations up to 200 DIM, Ps/AIs on Day 30 (38.4 vs. 34.5%) and Day 

60 (32.8 vs. 26.9%) were greater (p < 0.05) and the pregnancy loss was lower (14.5 vs. 

21.5%) as compared with cows who did not receive vitamin E. In addition, cows treated with 

the prepartum vitamin E injections had reduced days open (126 vs. 137 d). Thus, delivery of 

nutrients during the dry period, including vitamin E, need to meet requirements or there can 

be fairly severe consequences near calving with increased stillbirth and retained placenta, and 

subsequent reduction in reproductive performance. In this study, cows supplemented with 
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vitamin E did not have increased milk production suggesting that the requirement for vitamin 

E, and possibly other nutrients, may differ for reproductive traits compared to production 

traits. 

Hypocalcemia is another condition that is tied to the nutritional program during the 

transition period and can have important consequences for subsequent reproductive 

performance. In U.S. dairy herds, clinical hypocalcemia (<1.4 mM total calcium 

concentration) occurs in 5–10% of dairy cows, with subclinical hypocalcemia (1.4–2.0 mM 

total calcium concentration) occurring in an additional 50% of dairy cows [147]. 

Hypocalcemia in dairy cows is considered to be a gateway to disorders of the immune system 

and metabolism, leading to health and metabolic issues in periparturient dairy cows. The 

focus of recent research has been on the association of hypocalcemia with neutrophil function 

and development of metritis [148]. Recent studies have reported that cows developing clinical 

or subclinical hypocalcemia had decreased dry matter intake, greater negative energy balance, 

impaired immune function, increased risk of health problems, increased risk of metritis, 

decreased neutrophil number and activity, and decreased fertility and reproductive 

performance [147–150]. 

One of the most common and efficient strategy to reduce incidence of hypocalcemia is 

the use of acidogenic diets during the prepartum period. A recent meta-analysis [151] showed 

that a reduction in the dietary cation-anion difference (DCAD) in the prepartum period 

increased Ca concentration in the peripartum period in both primiparous and multiparous 

cows and increased milk production. The same meta-analysis reported that decreased DCAD 

in the diets reduced retained placenta and metritis and reduced health problems per cow in 

both multiparous and primiparous [151]. The DCAD does not need to be lower than −150 

mEq/Kg of dry matter [151]; however, it is important to monitor the efficiency of the strategy 

by measuring urine pH in prepartum cows, to determine if the diet is inducing metabolic 

acidosis. Thus, using negative DCAD diets during the prepartum period is the most 

scientifically justified strategy for reducing hypocalcemia in dairy cattle. 

Another nutritional strategy that has been evaluated for improving health, production, and 

reproduction is the inclusion of choline and methionine in the diets of lactating dairy cows. It 

is reported that increasing rumen-protected choline (RPC) in the prepartum diet increased pre- 

and postpartum DIM and milk production [152]. Moreover, RPC in the prepartum diet has 

been reported to decrease inflammation pre and postpartum and improved immune function, 

as evidenced by a greater proportion of neutrophils undergoing phagocytosis and oxidative 

burst in the postpartum period [153]. Feeding RPC to cows during pre and postpartum periods 
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reduced the incidence of clinical ketosis, mastitis, and morbidity; however, in primiparous, 

RPC in the prepartum increased cases of fever and metritis [154]. Another nutrient that has 

been evaluated for effects on reproduction is feeding rumen-protected methionine (RPM). 

There is a consistent increase in milk protein percentage and protein yield by feeding RPM. In 

addition, methionine concentrations appear to be associated with optimal early embryonic 

development [144, 155–157], and modulation of gene expression in early bovine embryos 

[156]. In addition, [158] fed RPM from 30 DIM until d60 of pregnancy and found that 

embryo size was increased in multiparous cows supplemented with RPM, as evidenced by 

greater increased embryonic abdominal diameter and volume and amniotic vesicle volume. 

There was no significant effect of RPM on P/AI, however, pregnancy loss was decreased by 

RPM feeding in multiparous cows [158]. In addition, feeding polyunsaturated fatty acids 

(PUFA) has been found to increase fertility in some experiments. For example, a study [159] 

with more than 700 dairy cows fed marine algae that was rich in PUFA, i.e., docosahexaenoic 

acid, daily from 27 to 147 DIM, reported increased P/AI in both primiparous and multiparous 

cows (41.6 vs. 30.7%) and a reduction in days to pregnancy by 22 d (102 vs. 124 d). Thus, 

RPC, RPM, and PUFAs may be considered to be “nutraceuticals” that can improve 

reproductive performance when included in diets of lactating dairy cows. 

 

6. Implementation of Efficient Reproductive Management Programs: Achieving the 

High Fertility Cycle 

On the basis of the data discussed above related to BCS loss and fertility [134,135], the 

research group of Richard Pursley at Michigan State University introduced the concept of “the 

high fertility cycle” [16]. They experimentally explored this idea in a study of 851 lactating 

Holstein cows (primiparous and multiparous), with an average milk production of 42 kg per d. 

Cows that had a calving interval (CI) of 13 months (~395 d) had lower BCS at parturition 

(≤2.7) as compared with cows with greater CI. Moreover, all cows with a 13-month CI 

maintained or gained BCS after calving [16]. Conversely, all cows with CI > 14 months had 

BCS ≥ 3.1 at parturition and all of them lost 0.5 or more points of BCS after calving [16]. 

Following a similar pattern as shown previously [134,135], the authors observed fewer 

health issues (7%) in cows that maintained or gained BCS as compared with those losing ≥0.5 

points of BCS (30%). In addition, P/AI was greater (50.0 vs. 39.9%) and PL was lower (0.0 

vs. 8.3%) for cows maintaining or gaining BCS as compared with those that lost BCS during 

postpartum [16]. 
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Thus, these results are consistent with the concept that cows that become pregnant earlier 

postpartum (prior to 130–150 DIM), in other words, achieving a CI close to 13 months, it is 

likely that they will not be overconditioned at the time of calving, and therefore will have 

reduced BCS loss after calving and have fewer health issues. Of special importance to this 

review, those cows will have improved fertility and reduced pregnancy loss, allowing them to 

become pregnant earlier in lactation and thereby entering the high fertility cycle. 

Figure 7 attempts to synthesize all of the ideas discussed in this manuscript into a 

concluding figure that illustrates how to optimize reproductive efficiency in dairy herds that 

use TAI. A key concept is that a systematic program is designed by the management team 

,and then carried out on a consistent basis each week. The overall goal is to achieve a 21 d-PR 

above 25% with over 80% of cows pregnant by 150 DIM, thus, thrusting most cows in the 

herd into the high fertility cycle. 

 

 

Figure 7. Concluding figure on how to increase the number of cows entering “the high 

fertility cycle”, including physiological aspects, reproductive management strategies, and 

factors that impact reproductive performance. Body condition score (BCS), voluntary waiting 

period (VWP), timed AI (TAI), nonpregnancy diagnosis (NPD), days in milk (DIM), and 

pregnancy per AI (P/AI). 

 

The first thing to consider when designing this program is how to achieve a cow with the 

optimal physiology to respond to a TAI or estrus detection program with high fertility. One of 
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the critical factors to consider is achieving an intermediate BCS of 2.7–3.0 in cows as they 

approach calving. The nutrition and management programs need to be optimized to have 

excellent nutrition, health, and cow comfort, thereby reducing anovulation and increasing 

likelihood of cows achieving high fertility. As shown in Figure 7, the herd health program 

should be efficient in preventing, diagnosing, and treating diseases in order to maximize 

number of healthy cows that enter the first AI program. 

The reproductive program used at first AI is critical for assuring the proper CI for the 

majority of cows. In most dairy farms, it would be advantageous to use a high fertility TAI 

program at first AI. This type of program can produce more than 50% pregnancies at first AI, 

with all cows receiving first AI at the end of the VWP. These fertility programs have been 

developed based on optimization of the physiology that produces high fertility. This includes 

a presynchronization strategy to induce cyclicity and assure that cows are at the proper 

reproductive state during the breeding protocols (Figure 4), promoting superior fertility as 

compared with strategies that inseminate cow based on standing estrus [6,99]. Nevertheless, 

some of the key cow factors prior to first AI, such as BCS loss, can produce subfertility 

results even to optimized TAI programs. In addition, other key reproductive factors must be 

considered, such as fertility of sires and use of proper AI technique, including thawing of 

semen, when suboptimal results are obtained in herds using fertility protocols at first AI, such 

as double-Ovsynch. 

When cows do not become pregnant at first service postpartum, they need to be rapidly 

identified as nonpregnant and reinseminated. Therefore, to shorten the interbreeding interval, 

herds can detect estrus for second and greater services, although the success of this strategy 

will rely on the efficiency of the herd in detecting estrus and on the fertility of the cows 

inseminated in estrus. Alternatively, insemination of nonpregnant cows can be performed 

after resynchronization of ovulation using TAI protocols (commonly termed Resynch), 

usually initiated at the time of, or before, the NPD (Figures 5 and 6) [40, 107, 111]. The 75 to 

90 d from the first TAI to 150 DIM are critical; rebreeding strategies should be aggressive and 

optimized to achieve at least a two- or three-times higher fertility rate of AIs prior to 150 

DIM. Rebreeding strategies that achieve 40% or more P/AI should ensure over 80% of cows 

are pregnant by 150 DIM. Programs should be designed in which fewer cows become 

pregnant after 150 DIM because these cows are likely to have excessive BCS at the next 

calving and are likely to not achieve the high fertility cycle. 

Tools are available to dairy producers and veterinarians to achieve the high fertility cycle 

in high producing dairy herds. Some of these tools, such as optimized TAI protocols, have 
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been extensively discussed in this manuscript and should be readily implemented in a dairy 

herd. Other tools for detection of estrus, such as activity monitors, tail-paint, and estrus 

detection patches are also available for herds that want to increase efficiency of estrus 

detection. These tools are likely to increase service rate but are unlikely to change P/AI 

directly, since they only allow more accurate detection of cows in estrus but do not change the 

underlying reproductive physiology. A more holistic or complete view of the reproductive 

management program also needs to be achieved by the management team in charge of 

optimizing reproduction. Many important nutritional, health, and facility details may be 

overlooked for their critical role in driving reproductive efficiency. The successful team 

should utilize the tools that match their reproductive management strategy and attempt to 

optimize all aspects of the program. The final detail that is important is: consistency, 

consistency, consistency. 
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Abstract 

Fertility programs were implemented for the first postpartum timed-AI (TAI) in 800 

(primiparous and multiparous) lactating dairy cows, evaluating 2 presynchronization 

(presynch) strategies and 2 TAI protocols, in a 2×2 factorial design. Weekly, cows were 

enrolled into 1 of 4 groups (Ovs+Ovs, Ovs+OvsP4/E2, PreP4/E2+Ovs and 

PreP4/E2+OvsP4/E2). On d-17 (34 ± 3 days in milk), the Ovs presynch initiated with 10 µg 

buserelin acetate (GnRH), and cows received 0.5 mg cloprostenol (PGF) on d-10, and 10 µg 

GnRH on d-7. The PreP4/E2 presynch initiated on d-17 with a used 2 g P4 implant. On d-10, 

implant was removed and 0.5 mg PGF and 1 mg E2 cypionate (EC) were given. For TAI 

protocols, Ovs was Ovsynch: d0: 20 µg GnRH (double dose), d7: PGF, d8: PGF, d9.5: 10 µg 

GnRH, and d10: TAI (16 h after GnRH). Cows submitted to OvsP4/E2 received on d0: 20 µg 

GnRH (double dose) and a 2 g P4 implant, d7: PGF, d8: P4 implant removal, PGF and EC, 

and d10: TAI. For all cows, ultrasound was performed on d-17, d0, d7 and d17, and 

expression of estrus until TAI was evaluated. The presence of CL on d-17 (average = 68.8%) 

was similar among treatments and parity. Presence of CL on d0 of TAI protocols was high, 

and Ovs as a presynch slightly increased the proportion of cows with CL (95.5 vs. 90.8%). 

However, at the first PGF of breeding protocols, there was no effect of presynch, and 99.0% 

(396/400) of the cows had at least 1 CL. Ovulation after d0 was greater in cows submitted to 

PreP4/E2 than Ovs (72.0 vs. 64.3%), and those ovulating had greater P/AI (51.0 vs. 41.6%). 

Overall, multiple ovulation after TAI was low and similar between TAI protocols and 
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presynch strategies (7.2% [54/753]). Expression of estrus in OvsP4/E2 protocols was greater 

than Ovs (69.4 vs. 41.5%), and an interaction was detected, in which cows not expressing 

estrus ovulated more after TAI in Ovs compared to OvsP4/E2 protocol (93.2 vs. 77.7%). 

Cows expressing estrus had greater P/AI in both Ovs (58.3 vs. 45.3%) and OvsP4/E2 (58.2 vs. 

30.9%), but there was an interaction, and cows not showing estrus had greater P/AI on Ovs 

compared to OvsP4/E2 (45.3 vs. 30.9%). There was no interaction between presynch and TAI 

protocol on P/AI on d32 (48.4, 49.7, 53.3, and 52.5% for Ovs+Ovs [Double-Ovsynch], 

Ovs+OvsP4/E2, PreP4/E2+Ovs and PreP4/E2+OvsP4/E2 [Double E-Synch], respectively), 

and no differences on pregnancy loss between days 32 and 90. In summary, the two 

presynchronization strategies and both TAI protocols, despite differences in pharmacological 

bases, induced similar and well-controlled ovarian dynamics, high synchronization, and 

excellent fertility outcomes, providing 4 outstanding options of high fertility TAI programs.  

