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only in contradiction to what we know of it.”
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We should learn everything and then choose which path to follow.”
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RESUMO

Construção de mapas genéticos altamente saturados com OneMap 3.0: novas abordagens usando
workflows

OneMap é um pacote do R desenvolvido por membros do Laboratório de Genética Estatística
da ESALQ/USP (Brasil) lançado em 2008. Ele ganhou atenção da comunidade científica por ser um dos
primeiros programas capazes de construir mapas genéticos integrados para populações F1 segregantes. Ele
é hoje muito usado mundialmente. Entretanto, ele requer aprimoramentos para lidar com novos e abun-
dantes marcadores provindos de técnicas de genotipagem baseada em sequenciamento. Neste trabalho,
foi feito um aprimoramento significativo no OneMap para a versão 3.0, o qual inclui: maior velocidade
na estimativa das distâncias genéticas; novos métodos de agrupamento e ordenamento dos marcadores;
novas ferramentas gráficas para diagnóstico da qualidade dos mapas; novos recursos para realização de
simulações; recursos para conversão de arquivos VCF com marcadores bialélicos e multialélicos para os
arquivos de entrada do OneMap; possibilidade de incluir probabilidade de erro ou de genótipos para
estimar as distâncias genéticas. Uma vez que o OneMap foi atualizado, também foram explorados passos
anteriores à construção do mapa, os quais têm impacto na qualidade do mapa resultante. Para isso, foram
desenvolvidos os workflows Reads2Map que realizam análises desde leituras de sequenciamento de dados
empíricos ou simulados até mapas genéticos. Por ser escrito em Workflow Description Language (WDL),
os workflows Reads2Map disponibilizam aos usuários códigos localizáveis, acessíveis, interoperáveis e
reutilizáveis para a construção de mapas genéticos. Os workflows desenvolvidos são capazes de comparar
o desempenho dos programas na construção de mapas genéticos: freebayes, GATK como identificadores
de SNPs e genotipadores; updog, polyRAD e SuperMASSA como genotipadores; OneMap 3.0 e GUSMap
para construção de mapas. Além disso, foi desenvolvido o aplicativo shiny Reads2MapApp para avaliação
gráfica dos resultados dos workflows. No caso particular do conjunto de dados de Populus tremula, o
freebayes foi selecionado como identificador de SNPs e genótipos, e uma probabilidade de erro global de
5%, resultando em um mapa com 6936 marcadores e 3299.96 cM. Em seguida, também utilizando os
workflows, foi testado o impacto de duas das maiores melhorias do OneMap 3.0: o uso de probabilidades
genotípicas para estimativa das distâncias genéticas; e o uso de marcadores multialélicos baseados em
haplótipos provindos de identificadores de SNPs. Usando sequências de leituras simuladas foi possível
medir a eficiência de cada identificador de SNP e genótipo e suas influências na construção do mapa. O
impacto das probabilidades dos genótipos foi variável entre os programas de acordo com o cenário simu-
lado. Os resultados mostraram que o OneMap 3.0 é capaz de construir mapas genéticos de alta qualidade
se i) os genotipadores não cometerem muitos erros e a probabilidade de erro for de 5% para todos os
genótipos ou ii) se o genotipador cometer mais erros de genotipagem e atribuir probabilidades menores
para os genótipos errados. Além disso, o uso the marcadores multialélicos baseados em haplótipos revelou
um aumento na qualidade de ordenamento e estimativa de distância genética. Uma vez que os processos
anteriores à construção dos mapas têm grande impacto na sua qualidade, o uso combinado do OneMap
3.0, Reads2Map e Reads2MapApp, disponibiliza para os usuários ferramentas para construção de ma-
pas genéticos desde leituras de sequenciamento, e também gráficos diagnóstico para auxílio na escolha da
melhor combinação de programas e parâmetros.

Palavras-chave: Mapa de ligação, Haplótipo, Reprodutibilidade, Erro de genotipagem
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ABSTRACT

Building highly saturated genetic maps with OneMap 3.0: new approaches using workflows

