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RESUMO 

Identificação de eQTL a partir do sequenciamento de RNAm de músculo e fígado de suínos 

Este projeto teve como objetivo identificar polimorfismos de nucleotídeo único (SNP) 
localizados em regiões codificantes do DNA, identificados a partir do sequenciamento completo do 
mRNA, e associá-los ao nível de expressão gênica em músculo e fígado de suínos. Um total de 72 
suínos machos imunocastrados e geneticamente magros foram usados em um estudo de 98 dias para 
avaliar características de carcaça e qualidade da carne do músculo Longissimus lumborum (LL). Os 
animais foram agrupados por peso corporal inicial (PC; 28,44 ± 2,95 kg) e distribuídos em um dos 
quatro tratamentos, com seis baias replicadas por tratamento e três porcos por baia. Os animais foram 
abatidos com peso vivo médio de 132,7±10,9 kg. Posteriormente, amostras de tecido muscular e 
hepático foram coletadas para extração e sequenciamento de mRNA. Posteriormente, uma análise de 
associação de eQTLs com características de desempenho (por exemplo, peso vivo, rendimento de 
carcaça, gordura intramuscular, área de olho de lombo e espessura de gordura) foi realizada com base 
em diferentes métodos estatísticos. Não houve eQTLs significativos (FDR<0,01) para SNPs do painel 
SNP de 50K. A contagem única de eQTL sem filtro para LD associados a genes variou de 2.066 a 
2.247 para cis-eQTLs e 43 a 379 para trans-eQTLs. Para eQTLs com redução significativa (r² 0,7, 
FDR<0,01), o número de SNPs únicos variou de 223 a 612 no cis-eQTL e de 29 a 403 no trans-
eQTL. A contagem significativa de um único gene (FDR<0,01) nos eQTLs não podados variou de 
159 a 304 em cis-eQTL e de 8 a 1.965 em trans-eQTL. A contagem de um único gene variou de 109 a 
185 em cis-eQTL e de 6 a 5.993 em trans-eQTL. O tipo predominante de QTL anotado com os 
marcadores SNPs dos eQTLs significativos foi “Carne e Carcaça”, seguido de “Saúde”, enquanto o 
tipo de QTL que teve o menor percentual anotado foi “Carne e Carcaça eQTL” para cis e trans-
eQTLs do sequenciamento muscular e todos os SNPs com e sem poda. Em resumo, este projeto 
contribuiu para o avanço do conhecimento e desenvolvimento de ferramentas práticas na área de 
genômica funcional da qualidade da carne suína e utilização de nutrientes em suínos. 

Palavras-chave: Sus scrofa; Expressão gênica; Loci de característica quantitativa; SNP 
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ABSTRACT 

Identification of eQTL from porcine muscle and liver mRNA sequencing 

This project aimed to identify single nucleotide polymorphisms (SNP) located in coding 
regions of DNA, identified from complete mRNA sequencing, and associate them with the level of 
gene expression in muscle and liver of pigs. A total of 72 genetically lean, immunocastrated male pigs 
were used in a 98-day study to evaluate carcass traits and meat quality of Longissimus lumborum (LL) 
muscle. Animals were grouped by initial body weight (BW; 28.44 ± 2.95 kg) and assigned to one of 
four treatments, with six replicate pens per treatment and three pigs per pen. The animals were 
slaughtered with an average live weight of 132.7±10.9 kg. Subsequently, muscle and liver tissue 
samples were collected for mRNA extraction and sequencing. Subsequently, an association analysis of 
eQTLs with performance traits (eg live weight, carcass yield, intramuscular fat, loin eye area and fat 
thickness) was performed based on different statistical methods. There were no significant eQTLs 
(FDR<0.01) for SNPs from the 50K SNP panel. The unfiltered single eQTL count for gene-
associated LD ranged from 2066 to 2247 for cis-eQTLs and 43 to 379 for trans-eQTLs. For 
significantly reduced eQTLs (r² 0.7, FDR<0.01), the number of unique SNPs ranged from 223 to 612 
in cis-eQTL and from 29 to 403 in trans-eQTL. The significant single gene count (FDR<0.01) in the 
unpruned eQTLs ranged from 159 to 304 in cis-eQTL and from 8 to 1965 in trans-eQTL. Single gene 
counts ranged from 109 to 185 in cis-eQTL and from 6 to 5993 in trans-eQTL. The predominant type 
of QTL annotated with the SNPs markers of the significant eQTLs was “Meat and Carcass”, followed 
by “Health”, while the type of QTL that had the lowest percentage annotated was “Meat and Carcass 
eQTL” for cis and trans-eQTLs of muscle sequencing and all SNPs with and without pruning. In 
summary, this project contributed to the advancement of knowledge and development of practical 
tools in the area of functional genomics of pork quality and nutrient utilization in pigs. 

Keywords: Sus scrofa; Gene expression; Quantitative trait loci; SNP 
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1. INTRODUCTION 

Pig production is an activity of great importance for the Brazilian economy (Krabbe, Filho, Miele, & 

Martins, 2008). Despite having been introduced in the country hundreds of years ago, the pork industry only started 

to develop significantly in recent decades (MIELE, SANTOS FILHO, MARTINS, & SANDI, 2011). Since then, 

pork production in Brazil has grown dramatically, becoming the fifth largest producer in the world, behind only 

China, the United States, the European Union and Russia in 2022 (USDA, 2023). 