 

Keywords: dairy cow, timed-AI, fertility 

 

Introduction 

Timed-artificial insemination (TAI) programs are divided within two main 

pharmacological bases: Ovsynch-type programs, and estradiol (E2) plus progesterone (P4)-

based. Moreover, combinations of both and hormonal manipulations have been implemented 

to increase fertility. Currently, it is established that TAI programs including a 

presynchronization, the so-called fertility programs, can increase pregnancy per AI (P/AI) 

compared to cows inseminated by estrus (Santos et al., 2017), and they are an attractive 

strategy to increase reproductive efficiency, particularly used for the first postpartum service. 

These fertility programs can increase fertility by improving the hormonal milieu during 

ovulatory follicle development and overall synchronization (Bello et al., 2006; Wiltbank and 

Pursley, 2014). The Double-Ovsynch (DO) is an example of fertility programs that benefit 

anovulatory cows, and it is reported to promote better reproductive outcomes than other 

programs such as Presynch-Ovsynch or cows inseminated by estrus (Herlihy et al., 2012; 

Ayres et al., 2013; Santos et al., 2017). 

Although presynchronization strategies improve reproductive outcomes, there are key 

factors that impact fertility of lactating dairy cows submitted to TAI programs (Consentini et 

al., 2021), such as ovulatory follicle age (Monteiro et al., 2015); circulating P4 during follicle 

development and near AI (Carvalho et al., 2018); ovulatory follicle size, circulating E2 and 

expression of estrus at the end of TAI protocols (Bello et al., 2006; Souza et al., 2009; 

Bisinotto et al., 2015). Final ovulation for TAI is induced by two main hormonal treatments: 

gonadotropin releasing-hormone (GnRH) and E2 esters (e.g., E2 cypionate; EC), both 

differing on the timing of ovulation in relation to AI and the proportion of cows expressing 

estrus (Pancarci et al., 2002; Souza et al., 2009). Nevertheless, expression of estrus is 
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associated with greater fertility in TAI programs inducing final ovulation with EC and GnRH 

(Bisinotto et al., 2015a; Pereira et al., 2016). On the other hand, estrus is associated with a 

decrease in milk production during that short period of time (Lopez et al., 2005), and it can be 

associated with injuries and management issues due to estrus behavior. 

In the present study, our general proposal was to increase overall fertility by 

implementing TAI programs including presynchronization strategies and other adjustments 

such as a double dose of GnRH at the beginning of breeding protocols and two prostaglandin 

F2α (PGF) treatments. A novel E2/P4-based presynchronization approach, which promoted 

exciting ovarian dynamics and fertility results in a prior study, was compared to the Ovsynch 

as presynchronization. In addition, two frequently used TAI protocols were also compared, 

which was the traditional Ovsynch and a protocol including a P4 implant and final ovulation 

induced with EC. Thus, four TAI programs were compared, including the DO and the novel 

program proposed (Double E-Synch; DES). The name of the program was based on the 

pharmacological base of the presynch strategy and the TAI protocol, in which both induce 

final ovulation with EC, so the Double E refers to the two E2-induced ovulations. 

Three main hypotheses were proposed for the study: 1) both presynchronization would 

promote similar proportion of cows with corpus luteum (CL) at the beginning and at the time 

of first PGF of the breeding protocols, as well as ovulation rate after the first GnRH given on 

d0 would be similar; 2) the TAI protocol with EC at the end would promote better fertility 

due to a higher proportion of cows expressing estrus prior to AI; and 3) Expression of estrus 

at the end of the TAI protocols would be associated with greater fertility in both TAI 

protocols. 

 

Materials and Methods 

The experiment was conducted in a commercial dairy farm located in the Midwest of 

Brazil, from January to December of 2021. The Animal Care and Use Committee of Luiz de 

Queiroz College of Agriculture of the University of São Paulo (ESALQ/USP) approved all 

procedures involving cows in this study (protocol # 5112290720). 

 

Animals and Herd Management 

Cows were housed in free stall barns with sand bedding and had free access to water, 

mineral salt, and were fed ad libitum with a total mixed ration diet balanced to meet or exceed 

the nutritional requirements of lactating dairy cows producing 40 kg/d of milk (National 

Research Council – NRC, 2001). Throughout the experiment, cows were milked thrice a day 
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and the 305-d average milk production of the herd was 9,500 kg of milk. 

A total of 800 lactating Holstein cows (389 multiparous and 411 primiparous) were 

used for their first TAI postpartum, and the presynchronization protocols (d-17; Figure 1) 

were initiated at 34 ± 3 days in milk (DIM) for cows to be inseminated at 61 ± 3 DIM. The 

average milk yield for primiparous on d-17, d0 and at TAI were 27.9 ± 0.3, 31.8 ± 0.3 and 

33.7 ± 0.3 kg/d, respectively, whereas multiparous yielded 39.4 ± 0.3, 41.1 ± 0.3 and 41.6 ± 

0.3 kg/d. The average body condition score (BCS) on d-17 was 3.32 ± 0.02 for primiparous 

and 3.15 ± 0.02 for multiparous. 

 

Treatments and Experimental Design 

Following a 2x2 factorial design, weekly cohort of cows were randomly allocated into 

1 of 4 TAI programs (Ovs+Ovs, Ovs+OvsP4/E2, PreP4/E2+Ovs and PreP4/E2+OvsP4/E2) 

according to parity and milk production. Thus, the two presynchronization protocols were 

Ovs and PreP4/E2, and TAI breeding protocols were Ovs and OvsP4/E2. Cows in the Ovs 

presynchronization received 10 µg buserelin acetate (GnRH, Maxrelin, GlobalGen, 

Jaboticabal, Brazil) on d-17, 0.5 mg cloprostenol sodium (PGF, Induscio, GlobalGen) on d-

10, and 10 µg GnRH im on d-7. The PreP4/E2 presynchronization initiated on d-17 with a 

previously used (for 8 or 16 days) 2 g P4 implant (Reprosync, GlobalGen), which was 

removed on d-10, with treatments of 0.5 mg PGF and 1 mg EC (Cipion, GlobalGen). 

Regarding breeding protocols, the Ovs initiated with 20 µg GnRH (double-dose) on d0, the 

first PGF was given on d7 followed by a second dose on d8, and 10 µg GnRH was given on 

d9.5 (16 h before TAI on d10). Cows submitted to OvsP4/E2 protocol received 20 µg GnRH 

(double-dose) and an intravaginal 2 g P4 implant on d0, the first PGF on d7 and a second dose 

on d8, concomitant with P4 implant removal and 1 mg EC, and the TAI was performed on 

d10. All injectables were given intramuscular. During the entire year of the study, AIs were 

performed by the same technician and only conventional frozen/thawed Holstein semen was 

used. 

 

Body Condition Score, Ovarian Structures, Expression of Estrus and Pregnancy 

Diagnosis 

Information related to BCS, ovarian dynamics and expression of estrus were recorded 

for all cows during the study. The BCS was evaluated at the beginning of presynchronization 

(d-17) and at TAI (d10). Ultrasound (US) to evaluate CL presence and measurements were 

performed on d-17 (initiation of presynch programs), d0 (beginning of breeding protocols), d7 
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(time of first PGF) and d17 (7 days after TAI). All cows received a tail-head patch for 

detection of estrus at the time of first PGF, and were evaluated on d8, d9.5 and at TAI. Cows 

were considered expressing estrus if the device was activated and/or based on other signs of 

estrus such as standing mounting.   

The first pregnancy diagnosis was performed 32 d after TAI by transrectal 

ultrasonography of the reproductive tract by confirming an embryo heartbeat. The 

confirmation of pregnancy was performed by US on d60 and 90 after TAI. 

 

 

Figure 1. Experimental design with hormonal treatments and procedures performed during 

the presynchronization and timed-artificial insemination (TAI) protocols. Cows in the Ovs 

presynchronization received on d-17: GnRH, d-10: PGF and d-7: GnRH. The PreP4/E2 

presynchronization received on d-17: previously used P4 implant and d-10: P4 removal, PGF 

and EC. Regarding breeding protocols, cows in the Ovs received on d0: 20 µg GnRH, d7: 

PGF, d8: PGF, d9.5: 10 µg GnRH, and d10: TAI (16 h after GnRH). Cows submitted to 

OvsP4/E2 received on d0: 20 µg GnRH and a 2 g P4 implant, d7: PGF, d8: P4 implant 

removal, PGF and EC, and d10: TAI. In all cows, ultrasound (US) evaluations were 

performed on d-17, d0, d7 and d17 (7 days after TAI), and expression of estrus between d8 

and TAI was evaluated. Abbreviations: GnRH (buserelin acetate), PGF (prostaglandin F2α, 

cloprostenol sodium), P4 (progesterone) and EC (estradiol cypionate). 
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Statistical Analysis 

Statistical analyses were performed using the Statistical Analysis System (SAS, 

Version 9.4 for Windows SAS Institute Inc., Cary, NC). The analyses of binary variables 

were performed using the GLIMMIX procedure, fitting a binomial distribution with Link 

Logit function. Additionally, the option ddfm = kenwardroger was included in the model 

statement to adjust the degrees of freedom for variances. 

For presence of CL on d-17, d0 and d7, the model included the effects of 

presynchronization, parity and BCS. The model for ovulation after d0 included effects of 

presynchronization, parity, BCS and presence of CL on d0. For expression of estrus, the 

variables studied were presynchronization, TAI protocol, parity, and ovulation after d0. 

Regarding ovulation rate and multiple ovulation after TAI, the model included effects of 

presynchronization, protocol, parity, and expression of estrus. The models for P/AI and 

pregnancy loss included effects of presynchronization, TAI protocol, parity, ovulation after 

TAI and expression of estrus. Moreover, for pregnancy loss, effect of multiple ovulation was 

studied. The interaction between presynchronization strategies and TAI protocols was 

maintained in the models, and other biologically valuable interactions between treatments and 

the variables were evaluated, and they are presented and discussed throughout the manuscript. 

When an interaction was detected, the SLICE command within the LSMEANS was used to 

interpret the results. Tukey honest significant difference post hoc test was performed to 

determine differences. Values are presented as percentage and significant differences were 

declared when P ≤ 0.05, whereas tendencies were considered when 0.10 > P > 0.05. 

The GLIMMIX procedure was used for regression to model the probability of 

pregnancy and pregnancy loss according to milk production. Logistic regression curves were 

created using the coefficients provided by the interactive data analysis from SAS and the 

formula Y = exp (α x X + β)/[1 + exp (α x X + β)], where Y = probability of occurrence; exp 

= exponential; α = slope of the logistic equation; β = intercept of the logistic equation; and X 

= analyzed outcome. 

 

Results and Discussion 

The two presynchronizations strategies and both TAI protocols evaluated in the study, 

although differing in their pharmacological bases, promoted excellent and similar 

reproductive outcomes in terms of ovarian dynamics and synchronization, and a relatively 

high fertility was achieved. This first manuscript presents and discusses the ovarian dynamics, 

synchronization, and overall fertility outcomes. The second companion paper presents the 
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relationship between milk production, expression of estrus, type of protocol and fertility. 

Lastly, a third paper discusses the impact of BCS changes and health problems on cows 

submitted to the fertility programs.  

Presence of CL During the Reproductive Programs and Ovulation After First GnRH 

 The overall presence of CL at the beginning of presynchronization programs (34 DIM) 

was 68.8% (550/800, Table 1), which is similar to studies reporting ~30% of anovulatory 

condition at the beginning of lactation, up to 60 DIM (Chebel et al., 2010; Manríquez et al., 

2022). Parity and BCS influenced the presence of CL on d-17, with more multiparous with 

CL compared to primiparous cows (71.7 [279/389] vs. 65.9% [271/411]; P = 0.03), and less 

thinner cows (≤ 2.75) with CL than cows with BCS > 2.75 (62.2 [84/135] vs. 70.1% 

[466/665]; P = 0.03). 

 All cows were submitted to presynchronization approaches including strategies to 

induce ovulation, and 93.1% (745/800) of the cows initiated the breeding protocols with CL, 

and Ovs presynchronization slightly increased the proportion of cows with CL on d0 (Table 

1). More multiparous had CL on d0 compared to primiparous cows (95.4 [371/389] vs. 91.0% 

[374/411]; P = 0.005), and at that moment, there was no effect of BCS ≤ or >2.75 on CL 

incidence (91.9 [124/135] vs. 93.4% [621/665]; P = 0.34). Several studies using 

presynchronization programs described that 80% or less cows had CL on d0 of the breeding 

protocol (Ayres et al., 2013; Herlihy et al., 2013; Dirandeh et al., 2015). However, the results 

from our study indicate that both presynchronization strategies were very effective to induce 

ovulation in cows, consequently, initiating the breeding protocol with CL, similar to previous 

studies reporting ≥ 90% of cows with CL at first GnRH of breeding protocols in programs 

such as DO (Ayres et al., 2013; Luchterhand et al., 2019). Although smaller differences are 

more likely to be detected in the range of 90-95%, which is the case of presence of CL on d0 

in our study, we consider that Ovs may have increased the proportion of cows ovulating at the 

end of the presynchronization due to the following reasons. The Ovs as a presynchronization 

approach consists in a synchronization of ovulation protocol with known synchronization and 

ovulatory rates. On the other side, the PreP4/E2 presynchronization only used a P4 implant to 

maintain a follicle developing to have its ovulation induction at the end. Thus, a follicle 

turnover during the latter presynchronization protocol could have happened in some cows. 