OneMap is an R package developed by members of Statistical Genetics Laboratory at ESALQ/USP
(Brazil) released in 2008. It gained the attention of the scientific community for being one of the first
software for building integrated genetics maps for outcrossing species. It is now highly used worldwide.
However, it requires updates to deal with the new and abundant markers generated by high-throughput
genotyping techniques. In this work, we made a major update of OneMap to version 3.0, which includes:
higher speed of the genetic distance estimation; new methods for group and ordering markers; new qual-
ity diagnostic graphics tools; new features for making simulations; features to the conversion of VCF file
with biallelic and multiallelic to OneMap input file; possibility of include error or genotype probability
to estimate the genetic distances. Once OneMap was updated, we explored the steps upstream of the
map building process, which has an impact on the resulted map quality. For that, we developed the
Reads2Map workflows that perform the analysis, starting with empirical or simulated sequencing reads
until the final linkage maps. Because the presented workflows are written with Workflow Description
Language (WDL), they provide to users a findable, accessible, interoperable, and reusable code to build
maps. The workflows compare the performance of software in the linkage map building: freebayes, GATK
as SNP and genotype callers; updog, polyRAD, SuperMASSA as genotype caller; OneMap 3.0 and GUSMap
as linkage map builders. We also developed the shiny Reads2MapApp app to evaluate graphically the work-
flow’s results. In the particular case of an example dataset from Populus tremula, we select the freebayes
as SNP and genotype caller, and a global error probability of 5%, resulting in a map with 6936 markers
and 3299.961 cM. After also using the workflows, we tested the impact of two of the major OneMap 3.0
updates in the linkage maps: the usage of genotype probabilities to estimate the genetic distances and the
haplotype-based multiallelic markers from assembly-based SNP caller. Using simulated sequence reads
data we could measure each SNP and genotype caller efficiency and its influences in the resulted map.
The impact of the genotype probabilities was variable between software according to each simulated sce-
nario. The results showed that OneMap 3.0 can build high-quality genetic maps if i) the genotype callers
do not estimate wrongly many genotypes and a global error rate of 5% is applied for all genotypes or ii)
if the genotype caller estimate more genotypes wrongly it also gives lower genotype probabilities for the
wrong genotypes. Furthermore, the usage of haplotype-based markers reveals to increase the order and
genetic distance quality. Once the procedures upstream the genetic map building have a strong influence
in its quality, the combined usage of OneMap 3.0, Reads2Map and Reads2MapApp provide to users
tools to build linkage maps since the sequencing reads, and also diagnostic graphics and measures to help
them to choose the best combination of software and parameters.

Keywords: Linkage map, Haplotype, Reproducibility, Genotyping error
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1 INTRODUCTION

The OneMap package (Margarido et al., 2007) was release in CRAN repository in 2008 with
the novelty of building integrated genetic maps for outcrossing species. OneMap can build maps with all
types of markers (Table A.2) of outcrossing or inbred (RIL, F2 intercross, and F2 backcross) mapping
populations. At the time, OneMap was one of the software which opened the opportunity to better
understand the genetic architecture of outcrossing species such as yellow passion fruit, loblolly pine,
sugarcane, rubber tree, oil palm, eucalyptus, and salmon (Oliveira et al., 2008a; Xiong et al., 2016;
Garcia et al., 2006a; Souza et al., 2013; Jeennor and Volkaert, 2014; Bartholomé et al.,
2015c; Gonen et al., 2014).

OneMap is written in R, a free software environment for statistical computing and graphics.
Users need to have a least a little knowledge of the R language to be able to use the package. According
to TIOBE programming community index (the software quality company TIOBE, 2021), R had
low (rate of 0.06%) popularity in 2007. In 2010, its popularity started to increase because more people,
especially in the statistical science field, started to migrate from commercial statistical languages to R
(Figure A.1). The accessibility of OneMap increased together with the R popularity (Figure 1.1).

Figure 1.1. OneMap popularity since its release in 2008. A: Total number of OneMap downloads from CRAN by year
until 2020. Data obtained using cranlogs package (Csárdi, 2019). B: Total number of publications citing OneMap by
year from 2008 to 2020 according to Dimensions (2021) using the words ’onemap’, ’linkage map’ and ’ genetic’ as research
criterias. The orange dashed lines represents OneMap version updates in CRAN

Members of Statistical Genetics Laboratory in ESALQ/USP (Brazil) make constant improve-
ments and maintenance in OneMap algorithms and documentations, which also contribute to its success.
In 2013, we created an GitHub (Chacon and Straub, 2014) repository to store the OneMap develop-
ment version (https://github.com/augusto-garcia/onemap). The platform gives several advantages
to code development, including the track of all changes, teamwork optimization, and allows OneMap to
receives contributions from anyone around the world through pull requests or messages.

The improvements were made following novelties in statistical genetics research and according to
users’ feedbacks. Most of the users’ demands came together with high-throughput genotyping platforms
availability. Most of these demands focused on the conversion of VCF file format (Danecek et al.,
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2011b), the time-consuming analysis using Hidden Markov Model (HMM), the wrong group and ordering
of markers, and the inflated map sizes. In this work, we made updates to attend to each one of these
demands. All the updates compose a major modification in the OneMap version. Therefore, here we will
refer to the OneMap before this work updates as OneMap 2.0 and after this work updates as OneMap 3.0.

The HMM (Baum et al., 1970; Lander and Green, 1987) combined with the expectation-
maximization (EM) (Dempster et al., 1977) algorithm implemented in OneMap is a very robust method
to estimate the phases and genetic distance. It calculates iteratively the likelihoods for each possible phase
for each marker adding them sequentially and also considering the previous information. At the end of
the process, the HMM returns the most likely haplotype for each individual in the population. Thus, the
recombination fraction estimated between markers are based on entire sequence information (multipoint
approach). This is the best model possible to estimate the haplotypes, but demands an exhaustive
method. As the total number of markers in the sequence increases, it also increases the computational
resources and time needed (Wu et al., 2002d; Garcia et al., 2006b; Margarido et al., 2007).