Brazil has one of the largest pig production systems in the world, with different levels of production, from 

small-scale pig farming to large-scale production in industrial farms (FISCHER et al., 2019; Krabbe et al., 2008). The 

main challenges faced by the Brazilian pork industry include reducing production costs, improving product quality, 

adopting more sustainable practices and adopting measures to reduce animal health and welfare problems 

(FISCHER et al., 2019; Krabbe et al., 2008). To face these challenges, the sector has sought to develop technologies 

that can increase productivity and product quality, in addition to improving animal welfare (FISCHER et al., 2019). 

Pork production is highly intensive and involves high levels of technology (Dong, Moritaka, Liu, & 

Fukuda, 2020; FISCHER et al., 2019). The modernization of pig farms has brought significant advances to 

production, allowing pig farmers to produce higher quality meat at lower prices (Dong et al., 2020; FISCHER et al., 

2019).The pork production sector also faces some challenges. The cost of producing pigs, especially for large 

producers, is significant due to the high consumption of food, feed and water (Alves et al., 2022; FISCHER et al., 

2019), in addition to the effects of climate change (Ardlie et al., 2015; Hörtenhuber et al., 2020; Rauw et al., 2020; 

Renaudeau & Dourmad, 2022). 

Concerning production efficiency, the use of animal genetic improvement is common, and pig farming 

has been an area in which this tool has been successfully applied (Knap & Kause, 2018; Merks, Mathur, & Knol, 

2011). Pig breeders have sought to improve animal production characteristics and pork production, improve pork 

quality, and reduce production cost (Knap & Kause, 2018; Merks et al., 2011). In addition, animal genetic 

improvement in pig farming is also applied to increase the resistance of animals to diseases and environmental 

conditions (FISCHER et al., 2019; Knap & Kause, 2018; Merks et al., 2011). 

The principles of breeding start with artificial selection, quantitative genetic improvement, and kin 

selection (Eler, 2017). Artificial selection involves the selection of genetically superior animals for breeding with the 

aim of improving desired traits (Eler, 2017). Quantitative genetic improvement involves the use of mathematical 

models to evaluate the effects of genes and select animals with the desired traits (Eler, 2017). 

The advancement of sequencing and genotyping technologies, associated with computational 

development, which, in turn, combined with bioinformatics tools, as well as the publication of genome sequencing in 

species of zootechnical interest, opened a new era in genetics, livestock, in agriculture and even in human medicine 

(Depristo et al., 2011; Ellen et al., 2019; Gadea, Coy, Matás, Romar, & Cánovas, 2020; Wu & Bazer, 2019). 

Compared to traditional data used in previous evaluations, thousands of genetic markers formed mainly 

by single nucleotide polymorphisms (SNPs) provide the possibility of predicting the genetic value through high-

density panels (Matukumalli, Lawley, Schnabel, Taylor, & Allan, 2009). Thus, the best genomic unbiased linear 

prediction (GBLUP) was developed based on the principle that quantitative traits are controlled by many markers 

such as SNPs (Misztal et al., 2017). The estimated genome value (GEBV) is the sum of the effects of dense genetic 

markers or their haplotypes along the genome, which was predicted and applied to the selection program (Botelho et 
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al., 2020). Thus, genomic selection involving GEBV-based selection decisions has revolutionized the livestock 

industry. The main benefits of genome selection are the possibility of decreasing the generation interval, which is 

inversely proportional to the genetic gain, in addition to reducing the cost of progeny testing, as the GEBV can be 

obtained early in life (Ellen et al., 2019; Misztal et al., 2017). 

Since the 1980s, when the first studies involving molecular markers in pig farming began (Chardon et al., 

1985), the development of molecular genetic technology has allowed the integration of molecular markers to genetic 

improvement (Yang, Fu, Khan, Zeng, & Fu, 2013). 

Single nucleotide polymorphism (SNP) is the variation of a nucleotide base, which can be a Transition, 

that occurs when a purine is replaced by another purine, or when a pyrimidine base is replaced by another pyrimidine 

base (Cytosine/ Thymine or Guanine/Adenine, respectively) (Helyar et al., 2011; Kim & Misra, 2007). It can also be 

a Transversion, when a purine base is replaced by a pyrimidine base or vice versa (C/G, C/A, T/A and T/G) 

(Helyar et al., 2011; Kim & Misra, 2007). SNPs are the main types of DNA polymorphisms used for studies of 

genetic variation. They are present throughout the genome, mainly in the intronic region, that is, non-coding regions 

(Hiremath et al., 2012). It also appears in gene coding sequences (exon) or in non-genetic coding regions (exon-

intron splicing site) (Hiremath et al., 2012). The SNPs in the coding regions can be divided into synonyms, when 

there is no change in the protein, and non-synonyms, when the protein is changed (Zhao et al., 2019). 