Moreover, GnRH as ovulation inducer in Ovs can have promoted greater ovulation than EC in 

particular classes of cows. 
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Table 1. Ovarian dynamics during reproductive programs according to the presynchronization 

strategy: presence of corpus luteum (CL) at the beginning of presynchronization and at first 

GnRH of breeding timed-artificial insemination (TAI) protocols, ovulation after first GnRH, 

and presence of CL at first PGF treatment. 

Item, % (n/n) 
Presynchronization strategy1 

P-value 
Ovsynch PreP4/E2 

CL at the beginning of presynch 68.5 (274/400) 69.0 (276/400) 0.85 

CL at first GnRH of TAI protocols 95.5 (382/400) 90.8 (363/400) 0.04 

Ovulation after first GnRH 64.3 (257/400) 72.0 (288/400) 0.04 

CL at first PGF of TAI protocols 99.0 (396/400) 98.0 (392/400) 0.54 
1Cows in the Ovsynch presynchronization received on d-17: GnRH, d-10: PGF and d-7: 

GnRH. The PreP4/E2 presynchronization received on d-17: used P4 implant and d-10: P4 

removal, PGF and EC. All cows initiated the breeding TAI protocols with 20 µg of GnRH on 

d0 and the first PGF was given on d7. 

 

The ovulation incidence after the GnRH administered on d0 was higher in cows 

submitted to PreP4/E2 (Table 1), which can be partially explained by the numerically lower 

CL presence on d0. Indeed, cows without CL on d0 had much greater ovulation than cows 

with CL present (85.5 vs. 66.8%; P = 0.002). Although we expected high ovulation after d0, 

due to the use of presynchronizations and doubled the recommended dose of buserelin, 

ovulatory responses of 57.5% (187/325) and 60.3% (70/116) were reported in previous 

studies using DO (Giordano et al., 2013; Carvalho et al., 2015). The high proportion of CL at 

the time of first GnRH (93%) may have contributed to the lack of ovulation in a proportion of 

cows, since those with CL and high P4 have reduced LH peak and ovulatory responses 

(Giordano et al., 2012; Carvalho et al, 2015). 

One of the most important aspects associated with fertility of TAI programs in 

lactating dairy cows is the presence of CL and circulating P4 at the time of PGF treatment. 

Consistently, presence of CL and higher P4 during follicle development has been associated 

with greater P/AI (Bisinotto et al., 2015a; Consentini et al., 2021), and the reproductive 

programs implemented in the study were extremely efficient in having 98.5% of cows with at 

least one CL at the time of PGF treatment of the breeding protocols (Table 1). 

Therefore, despite differences on their physiological bases, it can be considered that 

both presynchronization strategies of this study were very efficient to induce well-controlled 

ovarian dynamics, assuring adequate P4 (presence of CL) and high synchronization rates 

during the breeding protocols.  
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Expression of Estrus at the End of the Breeding Protocols and Ovulation After TAI 

There was no difference between presynchronization strategies regarding estrus 

expression or ovulation at the end of the TAI breeding protocols (Table 2). Moreover, a 

notable relatively low multiple ovulation after TAI (Table 2) reinforces the fact that the 

programs implemented in the study were able to optimize CL presence and circulating P4 

during development of the preovulatory follicle. It is important to provent multiple ovulations 

since twinning is undesirable in dairy operations due to an increase in pregnancy loss (Martins 

et al., 2018), higher proportion of postpartum health problems, and impaired calf development 

and mortality. 

 

Table 2. Effect of the presynchronization strategy on expression of estrus at the end of timed-

artificial insemination (TAI) protocols and ovulation after TAI. 

Item, % (n/n) 
Presynchronization strategy1 

P-value 
Ovsynch PreP4/E2 

Estrus by d9.5 17.3 (69/400) 18.0 (72/400) 0.61 

Estrus by TAI 54.3 (217/400) 56.3 (225/400) 0.58 

Ovulation after TAI 93.3 (373/400) 95.0 (380/400) 0.28 

Multiple ovulation after TAI 5.9 (22/373) 8.4 (32/380) 0.15 
1Cows in the Ovsynch presynchronization received on d-17: GnRH, d-10: PGF and d-7: 

GnRH. The PreP4/E2 presynchronization received on d-17: used P4 implant and d-10: P4 

removal, PGF and EC. All cows initiated the breeding TAI protocols with 20 µg of GnRH on 

d0 and the first PGF was given on d7. 

 

Regarding breeding protocols, a greater expression of estrus near TAI in cows 

receiving EC compared to GnRH was expected. In fact, more cows in OvsP4/E2 group 

expressed estrus by d9.5 and at the time of AI compared to the Ovs breeding protocol (Table 

3). A slightly greater proportion of cows submitted to the Ovs protocol ovulated after TAI 

compared to OvsP4/E2. However, incidence of multiple ovulation did not differ between the 

TAI protocols (Table 3). The greater ovulation incidence in cows submitted to the Ovs 

protocol may have happened because when GnRH is used to synchronize the final ovulation, 

an exogenous LH peak is induced and can stimulate ovulation even in cows with smaller 

follicles (Sartori et al., 2002) or those that would not have an endogenous LH peak. On the 

other hand, when EC is the ovulation inducer, the E2 coming from both EC and the dominant 

follicle should promote the GnRH peak, which will lead to the LH peak. So, a lack of 

ovulation might happen in cows with smaller follicles and with low circulating E2, not 

enough to induce a GnRH peak, such as from cows not expressing estrus. 
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Table 3. Effect of breeding timed-artificial insemination (TAI) protocol on expression of 

estrus and ovulation after TAI. 

Item, % (n/n) 
Breeding TAI protocol1 

P-value 
Ovsynch OvsynchP4/E2 

Estrus by d9.5 10.9 (44/405) 24.6 (97/395) <0.001 

Estrus by TAI 41.5 (168/405) 69.4 (273/395) <0.001 

Ovulation after TAI 96.1 (389/405) 92.2 (364/395) 0.02 

Multiple ovulation after TAI 8.0 (31/389) 6.3 (23/364) 0.36 
1The Ovsynch protocol consisted of: d0: 20 µg GnRH, d7: PGF, d8: PGF, d9.5: 10 µg GnRH, 

and d10: TAI (16 h after GnRH). Cows submitted to OvsynchP4/E2 received on d0: 20 µg 

GnRH and a 2 g P4 implant, d7: PGF, d8: P4 implant removal, PGF and EC, and d10: TAI. 

 

In fact, there was an overall effect of estrus on the proportion of cows ovulating, 

however, when the effect of the TAI protocol was separately studied, the Ovs protocol 

increased ovulation after TAI in cows not expressing estrus, while ovulation was extremely 

high in cows expressing estrus, regardless of the TAI protocol (Table 4). Multiple ovulation 

was not influenced by expression of estrus or interaction between estrus and TAI protocol 

(Table 4). The present study provided valuable novel information about ovulation after TAI 

according to type of protocol and expression of estrus in a large number of cows submitted to 

fertility programs. Previous studies did not report differences on ovulation after TAI between 

EC and GnRH (Souza et al., 2009; Ferreira et al., 2015). Moreover, the number of cows in 

those studies was much smaller and the TAI protocols were not optimized. 

 

Table 4. Effect of the breeding timed-artificial insemination (TAI) protocol and expression of 

estrus on ovulation after TAI. 

Item, % (n/n) 
Breeding TAI protocol1  P-value2 

Ovsynch OvsynchP4/E2  P E I 

Ovulation after TAI       

     No estrus 93.2 (220/236) 77.7 (94/121)  <0.001 
<0.001 <0.001 

     Estrus 100 (168/168) 98.5 (259/273)  0.97 

Multiple ovulation after 

TAI 
      

     No estrus 9.6 (21/220) 8.5 (8/94)  0.88 
0.18 0.83 

     Estrus 6.0 (10/168) 5.6 (15/269)  0.65 
1The Ovsynch protocol consisted of: d0: 20 µg GnRH, d7: PGF, d8: PGF, d9.5: 10 µg GnRH, 

and d10: TAI (16 h after GnRH). Cows submitted to OvsynchP4/E2 received on d0: 20 µg 

GnRH and a 2 g P4 implant, d7: PGF, d8: P4 implant removal, PGF and EC, and d10: TAI. 

2P = effect of TAI protocol within class of cows; E = main effect of expression of estrus; and I 

= interaction between TAI protocol and estrus expression. 
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Related to the effect of parity on ovulation after TAI, there was no interaction between 

parity and TAI protocol, and multiparous had greater ovulation than primiparous (96.7 

[376/389] vs. 91.7% [377/411]; P = 0.001). Moreover, multiple ovulation was almost 3 times 

greater in multiparous than primiparous cows (11.4 [43/376] vs. 2.9% [11/377]; P < 0.0001), 

which is expected since milk production is highly correlated with multiple ovulation (Lopez 

et al., 2005; Martins et al., 2018) and multiparous were producing more milk during the TAI 

protocol in the present study (41.6 ± 0.31 vs. 33.7 ± 0.25 kg/d). 

Interestingly, there was an interaction between parity and TAI protocol on expression 

of estrus. In the Ovs protocol, primiparous expressed more estrus than multiparous cows. 

However, there was no effect of parity in the OvsP4/E2 protocol (Figure 2). It is stablished 

the relationship between milk production and estrus, and as milk production increases the 

expression of estrus reduces (Lopez et al., 2004). Hence, when the TAI protocol did not 

include EC as ovulation inducer (Ovsynch group), multiparous cows with greater milk 

production had a lower expression of estrus. On the other hand, the OvsP4/E2 protocol 

increased the overall proportion of cows expressing estrus, and there was no effect of parity. 
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Figure 2. Expression of estrus by the time of timed-artificial insemination (TAI) according to 

parity and TAI protocol. The Ovsynch protocol consisted of: d0: 20 µg GnRH, d7: PGF, d8: 

PGF, d9.5: 10 µg GnRH, and d10: TAI. Cows submitted to OvsynchP4/E2 received on d0: 20 

µg GnRH and a 2 g P4 implant, d7: PGF, d8: P4 implant removal, PGF and EC, and d10: 

TAI. 

a,bPrimiparous presented greater expression of estrus than multiparous when submitted to 

Ovsynch protocol (P = 0.03). When submitted to OvsynchP4/E2, there was no effect of parity 

(P = 0.54). 

 

To evaluate the effect of milk production on expression of estrus regardless of parity, 

probability curves were generated for estrus according to milk production within each TAI 

protocol (Figure 3). Interestingly, the probability of estrus occurrence decreased as milk yield 

increased only in cows submitted to the Ovs protocol. This result indicates that when EC is 

used to induce final ovulation (e.g., OvsP4/E2 protocol), the expression of estrus is high, and 

it is not influenced by milk yield.  
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Figure 3. Probability of estrus at the end of the timed-artificial insemination (TAI) according 

to milk yield during the protocol. The Ovsynch protocol (n = 373) consisted of: d0: 20 µg 

GnRH, d7: PGF, d8: PGF, d9.5: 10 µg GnRH, and d10: TAI. Cows submitted to 

OvsynchP4/E2 (n = 362) received on d0: 20 µg GnRH and a 2 g P4 implant, d7: PGF, d8: P4 

implant removal, PGF and EC, and d10: TAI. 

 

Fertility According to Reproductive Programs and Other Variables 

 Interestingly, despite differences in the physiology, the outcomes for fertility and 

pregnancy loss were similar among the TAI programs (Table 5). Our hypotheses were that 

both presynchronization strategies would reflect in similar proportion of CL and ovulation on 

d0 and CL at PGF, and despite the small differences on CL on d0 (~5%) and ovulation (~8%), 

fertility was similar between presynchronizations. Regarding TAI protocols, it was expected 

that the greater expression of estrus in OvsP4/E2 would promote better fertility or lower 

pregnancy loss, and despite differences in estrus and the slightly higher ovulatory response at 

the end of the Ovs protocol (4%), fertility was also similar between the TAI protocols, and no 

differences on pregnancy loss was detected. When only ovulated cows were considered for 

fertility analyses, also no differences were detected (Table 5). These results are exciting, 

demonstrating that the 4 TAI programs are excellent options to promote high overall fertility. 

Moreover, the study revealed similar fertility between the already established Double-
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Ovsynch and the novel program (Double E-Synch) which has been frequently used by our 

research group and commercial dairy herds. 
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Table 5. Pregnancy per AI (P/AI) and pregnancy loss of lactating Holstein cows submitted to 4 fertility programs  

(Presynch + TAI protocol) for the first pospartum service. 