OneMap version 2.0 already received updates focusing in speed up the HMM and EM algorithm.
The code was rewritten with a lower-level programming language, the C++, mainly by the developers M.
Mollinari and G. Margarido. The R package Rcpp (Eddelbuettel and François, 2011; Eddelbuet-
tel, 2013; Eddelbuettel and Balamuta, 2017) allowed an easy integration of C++ with the remaining
R code. Nevertheless, users still demanded more speed.

Another solution was proposed in Schiffthaler et al. (2017), which includes calculating
the linkage map in overlapping batches. The idea is that we do not need to perform the search for the
maximum likelihood for each marker considering all previous markers in the sequence when there are many
markers available. The previous information is indeed necessary to obtain accurate calculations of phase
likelihoods, but the return saturates after few markers are evaluated. Keeping the search will only overload
the model while offering no additional accuracy. In this case, we can limit this search using batches. The
batches still keep part of the information from the previous batches using the previously estimated phases
in overlapping markers. The Schiffthaler et al. (2017) simulations revealed that, once the batch and
overlap size are optimized, the method keeps the same accuracy of haplotype estimation as the original
one. We also made our simulation to confirm that (Attachment B).

The Schiffthaler et al. (2017) method also proposed the parallelization of the analysis in
different computer cores. The batches can not be considered as independent processes to compute in
separated cores, because of their overlapping markers. However, the parallelization can be made through
the four possible phases for outcrossing marker combinations. Thus, the analysis can be divided into a
maximum of four different computer cores. We also examined the possibility of parallelization through
the batches to increase the possible number of cores to be used. We tested the accuracy of the estimated
haplotypes by comparing the estimations in overlap markers among the batches in simulations. Despite
it compromises accuracy for some marker combinations, it can be useful to obtain fast estimations (see
Attachment B).

The Schiffthaler et al. (2017) modification was implemented in BatchMap package, a sepa-
rated fork of OneMap, released in CRAN in March 2017. However, BatchMap did not receive maintenance
and was removed from CRAN in December 2019. There is still the GitHub and Docker Hub versions
available. As mentioned before, GitHub platform offers several advantages to code development, how-
ever does not impose restrictions on unfunctional codes. Docker hub is a repository for container images.
The containers images are lightweight, standalone, executable package of software that includes every-
thing needed to run an application: code, runtime, system tools, system libraries and settings (Merkel,
2014a). Thus, with Docker containers users can reproduce the exact computer environment where de-
velopers made the code functional. However, the Docker hub and the GitHub versions of BatchMap
became outdated once OneMap received new updates. Here, we made the needed updates and merged
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the BatchMap modifications with the most recent version of OneMap.
The ordering step of linkage map building in OneMap also needed improvements to adjust

to high-throughput markers. All ordering algorithms implemented try to solve the ”traveling salesman
problem”. With high-throughput markers, the traveling salesman would have “more cities to visit” and
the problem became more complex. In 2016, Preedy and Hackett (2016) proposed the application of
multidimensional scaling for ordering markers in linkage maps as a rapid and efficient method for a large
number of markers. We also implemented the method in OneMap and made simulations to compare it
with the other ordering algorithms implemented (see Attachment C). It reveals to be an excellent method
for a global ordering of markers, despite keeping local misplacement.

Besides the increase in the number of markers available, the high-throughput sequencing geno-
typing also presented more errors. The users’ demands about the wrong grouping and the inflated map
sizes are consequences of these errors.

The grouping of markers in separated linkage groups is made in OneMap through the two-points
recombination fraction estimations. The logarithm of odds (LOD) score statistics can be applied to test
for linkage. LOD score is calculated by the log of the linkage probability of the observed data divided by
the probability of the loci be unlinked.

Equation 1.1 shows a simple example of the probability density function used to estimate the
described probabilities. This particular function is used for a backcross population.

l(r) = (n1 + n4)log(
1− r

2
) + (n2 + n3)log(

r

2
) (1.1)

In the equation 1.1, n1, n2, n3 and n4 refers to the four possible combination of two genotypes for
backcross population structure (AB|AB, AB|Ab, AB|aB and AB|ab) and r is the two-point recombination
fraction value. Under H0 hipothesis (unlinked loci) the recombination fraction parameter r is 0.5.

OneMap suggests a LOD threshold defined considering all two-points tests that will be per-
formed for all markers in the data set. It uses a global alpha controlling type I error with Bonferroni’s
correction. From this global alpha, the corresponding quantile from the chi-square distribution is taken
and then converted to LOD score.

Genotyping errors can distort the two-points estimations for some markers, which makes tradi-
cional OneMap grouping algorithm returns wrong linkage groups. The result usually presents a total
number of groups different of expected. It is tempting to increase the LOD threshold until the number of
groups reaches the expected for the species. This is a common mistake made by users. However, notice
that, because it refers to a log function, every slight increase or decrease in LOD value turns the analysis
very permissive or rigorous, causing error types I and II, respectively.