The SNPs that occur in the coding region and regulatory sequence, respectively, can have a considerable 

impact on protein function and gene expression (Zhao et al., 2019). This change in a nucleotide base can result in a 

change in the codon encoding an amino acid, thus altering protein synthesis. Or even this SNP when present in 

promoter regions of a gene or 3' non-Transcribed region (3'UTR) can change the level of expression and affect post-

transcriptional regulations, respectively (Albert & Kruglyak, 2015; Buckingham & Relaix, 2015; Cesar et al., 2015; 

Gaffney, 2013; Siriluck Ponsuksili et al., 2015). Thus, these SNPs may be causing phenotypic differences in different 

individuals of a population, that is, be associated with characteristics of zootechnical interest, and animal and human 

health (pork consumer). Because the SNPs are numerous and wide-ranging in the genome, they are considered ideal 

for characterizing the genetic architecture and identifying functional genes for traits of economic interest. (Zhao et 

al., 2019). 

Pig genotyping chips vary in the amount of genetic markers, as well as in cost (Badke, Bates, Ernst, Fix, & 

Steibel, 2014; Boison et al., 2015; Deng et al., 2022; Ferenčaković, Sölkner, & Curik, 2013; Guelfi et al., 2020). The 

simplest chips have between 40 and 120 thousand genetic markers, while the broader ones have between 500 and 

800 thousand markers (Badke et al., 2014; Boison et al., 2015; Deng et al., 2022). In addition, some chips also offer a 

set of additional features, such as variable association analysis, SNP detection of interest and haplotype association 

analysis (Amaral, Megens, Crooijmans, Heuven, & Groenen, 2008). Some chips also offer features to improve 

genotyping accuracy, such as correction of genotyping errors and detection of genes of interest (Badke et al., 2014). 

Although there is no "best" genotyping chip for pigs, as each chip has its own features and characteristics 

(Badke et al., 2014). The right chip depends on the user's needs and how the results will be used. For example, if the 

user wants to study genetic variability among pigs, a chip with more genetic markers will be more suitable (Badke et 

al., 2014; Boison et al., 2015). On the other hand, if you want to study the associations between a gene of interest and 

an inherited disease, a chip with advanced features for association analysis is the best choice. 

Chips with 50,000 (50k) SNPs are used for pig genotyping because they provide a considerable amount of 

genetic detail about a pig's traits. These chips contain about 50,000 genetic markers, which are used to provide 

information about genetic variability and inheritance trends of specific traits (Ferenčaković et al., 2013). This 
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genotyping has been used to analyze genetic variability and to identify genes associated with productive performance 

and behavior in pigs (Badke et al., 2014; Boison et al., 2015; Deng et al., 2022; Dixon et al., 2007; Kim & Misra, 

2007). In addition, it can also be used for predicting response to selection and disease prevention (MERKS; 

MATHUR; KNOL, 2011). 

In general, 50k genotyping in pigs can be used successfully for the identification of genetic variants 

associated with production and meat quality traits (Merks et al., 2011). In addition, it can also be used for selection 

response prediction and disease prevention (Ferenčaković et al., 2013). However, the costs involved in this type of 

analysis can be high and the process can be complex. 

The Genomic Wide Association Study (GWAS) in swine has been widely applied to identify loci and 

genetic variants associated with important zootechnical traits and disease development (Ellen et al., 2019; Visscher et 

al., 2017). GWAS studies in pigs have allowed the discovery of loci related to meat production, disease resistance, 

immune response, meat quality, body size, reproductive traits and other traits (Visscher et al., 2017). It has also been 

possible to use the results of GWAS studies to select pigs with desirable traits, to predict disease susceptibility and to 

improve disease resistance (Ellen et al., 2019; Visscher et al., 2017; Võsa et al., 2018). 

Linkage disequilibrium (LD) is a phenomenon that occurs when there are many alleles linked to the same 

genetic locus in a population (Amaral et al., 2008; Arcos-Burgos & Muenke, 2002; Slatkin, 1994; Weir, 1979). This 

inequality in the distribution of alleles can lead to an association between loci that are closer genetically than expected 

by chance (Amaral et al., 2008; Pérez O’Brien et al., 2014; Slatkin, 1994; Weir, 1979). For example, if two highly 

correlated alleles are present together in a population, this can lead to an LD. Therefore, LD can have significant 

effects on genetic variability and consequently on trait inheritance (Pérez O’Brien et al., 2014; Weir, 1979).  

The identification of eQTL (Expression Quantitative Tracer Locus) is a process to discover the genetic 

locus or loci of a gene that are associated with gene expression (Cesar et al., 2018; Gibson, Powell, & Marigorta, 

2015; Gilad, Rifkin, & Pritchard, 2008). This approach can be used to discover the loci that are involved in the 

expression of a gene in a population (Cesar et al., 2018) which in turn are related to traits of interest. Thus, this 

information can be used to improve animal selection for economic traits such as production and meat quality (Gilad 

et al., 2008). 

Ribonucleic Nucleotide Acid (RNA-seq) sequencing using next-generation sequencing technologies 

(NGS) allows quantifying levels of (mRNA) in an organism to estimate gene expression profiles at a given time 

(Carrillo et al., 2016; Dobin et al., 2013; Grabherr et al., 2011). RNA-seq allows the measurement of gene expression 

on a large scale, which is of great importance for advancing our knowledge about the functional genomics of fatty 

acid metabolism and related features (Grabherr et al., 2011; S. Ponsuksili et al., 2010; Siriluck Ponsuksili et al., 2015). 