Item, % (n/n) 

Reproductive program (Presynch + TAI protocol)1  P-value3 

Ovs 

+ 

Ovs 

Ovs 

+ 

OvsP4/E2 

PreP4/E2 

+ 

Ovs 

PreP4/E2 

+ 

OvsP4/E2 

 Pres Prot Int 

All cows         

   P/AI on d32 46.0 (93/202) 45.5 (90/198) 51.7 (105/203) 48.7 (96/197)  0.22 0.60 0.66 

   P/AI on d60 39.1 (79/202) 36.9 (73/198) 41.4 (84/203) 40.6 (80/197)  0.41 0.64 0.91 

   P/AI on d90 36.1 (73/202) 34.3 (68/198) 37.0 (75/203) 38.6 (76/197)  0.48 0.95 0.70 

   Preg. loss d32 to 90 21.5 (20/93) 24.4 (22/90) 28.6 (30/105) 20.8 (20/96)  0.70 0.61 0.26 

Ovulated cows2         

   P/AI on d32 48.4 (93/192) 49.7 (90/181) 53.3 (105/197) 52.5 (96/183)  0.33 0.96 0.71 

   P/AI on d60 41.2 (79/192) 40.3 (73/181) 42.6 (84/197) 43.7 (80/183)  0.54 0.99 0.86 

   P/AI on d90 38.0 (73/192) 37.6 (68/181) 38.1 (75/197) 41.5 (76/183)  0.63 0.71 0.66 

   Preg. loss d32 to 90 21.5 (20/93) 24.4 (22/90) 28.6 (30/105) 20.8 (20/96)  0.70 0.61 0.26 
1On d-17, cows in the Ovs presynchronization received 10 µg buserelin acetate (GnRH), 0.5 mg cloprostenol (PGF) on d-10, and 10 µg GnRH on d-7. The PreP4/E2 presynchronization 

initiated on d-17 with a 2 g progesterone (P4) implant, that was removed on d-10, with 0.5 mg PGF and 1 mg estradiol cypionate (EC). Cows in the Ovs TAI protocol received on d0: 20 

µg GnRH, d7: PGF, d8: PGF, d9.5: 10 µg GnRH, and d10: TAI (16 h after GnRH). Cows submitted to OvsP4/E2 received on d0: 20 µg GnRH and a 2 g P4 implant, d7: PGF, d8: P4 

implant removal, PGF and EC, and d10: TAI. 

2Only cows with corpus luteum 7 days after TAI, which were considered as ovulating after TAI. 

3Pres: main effect of presynchronization protocol. Prot: main effect of TAI breeding protocol. Int: Interaction between presynchronization and TAI protocol 

.
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 Primiparous commonly have greater fertility compared to multiparous cows, and it 

was not different in the present study (51.6 [212/411] vs. 44.2% [172/389]). Moreover, there 

was no interaction between parity and presynchronization or TAI protocols, and no effect of 

parity on pregnancy loss was detected. In several times, milk yield has been associated with 

decreased fertility or lower reproductive efficiency. However, genetic selection towards 

fertility traits, associated with optimized comfort, nutrition and reproductive management 

allow current modern dairy herds to achieve high reproductive performance despite individual 

milk yield. The effect of milk yield on fertility in TAI-related studies is variable in the 

literature, with studies describing a negative relationship (Pereira et al., 2020) or no effect 

(Santos et al., 2009). Since all TAI programs were considered optimized and promoted similar 

and high fertility, we were instigated to evaluate the possible effect of milk yield on fertility. 

Interestingly, there was no effect or interaction between milk yield and resynchronization 

strategy or TAI protocol. For instance, cows submitted to Ovs and OvsP4/E2 had similar 

fertility in both classes (below or above the median) of milk yield ≤ 38 kg/d (50.3 [93/185] vs. 

49.0% [96/196]; P = 0.89) and > 38 kg/d (47.1 [89/189] vs. 45.0% [76/169]; P = 0.69). When 

a logistic regression was performed to evaluate the effect of milk yield on the probability of 

pregnancy and pregnancy loss, no effect was detected (Figure 4). These results are exciting 

since they indicate that milk yield is not necessarily associated with lower reproductive 

efficiency, especially when cows are submitted to TAI programs that optimize fertility.  
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Figure 4. Effect of milk yield on probability of pregnancy on d32 (n = 735) and pregnancy 

loss (n = 352) between d32 and d90 after timed-artificial insemination in lactating Holstein 

cows submitted to fertility programs (Presynch + TAI protocol). 

 

Presence of CL during the protocol and ovulation after the first GnRH can impact 

fertility. The low number of cows without CL on d0 (n = 55) and at PGF (n = 12) did not 

allow us to effectively evaluate the effect of CL at time points. However, when presence of 

CL at the beginning of the presynchronization strategies was evaluated, cows without CL had 

lower fertility compared to cows with CL by 34 DIM (49.9 [303/607] vs. 42.0% [81/193]; P = 

0.05). This result suggests that even when cows undergo optimized TAI programs, early 

resumption of cyclicity is important to optimize fertility. In fact, anovulatory condition during 

early lactation is associated with greater BCS loss and health problems, which have short- and 

long-term negative impact on fertility (Carvalho et al., 2014; Barletta et al., 2017; Carvalho et 

al., 2019). 

 Cows ovulating at the beginning of the breeding protocols had greater fertility (51.0 

[278/545] vs. 41.6% [106/255]; P = 0.01), and no interaction with TAI protocol was detected. 

Several studies reported greater fertility in cows ovulating after the first GnRH, especially in 

cows without CL or with low circulating P4 (Giordano et al., 2013; Borchardt et al., 2020). 

Ovulation is crucial to promote a well synchronized new follicular wave emergence and the 
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presence of a developing CL during the protocol, both aspects associated with greater fertility 

(Monteiro et al., 2015; Melo et al., 2018). One difference between the TAI protocols 

implemented in the present study, in addition to the strategy to induce final ovulation, is the 

inclusion of a P4 implant in the OvsP4/E2 group. Progesterone supplementation during TAI 

protocols has been associated with greater fertility, particularly in cows without CL at the 

beginning of the protocol (Bisinotto et al., 2015a,b). However, we understand that the P4 

implant in the OvsP4/E2 protocol in the present study may have benefited a low proportion of 

cows, i.e. those 10% initiating the protocol without CL. Even though, the majority of these 

cows ovulated after the first GnRH, which also increases fertility in cows without CL. 

Another aspect on how the P4 implant can have a positive impact on fertility during TAI 

protocols is preventing early expression of estrus or premature ovulation. However, that 

should be a minor issue in the present study since 98.5% of the cows had at least one CL at 

the time of the first PGF of the breeding protocols. Thus, it is not possible to conclude there 

was any benefit of the presence of a P4 implant in the OvsP4/E2 protocol on P/AI. 

 There was no difference between cows ovulating or not at the beginning of the TAI 

protocols on pregnancy loss (22.7 [63/278] vs. 27.4% [29/106]; P = 0.34). The number of 

cows with multiple ovulation was reduced (n = 54) but, considering only cows that conceived 

after AI, multiple ovulation was associated with higher pregnancy loss (39.3 [11/28] vs. 

22.8% [81/356]; P = 0.04), which was expected based on data from previous studies (Martins 

et al., 2018). 

 

Fertility According to Reproductive Programs and Expression of Estrus 

 As discussed, TAI protocols influenced expression of estrus, which influenced 

ovulation after TAI. Thus, to evaluate the effect of expression of estrus on fertility, only 

ovulated cows were included in the analyses, and there was a clear effect of expression of 

estrus on fertility in both protocols (Table 6). Cows submitted to Ovs and OvsP4/E2 protocols 

that did not express estrus had decreases of 23% and 47% on P/AI, respectively. When all 

cows were considered (ovulated and non-ovulated), the difference in fertility between TAI 

protocols in cows without estrus was even greater (42.2 [100/237] vs. 24.0% [29/121] for Ovs 

and OvsP4/E2, respectively; P < 0.001), which was expected due to the differences in 

ovulation. For instance, 78% of cows without estrus in OvsP4/E2 ovulated after TAI 

compared to 93% in the Ovs protocol. Since it is impossible for cows that do not ovulate after 

TAI to become pregnant, the greater fertility of cows without estrus in the Ovs protocol is 

understandable. However, the reasons for greater P/AI in the Ovs protocol considering only 
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ovulated cows not expressing estrus cannot be totally explained. 

  

Table 6. Effect of the breeding timed-artificial insemination (TAI) protocol and expression of 

estrus on pregnancy per AI (P/AI) on d32 of lactating dairy cows ovulating after TAI. 

Item, % (n/n) 
P/AI of the breeding TAI protocol1 

P-value 
Ovsynch OvsynchP4/E2 

No estrus 45.3 (100/221) 30.9 (29/94) 0.02 

Estrus 58.3 (98/168) 58.2 (157/270) 0.88 

P-value 0.03 < 0.001  
1The Ovsynch protocol consisted of: d0: 20 µg GnRH, d7: PGF, d8: PGF, d9.5: 10 µg GnRH, 

and d10: TAI (16 h after GnRH). Cows submitted to OvsynchP4/E2 received on d0: 20 µg 

GnRH and a 2 g P4 implant, d7: PGF, d8: P4 implant removal, PGF and EC, and d10: TAI. 

There was a main effect of expression of estrus (P < 0.001), but no main effect of TAI 

protocol (P = 0.96). Moreover, there was an interaction between estrus and TAI protocol (P = 

0.04). 

 

 We speculated that cows not showing estrus in OvsP4/E2 may have follicles too small 

at the end of the protocol, since even receiving an E2 supplementation (i.e., EC), they were 

not detected in estrus. Thus, ovulation may have occurred too late in relation to TAI in these 

cows. In contrast, during the Ovs protocol, the GnRH as ovulation inducer practically 

guarantee that ovulation occurs between 24 and 32 h after GnRH treatment, even in cows with 

smaller follicles. Therefore, fertility may have been more compromised in OvsP4/E2 cows not 

expressing estrus due to a non-optimized timing of the ovulation (Pursley et al., 1998; Saacke, 

2008). 

 Pregnancy loss did not differ among the reproductive programs as presented in Table 

5. It is important to mention that the overall pregnancy loss of the farm was high, at least 

compared to other studies with large number of animals that reported 12-14% of pregnancy 

loss (Wiltbank et al., 2016; Fernandez-Novo et al., 2020; Sigdel et al., 2021). Although the 

protocol with EC resulted in higher expression of estrus, our hypothesis of lower pregnancy 

loss in cows submitted to the OvsP4/E2 protocol was not supported, since there was no 

significant difference in pregnancy loss between OvsP4/E2 and Ovs (22.6 [42/186] vs. 25.3% 

[50/198]; P = 0.61). On the other hand, expression of estrus did not interact with TAI protocol 

or parity, and it was associated with decreased pregnancy loss (Table 7). Cows not expressing 

estrus up to the time of TAI had 39.2% greater pregnancy loss between d32 and 90 after TAI 

(Table 7). 
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Table 7. Effect expression of estrus on pregnancy loss (PL) of lactating dairy cows submitted 

to fertility programs (Presynch + TAI protocol). 

Pregnancy loss, % (n/n) 
Expression of estrus near TAI 

P-value 
No estrus Estrus 

PL between d32 and 60 20.2 (26/129) 16.6 (42/255) 0.37 

PL between d60 and 90 11.7 (12/103) 5.6 (12/213) 0.04 

PL between d32 and 90 29.5 (38/129) 21.2 (54/255) 0.05 

 

The expression of estrus near TAI has been associated with pregnancy loss. In 

protocols with EC as ovulation inducer, cows expressing estrus had 28.5% lower pregnancy 

loss (14.4 [255/1,785] vs. 20.1% [43/222]; Pereira et al., 2016). Similarly, cows submitted to 

Ovsynch-type protocols expressing estrus at the end of the protocol also had reduced 

pregnancy loss compared to cows without estrus (6.5 [68/1,041] vs. 10.9% [161/1,482]; 

Consentini et al., unpublished data). Expression of estrus is associated with several aspects 

favorable to the establishment and maintenance of pregnancy. For instance, cows expressing 

estrus had greater ovulatory follicle and circulating P4 after TAI (Rodrigues et al., 2018; 

Cooke et al., 2019), and higher circulating pregnancy associated glycoproteins on d28 (Pohler 

et al., 2016), which are both associated with increased fertility. Moreover, expression of estrus 

is associated with changes in the reproductive tract and expression of genes favorable to 

embryo implantation, placentation, and pregnancy (Davoodi et al., 2016; Cooke et al., 2019).  

 

Conclusions 

In conclusion, the study validated 2 presynchronizations strategies and 2 TAI 

protocols, establishing 4 possible fertility programs, all of them inducing well-controlled 

ovarian dynamics, excellent synchronization, and high fertility. Moreover, one of our goals 

was to compare the Double-Ovsynch with the Double E-Synch, and despite differences in 

pharmacological bases, both promoted similar results. Finally, the data generated from this 

study offers to dairy operations effective options of TAI programs to be used according to 

their management and preferences. 
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Abstract 

 The present study evaluated the addition of a gonadotropin-releasing hormone 

(GnRH) concomitant or 2 days after the beginning of protocols initiated with estradiol 

benzoate (EB). A total of 459 multiparous and 371 primiparous lactating Holstein cows were 

enrolled in the study. Weekly cohort of cows were randomly assigned to 1 of 3 experimental 

groups that differed in the strategy to initiate the TAI protocol. On d0, all cows received a 

1.55 g progesterone (P4) implant and, in EBd0 group, cows received 2 mg of EB i.m.. Cows 

assigned in EBd0-GnRHd0 group were treated simultaneously on d0 with 2 mg ofEB plus 

100 µg of gonadorelin diacetate tetrahydrate (GnRH) i.m. and, in EBd0-GnRHd2 group, 

cows received 2 mg of EB on d0 and 100 µg of GnRH 48 hours later, on d2. The remaining 

treatments in the protocol were similar among groups, and included 0.53 of mg i.m. 

cloprostenol sodium (PGF) on d7, followed by a second PGF treatment on d9, at the time of 

P4 implant withdrawal and 1 mg of estradiol cypionate i.m.. The TAI was performed on d11 

(48 hours after P4 removal) in all experimental groups. Regarding pregnancy per AI (P/AI) 

on d30, a treatment effect was detected, in which cows from EBd0-GnRHd2 group presented 

greater fertility than EBd0 cows, while EBd0-GnRHd0 group did not differ among EBd0 and 
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EBd0-GnRHd0 (40.5 vs. 30.4 vs. 34.4%; respectively). Interestingly, GnRH treatment on d2 

increased fertility in multiparous, cows with greater milk production and cows receiving the 

first postpartum service. In summary, GnRH treatment at the beginning of an estradiol/P4-

based TAI protocol increased fertility, only when the GnRH was given on d2. Moreover, there 

was a more pronounced positive effect of this strategy in particular classes of cows such as 

multiparous, cows with greater milk production, and those receiving the first service. 