A fast, but still not the best solution for group issues was to make use of previous information
from the genome, drafts, or past linkage maps. We made an algorithm that separates sequences according
to the previous information and, after, tries to group the remaining markers using the group algorithm.
The OneMap group algorithm tests the linkage of each marker with markers already in the sequences to
decide if they are together.

With the presence of genotyping errors, every step of map building turns more difficult, because
the genotype frequencies used to estimate two-points recombination fractions are not trustful. The two-
points recombination fraction estimation does not allow to consider an error probability for each genotype,
but the HMM does. Once the groups are defined, the HMM can consider an error probability for each
genotype in its emission function to estimate the genetic distances. In other words, the HMM can consider
the genotypes, not as discrete values such 0 (“aa”), 1(“ab”), and 2 (“bb”), but continuous probabilities
referring to the chance of each possible genotype to be the true genotype. However, the success of the
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approach depends on accurate genotype probabilities estimations in steps upstream OneMap (Taniguti,
2017; Bilton et al., 2018; Mollinari and Garcia, 2019; Mollinari et al., 2020).

Another problem surrounding the high-throughput markers is the low-informativeness of the
SNP markers. Their biallelic nature makes available only markers of types B3.7, D1.10 and D2.15 (see
A.1). Depending on the population, marker types D1.10 and D2.15 are more frequent than B3.7. In this
scenario, it is harder to find information to integrate parents’ meiosis information. As consequence, the
HMM and EM algorithms need to iterate in more phases possibilities until it reaches the best possible
solution, which demands more computer efforts and includes more uncertainties in the analysis.

Some SNP calling software like GATK (Poplin et al., 2017) and freebayes (Garrison and
Marth, 2012) uses an assembly-based haplotyping method to search for the polymorphisms in the data
sequences. As consequence, they provide phased markers in specific regions of the genomes where they
could define a local haplotype. This information can be useful to increase markers informativity in
the map building process. Also, it can reduce the possible phases to be estimated and consequently
reducing the HMM computational efforts. Therefore, to solve the issues about genotyping errors and
low-informativeness, we need to explore the bioinformatics steps upstream of the OneMap analysis.

With our own experience and with users’ feedback we already saw that the genetic map itself
can be an interesting tool to validate the upstream process because errors observed in the maps point to
a dissociation of the data from the genetic concepts. OneMap provides tools to measure the quality of
the built map. The heatmap color graphics of the recombination fraction can highlight outlier markers
breaking the expected recombination pattern. We implemented new graphical tools to draw the estimated
parents and progeny haplotypes and count the number of recombination breakpoints estimated. This new
tool demanded a major modification in F2 intercross algorithms for phase estimation (Attachment C). The
new tool highlights the excessive recombination breakpoints estimated when something wrong happened
in an upstream process, as contaminant individuals or genotyping errors. However, we need more tools for
diagnostics in the entire pipeline (from read sequence to built linkage map) which are the steps affecting
the map quality, or which are the ones that can bring solutions.

Even with diagnostic tools available for this upstream process, the dataset context, the software
and parameters to test are too many and we can not make a single solution or recommendation. Mostly
about the parameters, each software can have dozens of them and changing a single one can produce
different results. Therefore, we developed in Chapter 2 the Reads2Map workflows. They perform the
linkage map building from empirical or simulated sequencing reads datasets. The workflows are written
in Workflow Description Language (WDL) (Voss et al., 2017), which provides an organized, user-
friendly and reproducible structure to all the analysis. With them, users can perform the simultaneous
analysis using freebayes, GATK as SNP and genotype callers; updog, polyRAD, SuperMASSA as genotype
callers; OneMap 3.0 and GUSMap as linkage map builders. The results can be vizualized in the shiny app
Reads2MapApp, which contains graphical tools for diagnostics of the entire procedure to help users the
select the best combination of software and parameters for their particular case.

In Chapter 3, we used the workflows developed in Chapter 2 to measure the impact of two of
the major modifications of OneMap 3.0 in empirical and simulated data. One is the usage of genotype or
error probabilities in the HMM to estimate the genetic distances. We compared the genotype probabilities
profiles of the genotype callers and related them to the quality of the linkage map resulted. The second
is the usage of haplotype-based multiallelic markers from the assembly-based SNP callers. We observed
the capacity of each SNP caller to call these markers and compared the maps including them or not.
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2 READS2MAP: PRACTICAL AND REPRODUCIBLE WORKFLOWS TO BUILD
LINKAGE MAPS FROM SEQUENCING DATA