Among sequencing technologies, RNA-seq has become one of the most representative high-throughput 

technologies due to its high accuracy and cost-effectiveness. There are several advantages to using RNA sequence 

data for polymorphism analysis. In addition to being able to find thousands of candidate SNPs, it is possible to 

detect the effects of polymorphisms on the expression levels of functional genes, at a reasonable cost (Zhao et al., 

2019). It is also possible to locate the variation of the coding region related to the phenotypic characteristics of the 

animals, serving as an increment to predict the phenotype through the genotype (YU et al., 2014). In addition, it is 

useful for research such as gene characterization, quantification of gene expression and analysis of the post-

Translation process (Quinn et al., 2013). 

The development of the new generation, mainly increasing the read length, improved the quality of the 

original sequencing data, reducing sequencing and assembly errors (You et al., 2012). Thus, greater read length can 
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produce higher quality raw data and affect further analysis (Chaisson, Brinza, & Pevzner, 2009; Chhangawala, Rudy, 

Mason, & Rosenfeld, 2015). 

Choosing the appropriate assembler is also crucial for SNP detection (Zhao et al., 2019). The SNP result 

is affected by the SNP calling program applied, each of the different tools (GeMS, SAMtools and GATK) to call 

SNPs individually from the sequencing data, resulting in a unique SNP accuracy rate in the search (You et al., 2012). 

There are several NGS (Next Generation Sequencing) platforms, such as Illumina Genome Analyzer, 

Roche/454 FLX and ABI SOLiD, which differ in technical specifications, resulting in differences in sensitivity, 

precision, repeatability and throughput (Harismendy et al., 2009), which means that sequencing data obtained from 

different platforms has different limitations. 

When evaluating third-generation SNP and RNA-seq sequencing, it is important to evaluate the 

performance of data analysis algorithms. Analysis algorithms must be able to detect variants with high precision and 

specificity, and must be able to provide a high degree of confidence in the results (Harismendy et al., 2009). 

Furthermore, it is important to consider the cost of processing the data, as well as, the time required to complete the 

process (Grabherr et al., 2011). Analysis algorithms must also be able to handle large volumes of data efficiently 

(Dobin et al., 2013; Harismendy et al., 2009). Finally, it is important to assess the quality of the data obtained, as well 

as the accuracy and consistency of the performed analyzes. 

Among the control mechanisms of gene expression are (Bruce Alberts et al., 2017): alterations in the level 

of transcription of genes, there is, SNPs can alter the level of transcription of a gene, increasing or decreasing the 

amount of mRNA produced from a gene. This happens when SNPs are located in regions that regulate tanscription, 

such as promoters or regulatory elements. Alteration of gene regulation by environmental factors: SNPs can also 

affect how a gene is regulated by environmental factors. For example, they can change the way a gene is affected by 

stressors such as heat, light or food. Changing the way genes are processed: SNPs can change the way a gene is 

processed, such as alternative splicing or changes in the structure of the protein encoded by the gene. Changing the 

structure of the protein encoded by the gene: SNPs can influence how the protein encoded by the gene is formed, 

which can affect its activity and function. Changing linkage between genes: SNPs can affect how genes are linked to 

each other, thus changing how genes are expressed. Changing the stability of mRNAs: SNPs can also affect the 

stability of mRNAs, thus changing the level of expression of genes. Alteration of alternative splicing activity: SNPs 

can alter alternative splicing activity, which is the process by which different versions of a gene are produced from 

the same gene. Alteration of promoter activity: SNPs can alter the activity of promoters, which are regions that 

regulate the level of transcription of a gene. Altering the activity of transcriptional regulators: SNPs can also alter the 

activity of transcriptional regulators, which are proteins that regulate the level of transcription of a gene. Altering 

epigenetic silencing activity: SNPs can alter epigenetic silencing activity, which is the process by which certain genes 

are silenced through epigenetic modifications. 

The Matrix eQTL package is simpler to use than these algorithms, as it does not require advanced 

technical knowledge to configure or implement the algorithm (Shabalin, 2012). It has a linear and anova model 

option, and the linear regression algorithm examines the eQTL data to find variations in gene expression that are 

significantly associated with a given genotype and corrects the p-values for multiple tests by the FDR method 

(Shabalin, 2012). Furthermore, it is an open-source tool, allowing anyone to use it for free. However, it may have 

disadvantages compared to other algorithms, such as its low accuracy compared to other eQTL identification 

algorithms, such as FastQTL (Nodzak, 2020). It cannot be used to perform more advanced analysis, such as 

interaction analysis. And it is also limited regarding the number of data that can be analyzed at the same time. 
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Despite its limitations, due to the amount of data, the Matrix eQTL is widely recommended due to the optimization 

of its algorithm according to the computational input (Ardlie et al., 2015; Nodzak, 2020; Shabalin, 2012). 

In addition to the Matrix eQTL package there are other eQTL identification algorithms such as Merlin 

1.1.2, GridQTL 3.3.0, QTLMap 0.9.7, Pseudomarker 2.04, snpMatrix 2.4, eMap 1.2, R/QTL, MapQTL 6, Second-

Generation PLINK: PLINK 1.9 Beta and FastQTL 2.184 (Nodzak, 2020). These algorithms use different 

approaches to identify genes associated with gene expression traits. Since some programs have more complex 

models and demand greater computational input, others, such as Matrix-eQTL, have an optimized algorithm for 

large-scale data calculations (Nodzak, 2020). 