 

Introduction 

There are critical points during timed-artificial insemination (TAI) programs that can 

optimize fertility of lactating dairy cows (Consentini et al., 2021). Initially, it is important to 

properly synchronize the emergence of a new follicular wave; this is an essential event to 

control the age of the ovulatory follicle (Monteiro et al., 2015). Moreover, the presence of 

corpus luteum (CL) and high circulating progesterone (P4) concentrations during 

development of the preovulatory follicle are positively associated with P/AI (Bisinotto et al., 

2015; Melo et al., 2016).  

 Regarding synchronization of a new follicular wave emergence, gonadotropin-

releasing hormone (GnRH) can be administered to induce ovulation, followed by emergence 

of a new follicular wave within 24 hours, as commonly used in Ovsynch-type protocols 

(Pursley et al., 1995). In a recent compilation of studies by Borchardt et al. (2020), it was 

demonstrated an overall ovulation incidence after a GnRH treatment of 51.4% (2,204/4,291). 

However, there is a variation in the ovulatory response among studies, influenced by a 

number of physiological aspects such as CL presence (Borchardt et al., 2020), steroid 

hormone concentrations (Stevenson and Pulley, 2016), stage of the estrous cycle 

(Vasconcelos et al., 1999), use of presynchronization protocols (Belo et al., 2006), and dose 

of GnRH (Giordano et al., 2013). Another often used strategy to synchronize follicular 

emergence is by causing atresia of the follicles in response to the combination of estradiol 

(E2) and P4, such as in E2/P4-based protocols (Bó et al., 1995; Barros et al., 2000). The 

circulating P4 profiles during the TAI protocol may differ according to the strategy used at the 

beginning. For instance, when GnRH causes ovulation, a new follicular wave initiates 

simultaneously to the development of a new CL throughout the protocol, and both factors are 

associated with greater pregnancy per AI (P/AI; Giordano et al., 2013; Melo et al., 2016; 

Borchardt et al., 2020). In contrast, in E2/P4-based protocols, previous studies reported that 

approximately 25% of cows failed to have a new follicular wave emergence, and about 40% 

of cows underwent CL regression before the scheduled treatment with prostaglandin F2α 

(PGF). These events were associated to lower fertility in lactating dairy cows (Monteiro et al., 

2015; Melo et al., 2016; Melo et al., 2018). 
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 In a previous study, initiating the TAI protocol with GnRH instead of estradiol 

benzoate (EB) improved ovarian dynamics (CL presence at PGF), P4 milieu (higher P4 at 

PGF) and fertility in lactating dairy cows (Melo et al., 2016). A frequently implemented TAI 

protocol in commercial dairy herds, initiates with EB and has an extended length and 

proestrus, with the first PGF on d7, the second treatment on d9 (at P4 implant removal), and 

cows being inseminated on d11 (Pereira et al., 2015). Adding a GnRH at the beginning of this 

protocol increased fertility of lactating dairy cows (Pereira et al., 2015). However, the GnRH 

given on d2 could promote better fertility, because in cows ovulating after a GnRH given on 

d0, the ovulatory follicle may be too old or overexposed to luteinizing hormone (LH) due to 

protocol length and a longer proestrus. 

 Thus, the objective of the present study was to evaluate 3 strategies to initiate TAI 

protocols in lactating dairy cows, that included: treatment with estradiol benzoate (EB) plus 

P4 implant only; or an additional treatments with GnRH, either simultaneously to the EB 

treatment (d0) or 2 days later (d2). The main hypothesis was that the inclusion of a GnRH 

treatment on d0 or d2 would increase P/AI of lactating dairy cows, and the GnRH on d2 

would promote greater fertility than GnRH given on d0 with the EB. 

 

Material and Methods 

Expecting an increase on P/AI ranging from 5 to 10 percentage points (e.g. 30 vs. 35 

to 40%), the minimum sample size of 300 cows was determined after a power calculation 

using the PROC POWER of SAS 9.4 (power = 0.80 and α = 0.05). The experiment was 

conducted in 2 commercial dairy farms located in Southeast of Brazil, both with 305-d 

average milk production of 9,000 kg. The Animal Research Ethics Committee of Luiz de 

Queiroz College of Agriculture of the University of São Paulo (ESALQ/USP) approved all 

procedures involving cows in this study (CEUA - 5112290720). Farms had approximately 

700 lactating Holstein cows milked thrice daily and fed twice with a total mixed ration based 

on corn silage and a corn and soybean meal-based concentrate with minerals and vitamins 

balanced to meet or exceed the nutritional requirements of lactating dairy cows producing 40 

kg/d of milk (National Research Council – NRC, 2001). All cows had ad libitum access to 

water and were housed in free-stall barns bedded with sand and equipped with fans.  

A total of 459 multiparous and 371 primiparous lactating Holstein cows were enrolled 

in the study from November of 2015 to August of 2016. Weekly cohort of cows were 

randomly assigned, according to parity and number of service (first postpartum TAI and 

resynchronization of ovulation protocols initiated at nonprenant diagnosis 31 d after a prior 



95 

 

AI), to 1 of 3 experimental groups that differed in the strategy to initiate the TAI protocol 

(Figure 1). On d0, all cows received a 1.55 g P4 implant (PRID Delta, Ceva, France) and, in 

EBd0 group, cows received 2 mg of EB (Estrogin, Biofarm, Brazil). Cows assigned to EBd0-

GnRHd0 group were treated simultaneously on d0 with 2 mg of EB plus 100 µg of 

gonadorelin diacetate tetrahydrate (GnRH, Cystorelin, Merial, Brazil) and, in EBd0-GnRHd2 

group, cows received 2 mg of EB on d0 and 100 µg of GnRH 48 hours later, on d2. The 

remaining treatments in the protocol were similar among all groups, and included 0.53 mg of 

cloprostenol sodium (PGF, Veteglan, Hertape Calier, Brazil) on d7, followed by a second 

PGF treatment on d9, at the time of implant removal and 1 mg of estradiol cypionate (EC, 

Cipionato-HC, Hertape Calier, Brazil). The TAI was performed on d11 (48 hours after P4 

removal) with conventional Holstein semen in all experimental groups, and pregnancy 

diagnosis was performed by ultrasound examination 31 d after TAI. 
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Figure 1. Experimental design with the hormonal treatments during timed-artificial 

insemination (TAI) protocols. On d0, all cows received a 1.55 g progesterone (P4) implant 

and, in EBd0 group, cows received 2 mg of estradiol benzoate (EB). In EBd0-GnRHd0 group, 

cows received 2 mg of EB plus 100 µg of gonadorelin diacetate tetrahydrate (GnRH) 

simultaneously on d0, and, in EBd0-GnRHd2 group, cows received 2 of mg EB on d0 and 

100 µg of GnRH 48 h later, on d2. The remaining treatments in the protocol were similar 

among groups, including 0.53 mg of cloprostenol sodium (PGF) on d7, followed by a second 

PGF on d9, concomitant with P4 implant withdrawal and 1 mg of estradiol cypionate (EC). 

The TAI was performed on d11 (48 h after P4 removal) in all experimental groups. 

 

Statistical analyses were performed using the Statistical Analysis System (SAS, 

Version 9.4 for Windows SAS Institute Inc., Cary, NC). Analyses for continuous variables, 

such as days in milk (DIM) and milk production near TAI (7-d average production before 

TAI), were performed using the GLIMMIX procedure fitting a Gaussian distribution. 

Analyses of binary response variable (P/AI on d31) were performed using the GLIMMIX 

procedure, fitting a binomial distribution with Link Logit function. Additionally, the option 

ddfm = kenwardroger was included in the model statement to adjust the degrees of freedom 

for variances. 

The initial model for P/AI on d31 included the effect of treatment, farm, parity 
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(primiparous and multiparous), milk production class (< or ≥ 33.1 kg/d; Lopez et al., 2004), 

number of AI (first or later services), and the interaction between treatment and these 

variables. For the final model, only the interaction between farm and treatment was removed. 

To independently evaluate the effect of treatment in each class of cows within parity, milk 

production and service number, the SLICE command was used in the GLIMMIX procedure. 

Tukey honest significant difference post hoc test was performed to determine 

differences. Values are presented as least square means (LSM) ± standard error of the mean 

(SEM). Significant differences were declared when P < 0.05, whereas tendencies were 

considered when 0.10 > P ≥ 0.05. 

 

Results and Discussion 

 The average DIM was 168.1 ± 4.1 and did not differ among treatments (P = 0.74) or 

between farms (P = 0.92). Similarly, milk production was not different among treatments (P = 

0.64) or farms (P = 0.17), and multiparous had slightly greater milk production than 

primiparous cows (30.9 ± 0.4 vs. 29.1 ± 0.4 kg/d; P = 0.003). 

Regarding P/AI on d31, a treatment effect was detected (P = 0.04), in which cows 

from EBd0-GnRHd2 group had greater fertility than EBd0 cows, whereas EBd0-GnRHd0 

group did not differ from the other groups (Figure 2). 
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Figure 2. Pregnancy per artificial insemination (P/AI) 31 days after timed-AI (TAI) according 

to the strategy to initiate the TAI protocol (P = 0.04). Treatments were estradiol benzoate on 

d0 (EBd0), estradiol benzoate plus GnRH on d0 (EBd0-GnRHd0), or estradiol benzoate on d0 

and GnRH on d2 (EBd0-GnRHd2) of the TAI protocol. a,bMeans with different letters are 

different (P < 0.05). 

 

In a recent compilation of studies comprising 4,657 lactating dairy cows, Consentini et 

al. (2021) reported that the administration of only GnRH at the beginning of TAI protocols or 

its inclusion on d0 or d2 of an E2/P4-based protocol increased fertility by 17.9% when 

compared to E2/P4-based protocols initiated only with EB (39.5 vs. 33.5%). Treatment with 

GnRH at the beginning of E2/P4-based protocols seems to increase fertility because of the 

induction of ovulation, which increases the proportion of cows with a functional CL at the 

time of treatment with PGF and improves circulating P4 concentrations during the protocol 

(Pereira et al., 2015; Melo et al., 2016; Consentini et al., 2021). The study by Cerri et al. 

(2011) demonstrated that higher circulating P4 concentrations reduced LH pulse frenquency 

during follicular development in a synchronization protocol, which is fundamental to ensure 

an adequate growth of the dominant follicle in lactating dairy cows (Wiltbank et al., 2011). 

Moreover, studies reported that higher circulating P4 during the protocol were associated to 
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better embryo quality and greater fertility in dairy cows (Rivera et al., 2011; Wiltbank et al., 

2012).   

In the present study, treatment with GnRH concomitant with EB on d0 did not 

increase P/AI, in contrast to Pereira et al. (2015), that reported a greater P/AI when GnRH 

was added on d0 (30.7 vs. 26.8%). One reasonable explanation for the lack of effect of GnRH 

treatment on d0 on fertility may be associated to the age of the ovulatory follicle at the end of 

the protocol. Because of the length of the protocol (11 days), cows from EBd0-GnRHd0 

group that ovulated to the GnRH given on d0, although synchronized, possibly had an older 

ovulatory follicle at the time of AI. Moreover, because of the 4-day period of proestrus (due 

to the first PGF treatment on d7) this follicle may have experienced an overexposure to LH 

pulse-frquency at the end of the protocol, compromising oocyte quality, which impairs 

fertility (Revah and Butler, 1996; Cerri et al., 2009; Monteiro et al., 2015). Conversely, 

results from the present study suggest that when cows ovulate to the GnRH treatment on d2, 

the end of the protocol works similarly as the traditional 5-d synchronization protocol, which 

results in a younger ovulatory follicle at the time of AI, producing greater P/AI. Indeed, 

according to Santos et al. (2010), the 5-day Cosynch72 with 2 PGF treatments promoted 

greater P/AI than the 7-day Cosynch72 with 1 PGF treatment (37.9 vs. 30.9%). In addition, an 

interesting study comparing the 5-day Ovsynch protocol and the traditional Ovsynch, both 

with 2 PGF treatments, reported similar fertility between these TAI programs (43.8 and 

41.4%; Santos et al., 2016). 

 Additionally, an aspect that can explain the lower fertility of the EBd0 group is the 

expected lack of emergence of a new follicular wave after EB plus P4 implant treatment in a 

percentage of cows (25-35%, Monteiro et al, 2015; Melo et al., 2018), resulting in a low 

overall synchronization to the protocol in lactating dairy cows (32 to 60%; Monteiro et al., 

2015). In this sense, the ideia of adding a GnRH treatment on d2 in the present study aimed to 

induce ovulation in cows that did not respond to the treatment with EB plus P4 implant, 

increasing the proportion of cows synchronized to the protocol. In addition, studies reported 

that about 40% of cows with a CL on d0 underwent CL regression during the synchronization 

protocol when treated with EB at the beginning of the synchronization protocol (Monteiro et 

al., 2015; Melo et al., 2016; Consentini et al., 2021), reducing circulating P4 concentrations 

during follicular development. These two situations can be partially overcome when a GnRH 

treatment is added at the beginning of the protocol. 