Abstract

The high-throughput genotyping methods make available millions of read sequences for genetics
research. To build genetic maps from read sequences, researchers need to perform diverse bioinformatics
and statistical analysis. For each step of the analysis there are several tools available, all with differ-
ent methods and parameters to be selected by users. In this context, users struggle to find the best
combination of software and parameters to be used and also to create reproducible pipelines for that.
Workflows systems such as Workflow Description Language (WDL) offers a structure to organize the
entire pipeline, producing a fixed structure and metadata of each step. It also guarantees reproducibility
by making interface with containers environments, such as Docker. Here we present two workflows: Em-
piricalReads2Map and SimulatedReads2Map to build linkage maps with empirical and simulated
sequencing data. SimulatedReads2Map simulates sequencing data using SimusCoP for whole-genome
sequencing (WGS) and exome DNA libraries; and RADinitio for restriction site associated DNA sequenc-
ing RADseq library. In both workflows, the analyses are performed using GATK, freebayes as SNP callers
and genotype callers; updog, polyRAD, SuperMASSA as genotype callers; and OneMap and GUSMap as
linkage map builders. We also present the shiny app Reads2Map to evaluate graphically the results of
workflows. We exemplify their usage running the workflows and selecting the method to re-build a link-
age map of Populus tremula. We obtained a linkage map with 6936 markers and 3299.961 cM selecting
freebayes as SNP and genotype caller and OneMap as map builder.

Key words: Genetic maps; Workflow; Container; Reproducibility.

2.1 Background

The advances in sequencing technologies and the development of different library protocols make
available millions of genetic markers able to genotype hundreds of samples in a single sequencing run.
For building linkage maps, having more markers and larger sample size better is the capacity of locating
where in the genome the recombination events occur (higher genetic map resolution). Also, markers from
sequencing technologies overcome efforts with molecular laboratory methods and can be considered more
affordable (Heather and Chain, 2016). However, it increases significantly the computer analysis efforts
because of the need of using multiple analytic tools and their application to hundreds of experimental
samples.

Once the samples are sequenced, many steps follow before being able to build a map. These
steps can be divided as the preprocessing of reads, with demultiplexing and cleaning; the alignment to a
reference genome; the SNP calling; the genotype calling; the filtering of markers; the grouping; ordering;
phases and genetic distances estimations. For each of these steps, there are multiple software available
and each software has specific parameters for each feature.

Users that are not familiar with bioinformatic pipelines may find difficult to run their analysis
and find the best pipeline for their specific dataset. Performing separately each step can generate several
independent scripts and unconnected intermediate files compromising its FAIR Data Principles (Findable,
Accessible, Interoperable and Reusable - (Wilkinson et al., 2016)).

Metascience studies highlight a big lack of reproducibility in science, sometimes even called as
“reproducibility crises” (Munafò et al., 2017), which have motivated research to adopt new approaches
to overcome this concerning issue. For computational methods the lack of reproducibility can be measured
by trying to run codes from five or ten years ago. The possibility of success is very low. In 2019, the
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Nature journal (Nature, 2019) even promoted the “Ten Years Reproducibility Challenge” launched by
ReScience C journal (Rescience, 2019) to researchers try to do that with their own codes.

During all the map building procedure there are some important parts with decisions that
need to be made carefully according to the study of biological aspects, such as the choosen software and
their specific parameters. However, other parts are only standard procedures as file conversions, software
installation, and computational resources optimization, that can be a lot time-consuming and reduce the
research quality if made in a wrong way (Reiter et al., 2020).

Workflow systems are a good solution to overcome technical issues, allowing users to focus on
the important decision and also reach FAIR practices. It integrates the analysis in a single structure
connecting each step by inputs and outputs. The steps, here called tasks, can also be combined in sub-
workflows to users who want to run only specific parts of the analysis. Intermediate files are stored and
organized with a standardized structure together with metadata and reports of parameters used in each
task. Furthermore, conditional structures can be used to manage exceptions and options. The workflow
organized structure makes it possible to generate flowcharts automatically given a complete overview of
the workflow (Reiter et al., 2020).

Workflow systems also provide built-in tools to monitor and manage resource usage. The
Cromwell Execution Engine can execute workflows on any computing platform (local, High Performance
Computing - HPC or cloud) (Voss et al., 2017). Furthermore, the integration with containers like
Docker (Merkel, 2014b) and singularity (Kurtzer et al., 2017) overcome the need for software instal-
lation and offers specific software versions, making it significantly more reproducible.

Snakemake (Grüning et al., 2018), Nextflow (Di Tommaso et al., 2017), CWL (Amstutz
et al., 2016) and WDL (Voss et al., 2017) can be cited as four of the most widely used bioinformatics
workflows system. The Workflow Description Language (WDL) presents advantages for production-
level pipelines because of its capacity to deal with hundreds or thousands of samples (Reiter et al.,
2020). It is successfully used by Genome Analysis Toolkit (GATK) team (Van der Auwera et al.,
2013) to provide read-to-results Best Practices workflows that can be executed in the Terra platform
(Terra.bio, 2020). With these optimized and tested workflows available, researchers do not need to
learn the workflow system syntax to make use of its benefits.