The annotation and functional enrichment of genes and variants is an important technique for the identify 

new genes, variants and biological processes that affect the health and well-being of pigs  (Subramanian et al., 2005). 

This technique involves the annotation of genome data, such as the identification of new genes and variants, the 

mapping of gene locations and the identification of functional patterns for DNA/RNA sequences, which allows the 

understanding of the biological implications of genes (Subramanian et al., 2005). Functional enrichment also allows 

the identification of functional variants, which may be related to genetic diseases, which favors the characterization 

of risk factors, as well as, the identification of new approaches for treatment (Subramanian et al., 2005). 

Gene Ontology (GO) is a gene classification system that describes the biological function of genes and 

gene products. GO uses a hierarchical ontology to classify genes according to their function, process and cellular 

location (Ashburner et al., 2000; Subramanian et al., 2005). The ontology is a hierarchical structure of terms that 

describe relationships between various levels of abstraction. For example, "Metabolism" is a higher-level term that 

contains more specific terms such as "Citric Acid Cycle" and "Glycolysis" (Ashburner et al., 2000). 

Metabolic pathways are specific sequences of chemical reactions that transform a set of substrates (or 

reagents) into a set of products (Kanehisa & Goto, 2000). Metabolic pathways are essential for maintaining 

homeostasis and metabolism in complex organisms, as they allow substrates to be converted into products necessary 

for survival (Kanehisa & Goto, 2000). Some of the main metabolic pathways include glycolysis, the citric acid cycle, 

oxidative phosphorylation, gluconeogenesis and amino acid biosynthesis (Kanehisa & Goto, 2000). 

The use of eQTL to detect GO terms and metabolic pathways is an approach used to identify the 

functioning mechanism of complex traits (Conesa et al., 2016). This one method is based on analyzing gene 

expression data to identify genetic loci that are associated with specific phenotypic variations. This approach is 

extremely useful to identify candidate biological mechanisms and to better understand how genes may be involved in 

the genesis of complex diseases (Aguet et al., 2020; Conesa et al., 2016). 
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2. IDENTIFICATION OF DELETERIOUS SINGLE NUCLEOTIDE POLYMORPHISMS 
IN DIFFERENT TISSUES OF PIGS ASSOCIATED WITH BLOOD BIOCHEMICAL 
PARAMETERS 

 

2.1. Introduction 

The pig is a monogastric species, being responsible for the production of one of the most consumed 

meats worldwide (MENDONÇA, 2017; USDA, 2023), representing about 33% of the meat consumed in the world, 

and being an important source of animal protein (OECD, 2023; WHITTON et al., 2021). According to FAO data 

(2023), world production of pork was approximately 120 million tons in 2020. The, Sus scrofa species is of great 

relevance not only in meat production, but for human health, as it is used as an animal model for scientific studies in 

humans (PAN et al., 2021). 

For studies of genetic variation, the single nucleotide polymorphism (SNP) stands out among all types of 

DNA polymorphisms. The SNP can be found throughout the genome, mainly in intronic regions, i.e., non-coding 

regions, but also located in the exons, i.e., coding regions. (ZHAO et al., 2019). The SNP is a variation of bases in 

DNA, such as transitions and transversions. Transitions occur between the exchange of purine bases (A/G) or 

between pyrimidine bases (C/T). Transversions occur when there is substitution between purine bases for 

pyrimidines, or vice-versa (A/T, G/C, T/A and C/G) (TURCHETTO-ZOLET et al., 2017). In the coding regions, 

the SNP can cause alterations in the protein structure and, therefore, in its function, being able to trigger diseases, 

but also, being able to be used as a molecular marker in genetics (HELYAR et al., 2011). 

The Genome Analysis Toolkit (GATK) is a widely used tool for analyzing genome and exome sequencing 

data. Nowadays, the GATK has been used to identify SNPs in germline DNA and RNA from New Generation 

Sequencing (NGS) data for discover new variants and genotyping (LIU; SHEN; BAO, 2022). These variants can be 

SNP, small insertions/deletions (InDels) or larger structure variants such as copy number variations (CNV) 

(MIELCZAREK; SZYDA, 2016). 

Advances in sequencing and computational methods have enabled faster and more accurate identification 

of genetic variants in human populations. (MONSU; COMIN, 2021). DNA sequencing (DNA-Seq) is the gold 

standard for SNP detection; however, RNA sequencing (RNA-Seq) has several advantages such as RNA editing 

analysis resulting in nucleotide changes observed at the transcriptome level, and provides several and numerous sets 

of SNPs.  

NGS is very sensitive to errors and relies on bioinformatics tools such as the alignment of small reads to 

the reference genome and therefore SNP detection. This is why reliance on alignment accuracy is important, as 

incorrectly aligned readings can lead to errors in the SNP call. Alignment is more difficult in regions with high levels 

of diversity between the reference genome and the sequencing genome, however diversity can be improved with 

paired reads (HELYAR et al., 2011; NIELSEN et al., 2011). 