Furthermore, there was no effect of farm (P = 0.55) nor interaction between farm and 

treatment (P = 0.92; Table 1). Likewise, there was no effect of number of AI on fertility (P = 
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0.25). Previous studies reported a marked decrease in P/AI as the number of services or DIM 

increased (Lopes et al., 2013). Although it is hard to draw final conclusions on why the 

number of AI did not affect fertility in the current study, it is possible that greater incidence of 

metabolic problems and more acute heat stress may have played an important role and could 

partially explain these contrasting results. Unsurprisingly, primiparous had greater P/AI than 

multiparous cows (P = 0.005; Table 1), as previously reported (Carvalho et al., 2014, 2015). 

This can be mainly explained by the lesser challenges related to liver steroid metabolism due 

to the lower milk production, and fewer health issues in the postpartum period in primiparous 

cows (Reinhardt et al., 2011; Pascottini et al., 2017). 

When additional analyses were performed to better understand the effect of treatment 

within specific classes of cows (Table 1), the EBd0-GnRHd2 group presented greater fertility 

in cows with greater milk production (≥ 33.5 kg/d). This effect was also observed in 

multiparous cows and cows receiving the first service (Table 1). Normally, these classes of 

cows have higher milk production (multiparous > primiparous, and 1st service > later 

services), which is closely related to a greater steroid hormone menabolic rate (Sangsritavong 

et al., 2002). This condition could be compromising the emergence of a new follicular wave 

in response to EB plus P4 implant, besides reducing circulating P4 concentrations during 

follicular development, resulting in an older (and overexposed to LH) ovulatory follicle. 

Another possible explanation for the greater P/IA observed in EBd0-GnRHd2 group into 

these classes, althouth not properly evaluated, is the expected greater incidence of cows in 

anovulatory condition, mainly in the first service (Monteiro et al., 2021), which would result 

in a greater number of cows without CL at the beginning of the protocol. In both situations, 

addition of a GnRH treatment at the beginning of the TAI protocol could optimize the 

synchronization and potentially improve fertility of lactating dairy cows. In the present study, 

this could parcially explain the greater P/IA observed specially in EBd0-GnRHd2 group 

compared to EBd0 group. 
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Table 1. Pregnancy per artificial insemination (P/AI) 31 days after timed-artificial insemination (TAI) according to the strategy to initiate the TAI protocol, farm, parity, 

milk production, and number of AI. 

Item Overall 

Strategy to initiate the TAI protocol1 
 P-value2 

EB on d0 
EB+GnRH 

on d0 

EB on d0 and 

GnRH on d2 

 

T V I 

Farm         

    1 33.4 (137/398) 29.5 (55/161) 31.2 (40/125) 39.8 (42/112)  0.24 
0.35 0.78 

    2 36.6 (156/432) 31.3 (43/134) 37.8 (54/147) 41.1 (59/151)  0.26 

Parity         

    Primiparous 40.0 (149/371)x 35.3 (54/140) 43.2 (52/119) 41.7 (43/112)  0.46 
0.005 0.27 

    Multiparous 30.3 (144/459)y 25.9 (44/155)b 26.6 (42/153)b 39.2 (58/151)a  0.03 

Milk production, kg/d         

    < 33.5 33.2 (187/540) 30.6 (65/190) 35.4 (64/178) 33.7 (58/172)  0.65 
0.32 0.16 

    ≥ 33.5 36.8 (106/290) 30.1 (33/105)b 33.5 (30/94)b 47.6 (43/91)a  0.04 

Number of AI         

    First service 32.7 (98/294) 24.6 (21/86)b 34.1 (35/103)ab 40.6 (42/105)a  0.04 
0.20 0.25 

    Later services 37.3 (195/536) 36.9 (77/209) 34.8 (59/169) 40.4 (59/158)  0.64 

1Treatments were estradiol benzoate on d0 (EBd0), estradiol benzoate plus GnRH on d0 (EBd0-GnRHd0), or estradiol benzoate on d0 and GnRH on d2 (EBd0-GnRHd2) of the TAI 

protocol. 
2T: effect of treatment within class of cows; V: main effect of the variable (farm, parity, milk production, and number of AI); and I: interaction between treatment and the variable. 
a,b Least square means with different superscripts within a row are different (P < 0.05). 
x,yLeast square means with different superscripts within a column are different (P < 0.05) considering the main effect of the specific variable (farm, parity, milk production, and number of 

AI) 

.
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Compliance and consistency of hormonal treatments is an important aspect when 

implementing synchronization protocols in dairy herds. The hormonal schedule must fit into 

the herd’s weekly routine to make it as simple as possible. Thus, besides improvement in 

fertility, GnRH given on d2 is ideal for a weekly routine of hormonal treatments, in which it 

falls right into the same day for P4 device removal in cows starting the synchronization 

protocol the week before. It has an important practical aspect because the additional GnRH on 

d2 can be handled simultaneously to the device removal of cows synchronized the previous 

week, making it easy to be implemented and assuring good compliance while avoiding extra 

labor for managing cows during breeding routines.   

 

Conclusions 

In conclusion, addition of a GnRH treatment at the beginning of the E2/P4-based TAI 

protocol increased fertility, only when GnRH was given on d2. Moreover, the positive effect 

of this strategy was more pronounced in multiparous, cows with greater milk production, and 

cows in the first service, which could be more benefited from a better synchronization, higher 

circulating P4 concentrations during the protocol, and a younger (and not overexposed to LH) 

ovulatory follicle at the end of the protocol.  
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Abstract 

The main objective of the present study was to determine whether composition of total 

mixed ration (TMR) influences reproductive performance in high-producing commercial 

dairy farms. Dairy producers and nutritional consultants from 48 dairy farms located in 

Wisconsin-US agreed to provide reproductive data and dietary information on high-milk 

production pens during main breeding period for previous 12 months. Dietary components 

(percentage in dry matter) were: crude protein (CP), rumen degradable (RDP) and 

undegradable (RUP) protein, neutral detergent fiber (NDF), non-fiber carbohydrates (NFC), 

starch, and fat. Reproductive data were: service rate (SR), overall pregnancy per artificial 

insemination (P/AI) and P/AI at the first service, 21-d pregnancy rate (PR), days open 

(DOPN), and percentage of cows pregnant by 150 DIM (PREG150). Participating herds had 

lactating Holstein cows (range = 143 to 2,717) housed in free-stall facilities. Statistical 

analyses were performed with CORR and GLIMMIX of SAS. Daily average milk production 

of herds was 38.9 ± 0.60 kg/d (30.0 to 50.4 kg/d). Overall SR was 58.5% (39-73) and P/AI 

was 36.1% (22-49). Overall 21-d PR was 20.3% (10-42%). Correlation between SR and PR 

was 0.59 (P<0.0001), while correlation of overall P/AI and P/AI at first service with PR were 

both 0.72 (P<0.0001). Similarly, for PREG150, correlation with overall P/AI (0.63; 

P<0.0001) and P/AI at first service (0.66; P<0.0001) were greater than with SR (0.48; 

P=0.001). There was large variation in diet composition, with CP varying from 16.0-18.7%, 

NDF from 24.9-35.1%, NFC from 31.7-46.6%, starch from 20.1-30.8%, and fat from 3.1-

6.7%. Overall, there were no detectable associations of CP, RDP, and RUP with reproductive 

measures. The strongest relationship was a decrease in reproductive performance with 

increasing dietary NFC including: overall P/AI (-0.48; P=0.001), P/AI at first service (-0.51; 

P=0.0005), and PREG150 (-0.33; P=0.03). Starch also had a negative relationship with P/AI 

at first service (-0.35; P=0.05). Conversely, greater NDF was positively associated with P/AI 

at first service (0.34; P=0.01). Fat content was also positively associated with P/AI at first 

service (0.34; P=0.02). When NFC was divided in tertiles (<40, 40 to 42.2 and >42.2 % 

NFC), the highest tertile had lower overall P/AI (39 vs. 36 vs. 31%), P/AI at first service (43 

vs. 40 vs. 33%) and PREG150 (54 vs. 53 vs. 47%). In conclusion, farms with greater dietary 

NFC may have compromised reproductive performance. Correspondingly, herds with greater 

NDF content can achieve high milk production and potentially have positive effects on 

reproduction. Other effects of dietary components on reproduction were not as obvious in this 

herd-level analysis. 

 

Key words: dairy cows, diet composition, nutrition, fertility 

 

Body of the paper 

Reproductive performance is an important determinant of dairy herd efficiency with 

an optimized calving interval increasing milk production, subsequent reproductive 

performance, and farm profitability (Middleton et al., 2019). Efficiency of reproduction in 

high-producing dairy cows is impacted by numerous factors including: heat stress (Baruselli 

et al., 2020), body condition score (BCS) and BCS changes (Carvalho et al., 2014), health 

problems (Carvalho et al., 2019), timed-artificial insemination (TAI) programs (Consentini et 

al., 2021), and nutrition (Rodney et al., 2018). This study focused on the impact of specific 

nutritional components in the total mixed ration (TMR) on various measures of reproductive 
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performance in well-managed Midwestern dairy farms.   

 Previous studies have focused on the impact on reproduction of specific nutritional 

manipulations such as: acidogenic diets (Santos et al., 2019), supplementation of specific fatty 

acids (Rodney et al., 2015), amino acids such as methionine and methyl-group donors like 

choline (Zhou et al., 2016), and manipulation of dietary energy and starch sources (Cardoso et 

al., 2020; Albornoz and Allen 2018). Despite the potential impact of nutrition on dairy cow 

reproduction, it is challenging to perform valid nutrition-reproduction experiments, due to the 

necessity for continuous manipulation of the diet in a large number of animals to validly 

quantify changes in binomial fertility values such as pregnancy per AI (P/AI). Thus, the 

relationships among key components of the TMR, that have known effects on milk 

production, have not been systematically connected to reproductive performance. The main 

objective of the present study was to determine whether composition of TMR influences 

reproductive measures on high-producing commercial dairy farms. The approach was to use 

dietary data from nutrition consultants, such as concentrations of protein, fiber, carbohydrate 

and fat in the TMR, and to correlate this information with reproductive data collected during 

the same time period. This experimental approach did not allow testing of specific dietary 

components but was designed to identify key components of the TMR that may impact 

reproduction to help direct future manipulative studies on nutrition-reproduction interactions 

in high-producing dairy cows. 

Data from 48 commercial dairy farms located in Wisconsin-US were retrieved directly 

from nutrition consultants on each dairy to create the dietary component database. All 

participating herds had more than 100 (range = 143 to 2,717) lactating Holstein cows housed 

in free-stall facilities. The herds consented to provide their complete diets and accurate 

production and reproductive records with archive files for the previous 12 months that 

matched the period of the TMR. Nutritional information included all dietary ingredients and 

nutrient compositions of the diets for the high-production cow pens post 21 to 30 days in milk 

(DIM). Thus, the diet information retrieved from all herds coincided with the main breeding 

period after calving, which started after the end of the voluntary waiting period (VWP) and 

up to ~150 DIM. 

A total of 64 diet ingredients were identified including: forage and concentrate 

sources, fat and amino acid (AA) supplements, byproduct feeds, minerals, and vitamins. 

Complete dietary composition was analyzed by each nutrional consultant at multiple times 

during the experimental period with mean values obtained for each farm on the content 

(percentage in dry matter; DM) of crude protein (CP), rumen degradable (RDP) and 
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undegradable (RUP) protein, neutral detergent fiber (NDF), non-fiber carbohydrates (NFC), 

starch, and fat. 

The reproductive data were retrieved by the same technician from the Dairy Comp 305 

and PCDart herd management software, and excluded “do not breed” cows. The main data 

retrieved were the percentage of TAI used for first service and for all AIs, service rate (SR), 

overall P/AI and P/AI at the first service, 21-d pregnancy rate (PR), days open (DOPN), and 

percentage of cows pregnant by 150 DIM (PREG150). 

Statistical analyses were performed using the Statistical Analysis System (SAS, 

Version 9.4 for Windows SAS Institute Inc., Cary, NC). Data were tested for normality of 

residuals with the Shapiro-Wilk test, using the UNIVARIATE procedure of SAS. Correlation 

tests between dietary components and reproductive measures were performed with the CORR 

procedure, and logistic regressions were performed using the GLIMMIX procedure fitting a 

Gaussian distribution. For some variables with significant correlations, the intercept and slope 

of equations were obtained using the option solution in the GLIMMIX procedure. 

Additionally, the option ddfm = kenwardroger was included in the model statement to adjust 

the degrees of freedom for variances. In addition to the logistic regressions performed 

considering the diet components as continuous variables, tertiles were created according to the 

level of the component, for example NDF and NFC, in order to study the effect of those 

components as class independent variables. 

Tukey honest significant difference post hoc test was performed for mean separation. 

Values are presented as mean ± standard error of the mean (SEM). Significant differences 

were declared when P ≤ 0.05, whereas tendencies were considered when 0.05 < P ≤ 0.10. 

Daily average milk production of the herds was 38.9 ± 0.60 kg/d, varying from 30.0 to 

50.4 kg/d. The average milk fat and protein percentage and somatic cell count were 3.67 ± 

0.03, 3.05 ± 0.01 and 246,500 ± 13,999, respectively, and there was no effect (P > 0.10) of 

herd size on any of these milk parameters. 

The VWP was 65 DIM, on average, ranging from 40 to 85 DIM. For reproductive 

management, most of the herds used exclusively TAI for first service, with an average across 

herds of 80% (25-100) for the first service, and the average for all inseminations of 65% (15-

99). As expected, the SR (58.5% overall, ranging from 39 to 73) increased as the percentage 

of TAI use increased. However, interestingly, the percentage of TAI use for first service had a 

stronger relationship (R = 0.53; P = 0.0003) with SR than overall TAI use (R = 0.33; P = 

0.03).  