In this work, we developed workflows to perform the analysis from read sequencing to linkage
maps including some of the most used software for the SNP and genotype calling and map build: freebayes,
GATK (Poplin et al., 2017; McKenna et al., 2010) as SNP and genotype callers; updog (Gerard
et al., 2018), polyRAD (Clark et al., 2019), SuperMASSA (Serang et al., 2012) as genotype
caller; OneMap 3.0 and GUSMap (Bilton et al., 2018) as linkage map builders. The provided WDL
workflow performs sequencing reads simulations based on user empirical library protocol and dataset.
With this cross-platform tool, users can make optimized usage of their time and available computer
resources to focus on the important decisions about the best software, algorithms, and parameters for
their dataset. The simulation studies can validate the analytical methods applied and indicate which
requires adaptations or improvements.

The genetic map itself can also be a powerful tool to validate upstream methods. Wrong
decisions in any one of the upstream steps can be identified in the outputted map, once errors make the
map proprieties dissociate of biological concepts. For example, genotyping errors can generate an inflated
map size showing an excessive number of recombinations during the meiosis. Since the first genetic map
studies by Sturtevant in 1915, it is observed that is unlikely that crossing-overs happen too close to
each other, a phenomenon described as interference (Sturtevant, 1915). Recent studies also described
meiosis molecular mechanisms confirming the low expected number of recombination events during the
meiosis (Smith and Nambiar, 2020). The OneMap package to build linkage maps for inbred (RILs, F2

intercross, and backcross) and outcrossing mapping populations (Margarido et al., 2007) have the
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biological concepts of meiosis as assumptions and provides graphical tools to diagnose the dissociation
between them.

Besides the proposed workflows, we also integrated them with interactive visualizations in a
shiny app to visualize generated maps and intermediary results. The R package shiny (Chang et al.,
2020) allows to build interactive web pages, where the results can be visualized in real-time according to
user-specifiable parameters.

2.2 Conclusions

The HMM approach implemented in software to build linkage maps is robust and able to return
the best estimation possible of genetic distances. However, it is a lot of computer resources and time-
consuming. Also, many different tools can be applied in the upstream processing of genetic map building
with sequencing markers, such as the SNP and genotype calling. Testing every possible scenario to select
the best pipeline for the specific dataset can be very difficult.

The workflows here provided offer a tool to test and select different combinations of software
and parameters to build linkage maps from sequencing reads. The entire procedure is facilitated by the
available configurations, Docker images, and graphical interface. Thus, users can focus on statistical and
genetic aspects evolving the linkage map building instead of technical issues.

We consider the SimulatedReads2Map workflow more useful for developers because it pro-
vides an overview of the entire procedure and facilitates the search for logical errors in codes. The
EmpiricalReas2Map is useful for users who want to select the best combination of software and pa-
rameters to build their genetic maps. To avoid users spend too much time with this pipeline selection,
we suggest running the map_emp sub-workflow with a subset of data (e.g. a single chromosome).
Once selected the pipeline, users can apply it for the entire dataset using genotyping4onemap, OneMap or
GUSMap in R environment.

The shiny app Reads2MapApp guides the users through several quality criteria for each approach
built genetic map. The main criteria to select the approach are the right color pattern in the recombination
fraction heatmaps and the number of recombination breakpoints identified. The heatmaps highlight the
grouping and ordering aspects of the map and the number of recombination breakpoints highlight the
presence/absence of genotyping errors in the dataset.

We can validate all upstream procedures of obtention of molecular markers and their usage to
genotype individuals if they can reproduce known genetic proprieties of linkage maps. The tools developed
in this work provide an easy way to test protocols and software for molecular marker application studies.
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3 THE EFFECT OF CONSIDERING GENOTYPE PROBABILITIES AND
HAPLOTYPE-BASED MULTIALLELIC MARKERS IN BUILDING LINKAGE MAPS
WITH HIGH-THROUGHPUT GENOTYPING

Abstract

Linkage maps are important tools for genetic studies. Nowadays, with high-throughput geno-
typing, there are millions of genetic markers available to build a map. The markers coming from this
technique have different characteristics compared with those commonly used, such as SSRs. The soft-
ware used to estimate the linkage map needed adaptations to deal with this new scenario and overcome
new issues. One of these issues is the genotyping errors generated by different sources such as sequenc-
ing errors, alignment, and PCR errors. Without proper analyses, it causes inflated genetic maps. One
possible solution for that is to consider the genotype probabilities coming from the genotype caller in
the Hidden Markov Model (HMM) used to estimate the genetic distances. However, to the best of our
knowledge, there is not yet available a clear recommendation about which genotype probability would
give the best results. Here we not only implemented this feature in OneMap 3.0 package but also used
the Reads2Map workflows to test the impact of freebayes, GATK, updog, polyRAD and SuperMASSA
genotype probabilities in the map build process, with empirical and simulated RADseq data. Each ap-
proach presented different results depending on the choice of the parameters. The results showed that
OneMap 3.0 can build high-quality maps if i) the genotype caller did not make many mistakes and we use
a global error rate of 5% or ii) if the genotype caller make mistakes but it also provides lower genotype
probabilities for wrong genotypes. In our study, the scenarios that showed to be the most advantageous
in terms of genotype probabilities used in the HMM were the freebayes as SNP caller, read counts from
VCF, and a single error rate of 5% or with genotype probabilities from SuperMASSA and PolyRAD.
They produced a denser map, closer to the expected recombination fraction matrix values and smaller
size. The other issue found in building linkage maps with high-throughput markers is the low informa-
tiveness of the SNPs. Because of their biallelic nature, SNPs bring a lack of information for the ordering
of the markers and the phase estimation in oucrossing species. The solution presented here is the us-
age of haplotype-based markers identified by the assembly-based haplotyping SNP callers freebayes and
GATK. We also tested the differences of using or not these markers with the Reads2Map workflows. We
observed improvements in the genetic distances and ordering in the presence of multiallelic markers, but
also higher map inflation caused by these markers if they contain genotyping errors. The final approach
selected was the freebayes as SNP and genotype caller, a global error probability of 5% and the presence
of haplotype-based multiallelic markers. We re-built the Populus tremula chromosome 10 linkage group
with 107 haplotypes-based multiallelic markers and 440 SNPs totaling 216.99 cM.