Using the RNA-seq technique, it is possible to detect new variants related to the tissue-specific 

Transcriptome. it is also possible to identify SNPs that may be related to different characteristics of zootechnical 

interest, such as blood parameters, which, in turn, is a technique considered to be less invasive and that can provide 

information on polymorphisms associated with health parameters. 
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Thus, the objective of the present study was to identify single nucleotide polymorphisms (SNP) in the 

Transcriptome of muscle, brain and liver of Large White pigs (Sus scrofa) and, later, to verify the association of 

deleterious SNPs of the three tissues with the blood parameters of the blood, Glucose (mg/dL), Aspartate amino 

Transferase (U/L), Total proteins (g/dL), Albumin (g/dL), Globulin (g/dL), Triglycerides (mg/dL), Cholesterol 

(mg/dL), HDL (mg/dL), LDL (mg/dL) and VLDL (mg/dL). 

 

2.2. Conclusion 

In this study with large white pigs (Sus scrofa), using the RNA-seq technique, it was possible to identify 

variants with different types of sequence, among which are the 3'UTR region, Missense, Downstream gene and 

Upstream gene, between others. In addition, several classified variants have been identified in brain tissue, liver 

tissue, and skeletal muscle. 

Deleterious variants were also identified in all tissues, of which two were associated with biochemical 

parameter triglyceride of the blood of the of 71 Large White pigs. One of the variants is related to the biological 

process of morphogenesis, and the cellular component of the extracellular matrix. While the other is related to von 

Willebrand factor, an essential glycoprotein for hemostasis. The results obtained reaffirm that the RNA-seq 

technique is an important tool in the detection of new variants and that the data generated from it can be used to 

improve the understanding of the genetic architecture of organisms, in addition to providing data for future research. 
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3. EFFECT OF DIFFERENT SET OF SNPS ON EQTL IDENTIFICATION ASSOCIATED 
WITH ECONOMIC TRAITS IN PIG PRODUCTION 

3.1. Background 

Pigs play an important role in the animal protein production scenario, with their meat being one of the 

most consumed worldwide (USDA, 2023). Thus, studies determining the impacts of genome variants on gene 

expression and phenotypes, related to production traits, such as feed efficiency, carcass yield, live weight, and 

composition are of great importance (Delpuech et al., 2021) to improve production efficiency in a sustainable way. 

Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNP) information 

and traits of economic interest focused on productive efficiency and meat quality have been extensively explored in 

recent years (Ellen et al., 2019; Ramayo-Caldas et al., 2019; Visscher et al., 2017; Võsa et al., 2018). Such studies allow 

the understanding of the genetic architecture involved with interest phenotypes. However, studies involving SNP 

within Transcriptome sequencing regions are recent and little explored. 

The GWAS allow identifying genetic loci associated with performance and efficiency traits in the 

Longissimus dorsi muscle of pigs, such as carcass yield, live weight and composition, all traits related to meat quality 

(Kominakis et al., 2017; X. Liu et al., 2021a). Analyzing GWAS results, it is possible to determine which genes are 

implicated in a certain trait, as well as, the genetic variation that may contribute to the trait (X. Liu et al., 2021b). This 

information can then be used to identify candidate functional molecular markers for selecting animals with superior 

performance and meat quality (Visscher et al., 2017).  

Among the SNPs from different regions, those present in coding regions are highly likely to change the 

level of global gene expression in the most diverse tissues present in the living organism. For example, a missense 

variant could result in the alteration of a codon that encodes a certain amino acid and, consequently, can lead to 

changes in protein synthesis and, consequently, in the functionality of these proteins in various tissues and 

physiological conditions of the organism (Moqa, Younas and Bashir, 2022; Zhao et al., 2019). Alternatively, when a 

SNP is present in promoter regions of a gene or 3' untranslated region (3'UTR), it can alter the level of expression 

and affect post-transcriptional regulations (Moqa, Younas, & Bashir, 2022). Thus, these mutations may be 

responsible for phenotypic differences among individuals in a population. In other words, SNPs may be associated 

with economically important traits such as animal performance and meat quality (Boison et al., 2015).  

SNP mutations can be close (linked) and have a similar effect, that is, they can be in linkage disequilibrium 

(LD) with each other, that is, these variants can be inherited together and have the same effect on a phenotype, and 

can be represented then by only one of the variants (Arcos-Burgos & Muenke, 2002; Slatkin, 1994; Weir, 1979). In 

this case, it is common to use SNP pruning with the same effect or SNP tags in association analysis, where only one 

of the linked SNPs is kept (Arcos-Burgos & Muenke, 2002; Moqa et al., 2022; Slatkin, 1994; Wang et al., 2021; 

Zhang et al., 2022; al., 2022). In addition, according to Nyholt (2004), not performing pruning for the LD can lead to 

an overcorrection in inflated false positives, which can result in a decrease in the analysis power. However, there are 

few studies that address the identification of quantitative trait expression (eQTL) loci in pigs from SNPs data with 

LD pruning (Polizel et al., 2022a). 