The overall P/AI was 36.1% (22-49), with primiparous cows having 19% greater 
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fertility than multiparous cows (40.4 vs. 34.0%). The overall fertility at first service was 

39.7% (20-51), with a P/AI of 45.9% in primiparous and 36.2% in multiparous cows. Overall 

21-d PR from all farms was 20.3%, ranging from 10 to 42%. Percentage of cows pregnant by 

150 DIM and overall DOPN was 52% (30-75) and 129 days (96-189), respectively. The 21-d 

PR and PREG150 are important measures of reproductive efficiency, and both are influenced 

by SR and P/AI. Interestingly, in our database, overall P/AI and P/AI at first service had 

greater relationships with 21-d PR and PREG150 compared to SR. The correlation coefficient 

between SR and PR was 0.59 (P < 0.0001), while the correlation between overall P/AI and 

P/AI at first service with PR were both 0.72 (P < 0.0001). Similarly, for PREG150, the 

correlation with overall P/AI (0.63; P < 0.0001) and P/AI at first service (0.66; P < 0.0001) 

were greater than with SR (0.48; P = 0.001). As discussed previously, reproductive efficiency 

is associated with the efficiency, timing, and fertility to the first and later AI programs 

(Giordano et al., 2012). The stronger association of P/AI with reproductive performance 

compared to SR highlights the importance of using programs to increase SR (such as use of 

TAI), but also using programs and management to maximize fertility (Consentini et al., 

2021), for example, implementing fertility programs at first service (Fricke and Wiltbank, 

2022) since fertility at first AI is a major driver of reproductive performance. 

Regarding general nutritional information, the percentage of forage in the diets varied 

from 48 to 60% (average = 56.1%), and the variation in the main components of the diet is 

depicted in Figure 1. As shown, there is considerable variation in TMR between herds, 

particularly in forage, starch, NDF, and NFC content of the diets. The variation in vitamin 

content in the TMR diets was surprisingly large, with vitamin A ranging from 93,000 to 

401,000 IU, vitamin D from 28,700 to 72,800 IU, and vitamin E ranging from 460 to 2,868 

IU per cow per day. Several factors could influence ingredients used within a farm and, thus, 

TMR composition, such as quality and type of forage, price and availability of ingredients, 

and the necessity or desire to include a particular ingredient by a nutritionist or dairy 

producer. 
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Figure 1. Variation in dietary components (% of dry matter, DM) among high producing 

dairy herds. CP: crude protein, NDF: neutral detergent fiber, NFC: non-fiber carbohydrate. 

 

There was no correlation between NFC (R = -0.14; P = 0.32), NDF (R = 0.08; P = 

0.57), CP (R = 0.06; P = 0.70), RDP (R = 0.04; P = 0.79), RUP (R = 0.02; P = 0.98), starch 

(R = -0.22; P = 0.22), or fat (R = 0.23; P = 0.12) content of the diets in high production pens 

with herd average milk production. Moreover, the variation in NFC (32 to 47) and starch (20 

to 31) among the farms in this study is within the range of NFC and starch values reported by 

for high producing cows (NRC, 2001, National Academies of Sciences and Medicine, 2021). 

Thus, it may be possible for dairy herds to feed well-formulated diets with controlled starch 

and NFC levels, with adequate  forage and non-forage ingredients, and still achieve high milk 

production. There are various factors that influence milk production, many of which were not 

controlled or evaluated in the present study. However, these results are encouraging in terms 

of attempting to better understand variation in the main components of the diets among farms 

and their influence on milk production. For instance, it would be interesting to experimentaly 

evaluate if controlled levels of NFC and higher NDF would allow high milk production while 

improving reproduction. 

The relationships between various aspects of the TMR and three measures of 

reproductive efficiency are in Table 1. The three measures of reproductive performance were 

chosen because there was no correlation between any of the dietary components and SR and 

correlations with PREG150 were very similar to correlations with PR. Overall, there were no 
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detectable associations of dietary protein, expressed as CP, RDP, or RUP, on these 

reproductive measures across the dairy herds. The strongest relationship was found for NFC 

with decreasing reproductive performance with increasing NFC. This negative relationship of 

NFC was significant for P/AI at first service, overall P/AI, or percentage pregnant at 150 

DIM. Conversely, greater NDF was associated with greater P/AI at first service. The NFC 

content of the TMR was also associated with a decrease in reproductive performance, 

expressed as P/AI at first service or overall P/AI and tended to be negatively associated with 

PREG150 (Table 1). 

 

Table 1. Correlation between dietary components and reproductive measures in high 

producing commercial dairy herds. 

Item (% of DM) 

Reproductive measurement 

P/AI at 1st service Overall P/AI Pregnant by 150 DIM 

CP 0.05 (0.73) 0.16 (0.31) -0.12 (0.45) 

RDP -0.11 (0.48) -0.03 (0.85) -0.16 (0.32) 

RUP 0.23 (0.14) 0.26 (0.10) 0.06 (0.70) 

NDF 0.34 (0.03) 0.25 (0.11) 0.11 (0.48) 

NFC -0.51 (0.0005) -0.48 (0.001) -0.33 (0.03) 

Starch -0.35 (0.05) -0.20 (0.28) -0.16 (0.38) 

Fat 0.34 (0.02) 0.24 (0.12) 0.24 (0.17) 

The table shows correlation coefficient (R) and P value (between parenthesis). 

CP: crude protein, RDP: rumen degradable protein, RUP: rumen undegradable protein, NDF: 

neutral detergent fiber, NFC: non-fiber carbohydrate. 

 

 Figure 2 illustrates the relationships between NDF and NFC with reproductive 

measures. As shown, NDF is positively associated with P/AI at first service either when 

comparisons were made with all individual herd data or if herds were divided by tertiles for 

NDF and compared to reproductive measures. Conversely, there was a strong negative 

association between NFC, on an individual herd basis or when herds were divided by tertiles, 

and all three measures of reproductive performance (Figure 2). 
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Figure 2. Relationship between dietary levels of neutral detergent fiber (NDF) and non-fiber 

carbohydrate (NFC) and reproductive outcomes in high producing commercial dairy herds. 

 

The methodology used in the present study does not allow us to determine the reasons 

that specific dairy herds had greater or less NFC in their diets or the mechanisms that 

produced the negative correlations with overall P/AI (-0.48), P/AI at first service (-0.51) and 

PREG150 (-0.33). When the effect of starch level of diets was evaluated, similar to NFC, 

starch had a negative relationship with P/AI at first service (-0.35; P = 0.05), but had no 

detectable effect on overall P/AI or PREG150 (Table 1). Since the starch, particularly coming 

from corn (e.g. dry ground corn or high moisture corn), is the main source of NFC in the 
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diets, we expected a negative effect of high levels of starch on reproduction. High starch leads 

to increased insulin that can reduce fertilization of oocytes, increase degeneration of embryos, 

and cause an overall reduction in fertility (Bender et al., 2014, Wiltbank et al., 2014). There 

are previous studies reporting a decrease in DMI for cows receiving high-starch diets or starch 

sources with greater fermentability (Albornoz and Allen 2018). Moreover, high starch diets 

can induce upregulation of genes associated with inflammation (Albornoz et al., 2020). In 

addition, the occurence of subacute ruminal acidosis (SARA) is related to the starch and NFC 

content of diets (Khorrami et al., 2021). In a study (Khafipour et al., 2009) with lactating 

dairy cows, the authors exposed cows that were consuming a 50:50 forage to concentrate diet 

(starch: 26.1% and NFC: 32.7%) to a high starch/NFC diet (starch: 33.4% and NFC: 40.4%) 

or maintained the cows in the control group. Cows fed the high starch diet had decreased DMI 

(16.5 vs. 19.0 kg/d) and milk production (28.3 vs. 31.6 kg/d). In addition, the high starch diet 

induced a lower average ruminal pH and more than doubled the minutes per day of pH below 

5.6 (279 vs. 118 min/d). In the same study, rumen lipopolysaccharide (LPS) was increased, 

and also plasma LPS (0.52 vs. < 0.05 EU/mL). The authors suggested that a high NFC/starch 

diet may trigger an inflammatory response, which was further evidenced by an increase in 

haptoglobin and LPS biding protein in cows consuming the high starch/NFC diets (Khafipour 

et al., 2009). Cows with inflammatory response have greater energy (e.g. glucose) utilization, 

potentially producing a more negative energy state (Kvidera et al., 2017). In addition, a 

negative relationship between inflammation markers and fertility has been reported (Zebeli et 

al., 2015). Thus, these negative aspects of high NFC diets could impair reproductive 

performance, in spite of potential benefits of increased dietary energy coming from NFC. 

Figure 2 shows the negative associations of NFC and reproductive performance, particularly 

in herds with higher NFC, as P/AI decreased from 43 to 33% (> 20% reduction in relative 

P/AI) with corresponding decreases in overall P/AI and PREG150.   

 The effect of fat on reproduction has been extensively studied in past research and our 

study also found a positive correlation of percentage fat in the TMR with P/AI at first service. 

This could be due to multiple reasons. First, when dietary starch and NFC are reduced, fat 

may be added to the diet to increase the energy content of the diet. Indeed, level of fat had a 

negative correlation with NFC in our database (-0.49; P = 0.0004) providing evidence for this 

potential indirect effect of dietary fat on reproduction. Second, several studies have evaluated 

effects of dietary fat on milk production, health, and reproduction with studies generally 

supplementing cows during the transition period and/or early lactation (Rodney et al., 2018). 

Generally, there is a positive effect of fat supplementation, particularly unsaturated fatty 
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acids, on health, follicle and corpus luteum (CL) development, and on pregnancy outcomes 

(Santos et al., 2009). For instance, Sinedino et al. (2017) supplemented cows after the 

transition period (from 27 to 147 DIM) with docosahexaenoic acid and reported better 

cyclicity and greater P/AI at first service, particularly in primiparous, and greater overall 

P/AI. In another study, cows supplemented with fish oil during the breeding period (30 to 160 

DIM) had greater overall P/AI on d 60 and lower pregnancy loss (Silvestre et al., 2011). 

Altogether, the current findings argue for a positive effect of fat supplementation, although it 

is hard to draw final conclusions whether this is a direct effect or due to the fact that a greater 

use of fat in the diet allows for less NFC to meet the energy demands of postpartum cows.   

The lack of an effect of dietary protein on any of our reproductive measures is 

interesting, however it should be noted that the variation in dietary CP, RDP, and RUP levels 

was not as large as variation in other components of the diets. Some previous studies have 

noted a negative effect of blood or milk urea nitrogen (MUN) on reproduction (MUN; Webb 

and Bruyn, 2021). The observed MUN can be influenced by CP, RDP, and RUP levels, as 

well as the quality of protein, and energy in the diet. We expected no effect of protein on 

reproduction, since modern well-formulated diets generally do not have issues with elevated 

MUN. Consistent with our results, a previous meta-analysis also reported no effect of CP, 

RDP, or RUP on P/AI or interval from calving to pregnancy (Rodney et al., 2018). 

 Finally, the limitations of this type of study need to be emphasized. There are 

numerous dietary and management factors that can greatly impact reproductive performance 

such as cow comfort, reproductive program, pen size, stocking density, type of housing to 

name just a few factors that could cause variation in reproductive performance between 

dairies (Chebel et al., 2016; Wang et al., 2016; Jensen and Proudfoot, 2017). Some other 

management factors with potentially important effects on fertility such as homogeneity of 

TMR provided within pens or across days, consistency in feeding times, or even feeding 

deviations due to external factors (rainfalls, etc) were not accounted in this study. In addition, 

other characteristics of the ingredients and diets that were not evaluated in this study could 

influence DMI, energy balance, milk production, behaviour, and reproduction. For example, 

fat supplementation in our database was not detailed in depth. It is known that fat 

supplementation can impact NDF digestibility, DMI, milk production, and NDF content based 

on type of fatty acids (saturated, n-3, n-6) level of inclusion and period of lactation (Weld and 

Armentano, 2017; Piantoni et al., 2015; Souza et al., 2019; Souza et al., 2021) and these 

factors could change reproductive performance. Similarly, the quality and physical 

characteristics of the forage sources could differ substantially among farms, and it is reported 
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that type of forage, fiber content and digestibility, and particle size influence DMI, and 

behaviour patterns such as eating, rumination, chewing, and resting (Jiang et al., 2017; Grant 

and Ferraretto, 2018;). Finally, negative energy balance and BCS changes during the 

transition period and early lactation are likely to differ substantially among farms and it is 

well-established that BCS changes during early lactation dramatically impact health, fertility 

at first service, and reproductive performance (Carvalho et al., 2014; Barletta et al., 2017). 

Thus, since our analysis was based on differences in reproductive performance between 

different dairy herds that were not controlled for numerous confounding factors, the results 

should not be used as definitive proof for any specific theory. Instead, these results can be 

used as the rationale for further studies on the critical topic of the effects of nutrition on 

reproduction in lactating dairy cows. 

 In conclusion, the results of this study suggest that farms with greater dietary NFC, 

particularly during early lactation, may have compromised reproductive performance, such as 

decreased P/AI at first service, lower overall fertility, and fewer cows pregnant by 150 DIM. 

On the other hand, herds with greater NDF content potentially have positive effects on 

reproduction. Other effects of dietary components on reproduction were not as obvious in this 

herd-level analysis. 