Key words: Linkage map; Genotyping error; Haplotype-based marker; RADseq.

3.1 Introduction

Since the first genetic map was built by Sturtevant in 1913, methodologies for building genetic
maps have been improved to deal with different and more complex genomes, like those from outcrossing
and polyploids species, and with different mapping populations. All efforts that have been done are
motivated by the importance of this tool for genetic researches, since genetic maps provide valuable
information.

Linkage maps are commonly applied to quantitative trait loci (QTL) studies. The QTL map-
ping estimates the genetic architecture of traits, which include mapping the molecular polymorphisms
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responsible for variation in complex traits; determining their gene frequencies and their homozygous,
heterozygous, epistatic, and pleiotropic effects in multiple environments (Mackay, 2001b).

Nowadays, with Breeding 4.0, QTL have also a great application for gene editing technologies
(Wallace et al., 2018). QTLs allow the identification of genes responsible for important phenotypes
and candidates to be edited. The gene edition allows breeders to add new alleles from germplasm in
breeding programs without lose the alleles of the well-established lines. As an example, Zsögön et al.
(2018) applied gene editing of six important genes of tomato to give wild lines the yield and productivity
similar to cultivated ones. Previous QTL studies needed to be made to identify these six genes effects
(Ashrafi et al., 2012; Frary et al., 2000).

Furthermore, it has becoming more usual to apply linkage maps to solve genome assembly
issues (Fierst, 2015). For many species, especially non-model organisms with large genome size, it is
still unaffordable to obtain reliable reference genome assemblies. For many species, only draft genomes
are available with thousands of sequenced segments (contigs) and very limited information on how these
can be assembled into chromosome sequences. Linkage maps can give content for ordering, orienting,
positioning and phasing linked sequences (Pengelly and Collins, 2018).

The growing accessibility of sequencing technologies is providing genome information for great
understandings about its structures, and how the genome diverges between individuals. The high-
throughput genotyping technology to obtain markers can provide ultra-dense genetic maps, which are
promising for advances for association studies. However, it also brings challenges for genetic map build-
ing procedures. Markers now are identified on large scale automatically, without the need for handwork,
which provides clear advantages to produce low-cost markers but they also have more genotyping errors.
Especially when high-throughput sequencing technology is applied to reduced representation libraries
(RADseq), which have an excess of duplicated sequenced sequences starting and finishing at the same
point of the genome. In RADseq data, the most of duplicated sequences are products from PCR, which in-
clude errors difficult to be identified by bioinformatics tools (der Auwera et al., 2020; Rivera-Colón
et al., 2020).

The excess of genotyping errors in datasets have been generated inflated genetic maps, with
unrealistic genetic distances (Smith and Nambiar, 2020), once each genotype error is considered an
extra recombination event. Studies have been made to search the sources of errors and correct them in
bioinformatics and statistical methods for SNP and genotype calling procedures (Hackett and Broad-
foot, 2003; Rivera-Colón et al., 2020; Gerard et al., 2018; Clark et al., 2019). The sources
of errors can also be considered in map building algorithms to provide reliable ultra-dense genetic maps
(Bilton et al., 2018; Mollinari and Garcia, 2019).

Another characteristic of high-throughput genotyping is the low-informativeness that comes
with the biallelic codominant nature of SNPs. In populations coming from inbred lines, this characteristic
does not have a significant impact, but, in outcrossing species, this brings as consequence difficulties to
integrate recombination from both parents and to ordering the markers. The low-informativeness of
non-integrated genetic maps brings limitations in further QTL analysis of multiallelic traits (Gazaffi
et al., 2020).

One possible solution to solve low-informativeness is to use assembly-based haplotyping SNP
callers in previous steps of map building, such as PolyBayes (Marth et al., 1999), samtools (Li, 2011),
freebayes (Garrison and Marth, 2012), GATK (Poplin et al., 2017; McKenna et al., 2010) and
Platypus (Rimmer et al., 2014), which combine close located biallelic markers into haplotypes and
output them as phased markers or multiple nucleotide markers (MNP).