Skeletal muscle is associated with carcass traits, meat quality and is an important final product in pig 

production. However, studies involving data generated by sequencing skeletal muscle usually use only SNPs obtained 

from sequencing the skeletal muscle itself. Thus, it is necessary to understand the possible impacts of the 
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combination of variants derived from the sequencing of skeletal muscle, brain and liver tissues combined with the 

SNPs of medium density genotyping, on the level of gene expression in the skeletal muscle tissue of swine, which 

could help to elucidate possible comparative advantages and/or disadvantages of the combination or not of the 

SNPs in view of the results obtained. Then providing comparative information on the use of the combination of 

SNPs in the identification of cis and trans-eQTLs on the functional perspective of the analyzes of GO enrichment, 

metabolic pathways and enrichment of QTLs carried out later. 

Therefore, we hypothesize that different sets of SNP data (scenarios) may affect the identification of 

eQTL associated with economic traits in pig production, which affects the expression level of genes associated with 

biological processes that could be related with the phenotypic variation. Based on it, our main objective was testing 

different sets of SNPs to identify eQTL associated with economic traits in pig production and biological processes 

related with these traits from a list of genes affected by identified eQTL. In this study, the evaluated phenotypes were 

slaughter weight in kg (SW), cold carcass yield in percentage (CCY), loin eye area in cm² measured by ultrasound 

(LEA), backfat thickness in cm² measured by ultrasound (BFT), muscle fat content in percentage (MFC). 

 

3.2. Conclusions 

We conclude that the different combinations of SNPs from the sequencing of muscle, brain, and liver 

tissues and from medium-density genotyping (50k) in large white pigs, resulted in different patterns of identification 

of eQTLs for the study of gene expression levels in skeletal muscle, which resulted in different functional 

enrichments for them. Furthermore, the combination of only the 50k genotyping data did not favor the identification 

of eQTLs different from those identified in the scenario where there were only SNPs from skeletal muscle 

sequencing. 

It was also possible to observe that pruning for linkage disequilibrium removed the collinearity effects of 

the SNPs, which resulted in an improvement in the detection power of the analyzes in addition to reducing an 

overcorrection effect for multiple FDR tests. However, a larger number of samples is recommended to perform 

GWAS analyzes with the characteristics of slaughter weight, cold carcass yield in percentage, loin eye area measured 

by ultrasound, backfat thickness measured by ultrasound and muscle fat content in percentage. 

This work can contribute to a better understanding of the genetic architecture of pigs, showing the 

impacts of using combinations of SNPs, the effect of pruning for LD, in addition to, indicating the genetic contexts 

in which the eQTLs are inserted through functional analysis. 
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4. IDENTIFICATION OF EQTLS IN PIG LIVER 

4.1. Introduction 

Studying the transcriptome is of fundamental importance for a better understanding of the mechanisms 

of gene modulation. These studies, linked to functional enrichments, can reveal the genomic context in which the 

gene variants are inserted, gene modulation mechanisms and, consequently, their relationship with traits of interest 

for production, health, meat quality, and the level of gene expression. 

SNPs are the main types of DNA polymorphisms used for studies of genetic variation. They are present 

throughout the genome, mainly in the intronic region, that is, non-coding regions (Hiremath et al., 2012). It also 

appears in gene coding sequences (exon) or in non-genetic coding regions (exon-intron splicing site) (Hiremath et al., 

2012). SNPs in the coding regions can be divided into two types, synonymous SNPs, when there is no protein 

change, and non-synonymous SNPs, when the protein is changed (Zhao et al., 2019). 

According to Zhao et al., (2019), the SNPs occuring in coding regions and regulatory sequences, 

respectively, can have a considerable impact on protein function and gene expression. This change in a nucleotide 

base can result in a change in the codon encoding an amino acid, thus altering protein synthesis. Or even this SNP 

when present in promoter regions of a gene or 3' non-transcribed region (3'UTR) can change the expression level 

and affect post-transcriptional regulations, respectively, as pointed out in several studies (Albert & Kruglyak, 2015; 

Buckingham & Relaix, 2015; Cesar et al., 2015; Siriluck Ponsuksili, Zebunke, et al., 2015). Thus, these SNPs may be 

causing phenotypic differences in different individuals of a population, that is, be associated with characteristics of 

zootechnical interest and animal and human health (pork consumer). According to Helyar et al., (2011) and Zhao et 

al., (2019), because SNPs have a high occurrence and extensive genome distribution, in genetic research, they are 

considered ideal for the characterization of genetic structure and identification of functional genes associated with 

traits of economic relevance. 

In this context, ribonucleic acid nucleotide sequencing (RNA-seq) using next-generation sequencing 

technologies (NGS) allows quantifying levels of mRNA in an organism, and to estimate gene expression profiles at a 

given time (Carrillo et al., 2016; Dobin et al., 2013; Grabherr et al., 2011). The RNA-seq technique allows the 

measurement of gene expression on a large scale, which is of great importance for the advancement of our 

knowledge on functional genomics (Grabherr et al., 2011; S. Ponsuksili et al., 2010; Siriluck Ponsuksili, Siengdee, et 

al., 2015), as in addition to gene expression levels, it is possible to identify SNPs belonging to the transcribed genes, 

which gives them the characteristics of putative functional candidate variants (Zhao et al., 2019). 