 

Notes 
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Body of the paper 

Numerous aspects impact milk production and reproductive performance of high 

producing dairy herds, such as body condition score (BCS) changes and health problems 

during the transition period (Carvalho et al., 2014; Manríquez et al., 2021), anovulatory 

condition (Vieira-Neto et al., 2014), genetic traits (Lima et al., 2020), nutrition (Rodney et al., 

2018), timed-articial insemination (TAI) programs and reproductive management (Consentini 

et al., 2021). Nonetheless, one key aspect that significantly impacts animals and industry 

overall performance, is the heat stress (HS).  

Lactating high producing dairy cows, mainly due to milk production and greater dry 

matter intake, have lower termoregulatory capacity than heifers (Sartori et al., 2002), and it is 

reported that greater milk production is associated with lowered threshold for HS (Yan et al., 

2021). The HS in lactating dairy cows is associated with changes in behaviour and 

physiological alterations  that eventually can impact milk production, health and fertility 

(Becker et al., 2020). In addition, several impacts on reproduction are reported, such as 

impaired fertilization and embryo development (Sartori et al., 2002; Kasimanickan et al., 

2021), compromised follicular and corpus luteum (CL) development and fuction, as well as 
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hormonal patterns and reduced pregnancy per AI (P/AI; Schuller et al., 2014, 2017; 

Wolfenson and Roth, 2018). 

Retrospective cohort studies, evaluated the effect of HS on fertility (Schuller et al., 

2014, 2017; Baruselli et al., 2020), Likewise, our objective was to evaluate the association of 

HS variables on P/AI of lactating dairy cows during one reproductive year in a commercial 

dairy herd located in a tropical environment/climate. Additionally, we studied the 

relationships between HS and type of service (AI by estrus vs. TAI), service number, BCS 

and milk yield. Database included rectal temperature (RT) at the time of AI, temperature-

humidity index (THI), and seasonal weather (hot vs. cool). We anticipate that cows 

inseminated in HS would have lower fertility, but the negative effect of HS would be greater 

in particular classes of cows, such as those with higher milk production for instance. 

Data were retrieved for entries from January 1st, 2014, until December 31, 2014. The 

commercial dairy herd was located in Minas Gerais state, Brazil (Latitude: 20° 58' 17'' S, 

Longitude: 46° 7' 57'' W). The farm had approximately 1,500 lactating Holstein cows milked 

thrice daily and fed twice with a total mixed ration based on corn silage and a corn and 

soybean meal-based concentrate with minerals and vitamins. The database included only 

primiparous cows. A total of 1,463 AI events was recorded, with the majority being TAI (n = 

1,078) compared to AI by estrus (n = 385). The TAI protocol used in the herd during the 

period of the study was a common estradiol plus progesterone-based protocol. Before each AI 

procedure, RT was measured and recorded. The climate variables were the daily dry bulb 

temperature (T; °C) and relative humidity (RH; %) recorded by the Instituto Nacional de 

Meteorologia (INMET, Estação: Machado/MG  (A567), Brazil). Temperature and RH of the 

day were used to calculate the daily THI based on the equation from Ravagnolo and Misztal 

(2000). 

Statistical analyses were performed using the Statistical Analysis System (SAS, 

Version 9.4 for Windows SAS Institute Inc., Cary, NC). Correlation between climate 

variables (temperature, RH and THI) were performed using the CORR procedure. Analyses of 

P/AI on d30 were performed using the GLIMMIX procedure, fitting a binary distribution with 

Link logit function. Additionally, the option ddfm = kenwardroger was included in the model 

statement to adjust the degrees of freedom for variances. All models to study the effect of HS 

variables included the effects of type of AI (estrus or TAI), service number (1st or ≥2), BCS 

(≤2.75 or >2.75), milk production class (≤30 or >30 kg/d, with 30 being the calculated 

median), and the interaction between the HS and the other class variables. The HS variables 

considered were RT (<39.1 and ≥39.1 ºC), THI (≤68 and >68), and season of the year (Hot: 
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Spring [September/22 to December/21] and Summer [December/22 to March/19], and Cool: 

Autumn [March/20 to June/20] and Winter [June/21 to September/21]). 

Tukey honest significant difference post hoc test was performed to determine 

differences. Values are presented as mean ± standard error of the mean (SEM). Significant 

differences were declared when P ≤ 0.05, whereas tendencies were considered when 0.10 > P 

> 0.05. 

The LOGISTIC procedure was used for logistic regression to model the probability of 

pregnancy on d30 according to RT and THI. Logistic regression curves were created using the 

coefficients provided by the interactive data analysis from SAS and the formula Y = exp (α × 

X + β) / [1 + exp (α × X + β)], where Y = probability of occurrence; exp = exponential; α = 

slope of the logistic equation; β = intercept of the logistic equation; and X = analyzed variable. 

The average milk production of the herd was 30.3 ± 0.20 kg/d, and number of AI was 

3.1 ± 0.06 (1st service: n = 469; 2nd or greater services: n = 994). Mean THI during the period 

evaluated was 67.2 ± 0.12, and the correlationship between THI and temperature of day (R = 

0.99; P < 0.0001) was much stronger than THI and RH (R = -0.19; P < 0.0001). The monthly 

THI and P/AI are presented on Figure 1, and as expected, it is possible to identify the pattern 

in which THI increases at the end of the winter and remain high (average above 68) during the 

entire hot season, while during the most of the fall and winter, the mean THI was below 68. It 

is interesting to mention that, in this particular year and location, the low THI from May to 

August is explained mainly by the the 5 ºC drop in average temperature (data not shown), 

because the RH remained elevated (73-79) during these months, only decreasing during the 

months of August, September and October (60-62). 

Despite few fluctuations during the year, it is possible to identify that the highest P/AI 

did not coincide with the months with lowest THI (Figure 1), and this pattern is also observed 

in previous studies (Baruselli et al., 2020). Generally, the months with greater fertility are 

those at the end of the cool season, and not at the beginning or in the middle of season. This 

result reveals the importance of HS not only causing short-term, but also long-term negative 

effects. According Roth, 2017, cows inseminated in September had most of their follicle 

development (early primordial, antral and preovulatory stages) under moderate or lower levels 

of HS, which can be important in terms of oocyte and embryo quality, and fertility. 

Conversely, during the hot months, the fertility rapidly decreases, following the increase in 

HS, evidenced by elevations on THI. 
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Figure 1. Monthly temperature-humidity index (THI) and pregnancy per artificial 

insemination (P/AI) throughout one reproductive year in a commercial dairy farm (n = 1,463 

AI). a,b,cDifferent letters denote differences on P/AI among the months (P = 0.01). 

 

 There is a relationship among HS variables, so, at a certain level, it is expected that HS 

variables similarly impact fertility, and that happened in the study, with RT ≥39.1 (22.5 

[101/448] vs. 29.1% [295/1,014]; P = 0.01), hot season (24.2 [165/683] vs. 29.7% [232/780]; 

P = 0.05) and THI greater than 68 (24.1 [182/754] vs. 30.3% [215/709]; P = 0.04) decreasing 

fertility in about 20%. To highlight the impact of RT and THI, probability curves for 

pregnancy according to these variables are presented in Figure 2. There are numerous studies 

reporting the negative effect of elevated RT or THI on P/AI in cows receiving AI after estrus 

or TAI (Schuller et al., 2014; Schuller et al., 2017; Pereira et al., 2017). Higher THI was 

associated with reduced fertility in a previous study evaluating 7,252 AI, particularly THI 

above 70 (Schuller et al., 2014), and RC above 39.1 ºC  decreased fertility in 33% (22.8 

[162/709] vs. 34.1% [279/817]) in lactating Holstein cows with similar milk production and 

location of the present study (Pereira et al., 2017). 
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Figure 2. Probability curves for pregnancy on d30 according to rectal temperature at the time 

of artificial insemination (AI) and the temperature-humidity index (THI) at the day of AI 

during one entire reproductive year of a commercial dairy farm. 

 

 There was no interaction between any of the HS variables and the other class 

variables, and effect of season, RT and THI was similar within the classes of cows stablished 

to perform the analysis. Thus, we decided to present a table comprising the effect of type and 

number of AI, BCS and milk production, and their interactions with only one of the HS 

variables, electingTHI (Table 1). 
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Table 1. Pregnancy per artificial insemination on d30 according to type and number of 

service, body condition score (BCS) and milk production, as well as their interaction with 

temperature-humidity index (THI) at the day of AI. 

Item Overall 
THI at day of AI P-value1 

>68 ≤68 THI Var Int 

Type of AI       

    Estrus 26.5 (102/385) 25.3 (50/198) 27.8 (52/187) 
0.04 0.73 0.31 

    TAI 27.4 (295/1,078) 23.7 (132/556) 31.2 (163/522) 

Service       

    1st 35.6 (166/469) 31.8 (83/261) 39.9 (83/208) 
0.005 <0.0001 0.96 

    ≥2 23.3 (231/994) 20.1 (99/493) 26.4 (132/501) 

BCS       

    ≤2.75 24.7 (163/660) 21.5 (75/349) 28.3 (88/311) 
0.004 0.05 0.62 

    >2.75 29.1 (230/790) 26.4 (106/401) 31.9 (124/389) 

Production       

    ≤30 kg/d 22.4 (119/532) 19.2 (40/208) 24.4 (79/324) 
0.03 0.0002 0.94 

    >30 kg/d 33.1 (183/553) 29.5 (72/244) 35.9 (111/309) 
1THI: main effect of THI; Var: main effect of each variable; Int: interaction between the 

variable and THI. 

 

There was no effect of type of AI on fertility, although the type of cows receiving AI 

by estrus or TAI may vary throughout the year due to several reasons, such as number of 

service, anovulatory condition and farm insemination decisions and criteria. There was no 

interaction between THI (or season and RT) and type of AI, which is reasonable since the 

impact of HS on the oocyte, for instance, would compromise fertility regardless of type of AI. 

The lack of difference on fertility according to type of AI can be attributed to the fact that the 

TAI protocol implemented during the year is considered non optimized, and there are several 

adjustments and manipulations which are known to increase fertility of lactating dairy cows 

submitted to TAI programs compared to estrus (Consentini et al, 2021; Fricke and Wiltbank, 

2022).  

There was no interaction between BCS and THI, in which HS conditions had similar 

negative effects on fertility of both BCS classes of cows. As expected, cows with lower BCS 

had reduced fertility, which is completely established in the literature (Carvalho et al., 2014). 
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Not only the BCS near AI is important to fertility, but the BCS changes, particularly in the 

postpartum period, significantly influence health and reproductive performance (Carvalho et 

al., 2014; Manríquez et al., 2021). In this sense, we studied the relationship between BCS and 

number of AI, and an interaction was detected, in which the BCS was more important for 

fertility when cows were receiving the first postpartum service (28.7 [58/202] vs. 40.4% 

[107/265], for BCS ≤2.75 and >2.75, respectively; P = 0.009) compared to later AI (22.9 

[105/458] vs. 23.4% [123/525], for BCS ≤2.75 and >2.75, respectively; P = 0.85). 

Cows receiving the first service had greater fertility than cows receiving later AIand 

there was no interaction between number of service and type of AI (P = 0.84). Despite no 

differences between estrus and TAI for first service were observed in this database, currently, 

it is known that fertility programs can promote greater service rate and fertility compared to 

managements based on estrus detection (Santos et al., 2017). We hypothesized that negative 

HS impact on fertility would be more important for cows receiving the first service since they 

would be more challenged due to postpartum BCS loss in most of them and elevated milk 

production near the lactation peak. However, there was no interaction between HS variables, 

such as THI, and number of service. In fact, in our dataset, milk production was positively 

related with fertility and also did not interact with HS variables (Table 1). 

Aiming to evaluate the association between milk yield and fertility, the database was 

partitioned according to the  median (≤30: average = 24.9 ± 0.17 kg/d  or >30: average = 35.4 

± 0.15 kg/d) indicating higher P/AI on cows with higher milk production (Table 1). These 

results are intriguing since several times milk production is considered negatively associated 

with fertility, however, in well managed dairy herds, with optimized cows' comfort, nutrition 

and high fertility TAI programs, it is possible to achieve high fertility along with high milk 

production (Fricke and Wiltbank, 2022). We failed to confirm a hypothesis that HS have 

greater impact on cows with greater milk production, even with milk production being 

probably associated with greater HS or lowered threshold for HS (Yan et al., 2021). 

Interestingly, in a previous study that partitioned herds in low and high production to evaluate 

effect of intensive or moderate colling programs during the summer, showed results in wich 

moderate colling was related with lower fertility, but the negative effect of not implementing 

intensive heat abatement strategies was more pronounced in herds with low milk production 

(Flamembaum and Galon, 2010). However, it is worthy to mention that this type of study had 

limitation in terms of controlling factos that impact reproduction. Several non recorded or 

controlled aspects could be influencing why cows with higher milk production achieved 

greater fertility, such as allocation of them in better and well managed facilities in the farm 
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and an improved nutrition of cows producing more milk. Moreover, social stressors (Chebel 

et al., 2016), stocking density (Wang et al., 2016; Creutzinger et al., 2021a,b), nutrition 

(Rodney et al., 2018), BCS and BCS changes (Carvalho et al., 2014) are some of other factors 

that may vary throughout the year and can be influencing fertility and the effects of HS 

variables.   

In conclusion, this is one additional study that supported the importance of HS 

variables on herd-level fertility, reinforcing the importance of implementing heat abatement 

strategies in order to alleviate extreme reduction on fertility, particularly during periods of 

heat stress. Moreover, in this dataset, it was not stablished an interaction of heat stress 

variables and other aspects such as type of service, number of AI, BCS and level of milk 

yield.  
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