The available algorithms in OneMap (Margarido et al., 2007) can build integrated genetic
maps and generate the linkage group haplotypes of each individual in the mapping population. To
estimate linkage phases, OneMap uses a multipoint approach with a Hidden Markov Model (HMM)
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method, but it requires high computational resources, time to process, and it is not efficient if there
are many genotyping errors and not at least a few informative markers. In this work, we adapted
OneMap algorithms to deal with high-throughput markers. Using the Reads2Map workflows (chapter
2), we tested the consequences of considering genotype error probabilities and haplotype-based multiallelic
markers to build linkage maps from sequencing reads. The workflows allowed the comparision using
freebayes, GATK (Poplin et al., 2017; McKenna et al., 2010) as SNP and genotype callers; updog
(Gerard et al., 2018), polyRAD (Clark et al., 2019), SuperMASSA (Serang et al., 2012) as
genotype caller; OneMap 3.0 and GUSMap (Bilton et al., 2018) as linkage map builder.

3.2 Conclusion

OneMap 3.0 offer to users the possibility to read and consider in the genetic map building
the genotype probabilities and haplotype-based multiallelic markers information from the input files
(OneMap format or VCF file). The success of genetic map building will be proportional to the quality
of the information provided by upstream procedures such as library preparation, SNP and genotype
calling, genotype probabilities estimation, and the combination of SNPs into haplotype-based makers.
As the upstream procedures for genotyping and identification of haplotype-based multiallelic markers are
improved, updates can be easily made in Reads2Map workflows, and no modification is required in
OneMap 3.0 algorithms, once only the values in the standard VCF file changes.

Only recently, it was developed a software able to simulate RADseq reads, however it still
presented a higher number of duplicated sequences and probably more genotyping errors than empirical
datasets. Also, it could not reproduce the indels and outlier markers. These differences can limit the
possible relation between empirical and simulated results in this study. We can also update Reads2Map
workflows as RADinitio or other simulation software are improved.

The relation between genotyping errors and genetic map quality was highlighted by our simu-
lation results. We considered high-quality maps those with the expected pattern of heatmap graphics of
recombination fraction matrix and number of recombination breakpoints (the consequence of the genetic
distance between markers). We could get high quality genetic maps if they were built with datasets with
few genotyping errors and single error rate as observed in the genetic map built with freebayes as SNP
and genotype caller with a single error rate of 5%. Also, it is possible to obtain high-quality genetic maps
with a higher number of genotyping errors if the provided genotype probabilities correct differentiate
wrong and right genotypes, as presented by SuperMASSA software in the scenario with freebayes as SNP
caller, or by polyRAD when GATK is the SNP caller and VCF is the read counts source.

The simulations also showed consequences of some technical issues, that could be easily changed
to significantly increase the final genetic map built by the approach. The OneMap 3.0 new features
implemented were validated using the simulation results. OneMap 3.0 is still not able to consider the
parents’ genotype probabilities in the HMM, thus, it is important to only add in the map building
procedure high-quality parents’ genotypes.

The usage of haplotype-based multiallelic markers showed to improve significantly the ordering
and map distance estimation. They are also important for the integration of both parents’ genetic maps.
However, they can also add more genotyping errors to the analysis making editions needed for the outlier
markers removal.
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4 FINAL CONSIDERATIONS

Here we updated the OneMap package and presented user-friendly and reproducible workflows
to build linkage maps from read sequencing. The procedure in the Reads2Map workflows starts with
the filtering of the reads, then the alignment, SNP and genotype calling, and the map building. Several
software are considered. The shiny app Reads2MapApp helps users to select the software and parameter
combinations that result in the best linkage maps for their specific dataset.

OneMap 3.0 have updates to improve the speed and quality of the built maps, and also qual-
ity diagnostic graphic tools. The OneMap 3.0 major modifications were the implementation of vari-
able genotype probabilities in the HMM to estimate the genetic distances and the possibility of include
haplotype-based multiallelic markers generated from sequencing technologies. All OneMap 3.0 updates
were validated by application in empirical and simulated datasets in Reads2Map workflows.

Using genotype probabilities from different software in the HMM for estimating the genetic
distances are efficient depending on the dataset characteristics and upstream methods applied. We could
not make a single suggestion for all possible dataset profiles, but with the workflows Reads2Map, users
can try easily all possibilities and select the best for each dataset. The Reads2Map flexibility and an
organized structure make easy its adaptation if some of the software considered receives updates or to
include other software.

The presence of haplotype-based multiallelic markers improves the map quality and helps the
building map procedure. However, it can also bring more errors. It is necessary an edition of the
maps built by the workflows to remove the outlier markers, which deviates from the expected pattern of
recombination fraction and segregation.

Because the quality of the genetic maps depends on all upstream applied approaches, the
workflows Reads2Map combined with OneMap 3.0 are powerful tools to build linkage maps with markers
from sequencing technologies.