According to Harismendy et al. (2009), there are several NGS (Next Generation Sequencing) platforms, 

such as Illumina Genome Analyzer, Roche/454 FLX and ABI SOLiD, which have different technical specifications 

such as sensitivity, precision, repeatability and throughput, which means that the sequencing data obtained of such 

platforms will have specific limitations linked to the technique used. 

Among the techniques for analyzing gene expression, the identification of eQTL (Expression 

Quantitative Tracer Locus) is widely used (Bahcall, 2015; Cesar et al., 2018; Criado-Mesas et al., 2020; Drag et al., 

2019; Gibson, Powell, & Marigorta, 2015; Gilad, Rifkin, & Pritchard, 2008; Nodzak, 2020; Powder, 2020). According 

to Cesar et al., (2018), this approach can be used to discover the loci involved in the expression of a gene in a 

population which, in turn, are related to traits of interest. In pigs, eQTL analyzes have been shown to be useful in 

identifying genetic variants associated with different meat quality traits such as tenderness, flavor and nutritional 
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value. As described by Schomberg et al., (2016) and White et al., (2018), pigs can also be used as a model for studying 

diseases in humans due to the compatibility of genetic and biological mechanisms. 

Segundo Subramanian et al., (2005), anotação e enriquecimento funcional de suínos é uma técnica 

importante para a avaliação de novos genes, variantes e processos biológicos que resultam na saúde e no bem-estar 

dos suínos. Esta técnica envolve a anotação de dados do genoma, como a identificação de novos genes e variantes, o 

mapeamento de localizações gênicas e a identificação de padrões funcionais para sequências de DNA/RNA, o que 

permite entender as instruções biológicas das variantes gênicas (Ashburner et al., 2000; Carbon et al., 2021). 

Among the types of functional enrichment, Gene Ontology (GO) is a gene classification system that 

describes the biological function of genes and gene products. GO uses a hierarchical ontology to classify genes 

according to their function, process and cellular location called GO domains (Ashburner et al., 2000; Carbon et al., 

2021; Subramanian et al., 2005). The ontology is a hierarchical structure of terms that describe relationships between 

various levels of abstraction. For example, "Metabolism" is a higher-level term that contains more specific terms 

such as "Citric Acid Cycle" and "Glycolysis" (Ashburner et al., 2000). According to Bettembourg, Diot, & Dameron, 

(2015), From the enriched GO terms of a set of target genes, it is also possible to identify metabolic pathways, which 

are essential for the maintenance of homeostasis and metabolism in complex organisms, as they allow substrates to 

be converted into products necessary for survival (Kanehisa & Goto, 2000). 

The use of eQTL to detect GO terms and metabolic pathways is an approach used to identify the 

functioning mechanism of complex traits (Conesa et al., 2016). This approach is extremely useful to identify 

candidate biological mechanisms and to better understand how genes can be involved with complex diseases (Aguet 

et al., 2020; Conesa et al., 2016). In this context, the identification of eQTL (Expression Quantitative Trait Loci) 

from liver sequencing is of great importance to understand how genetic variation can affect gene expression and the 

regulation of metabolic processes. The analysis of eQTLs allows the identification of genetic polymorphisms that can 

affect gene expression and, consequently, alter the metabolic response of an individual. In addition, the analysis of 

eQTLs in pig liver can also be used as a model to identify genes associated with diseases, such as some liver diseases. 

There are still a few gaps in knowledge regarding the genetic architecture of the expression modulating 

controls, and also, there are few studies reported using the liver transcriptome of large white pigs (Sus scrofa), with 

data obtained from the liver transcriptome of pigs using the technique of RNA-seq. In this context, the study of 

eQTLs is of fundamental importance to understand the impact of single-type variants that affect gene expression 

and, consequently, production traits, meat quality and health of pigs. The need for studies of the complete 

transcriptome in pig liver is evident to fill in gaps in knowledge regarding the regulatory control mechanisms of gene 

expression levels, and in the functional context. Thus, the objective of this work was to analyze data from the 

porcine liver transcriptome obtained by RNA-seq to identify cis and trans-eQTLs, in order to elucidate the 

functional context through the study of metabolic pathways, GO terms, and QTLs. 

4.2. Conclusion 

Cis and trans-eQTLs were identified from the liver tissue of 71 pigs generating a relatively large amount 

of cis-eQTLs (8,025) compared to the amount of trans-eQTL (132). With these data, QTL enrichment analyzes were 

performed for the genomic coordinates of cis and trans-eQTLs, allowing a contextualization of the relationship with 

several characteristics, based on previous studies, which were enriched for types of QTLs such as production, health, 

reproduction, "meat and carcass quality" in addition to exterior. Furthermore, from the enrichment for the go terms, 
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and metabolic pathways, we identified significant GO terms (FDR < 0.05) only for cis-eQTL, belonging to the 

domains of biological processes and molecular function. The same happened with metabolic pathways. 

Thus, our studies bring important information about genetic architecture related to the transcriptome of 

pigs, in which it was possible to observe an overlap of our findings with several QTL associated with traits of 

zootechnical interest. As well as, we observed functional enrichments for GO domains and metabolic pathways The 

data generated in this study can serve as a basis for several studies in future works. However, due to the large volume 

of data, it was not possible to exhaust all discoveries. 
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