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only in contradiction to what we know of it.”
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RESUMO

Construção de mapas genéticos altamente saturados com OneMap 3.0: novas abordagens usando
workflows

OneMap é um pacote do R desenvolvido por membros do Laboratório de Genética Estatística
da ESALQ/USP (Brasil) lançado em 2008. Ele ganhou atenção da comunidade científica por ser um dos
primeiros programas capazes de construir mapas genéticos integrados para populações F1 segregantes. Ele
é hoje muito usado mundialmente. Entretanto, ele requer aprimoramentos para lidar com novos e abun-
dantes marcadores provindos de técnicas de genotipagem baseada em sequenciamento. Neste trabalho,
foi feito um aprimoramento significativo no OneMap para a versão 3.0, o qual inclui: maior velocidade
na estimativa das distâncias genéticas; novos métodos de agrupamento e ordenamento dos marcadores;
novas ferramentas gráficas para diagnóstico da qualidade dos mapas; novos recursos para realização de
simulações; recursos para conversão de arquivos VCF com marcadores bialélicos e multialélicos para os
arquivos de entrada do OneMap; possibilidade de incluir probabilidade de erro ou de genótipos para
estimar as distâncias genéticas. Uma vez que o OneMap foi atualizado, também foram explorados passos
anteriores à construção do mapa, os quais têm impacto na qualidade do mapa resultante. Para isso, foram
desenvolvidos os workflows Reads2Map que realizam análises desde leituras de sequenciamento de dados
empíricos ou simulados até mapas genéticos. Por ser escrito em Workflow Description Language (WDL),
os workflows Reads2Map disponibilizam aos usuários códigos localizáveis, acessíveis, interoperáveis e
reutilizáveis para a construção de mapas genéticos. Os workflows desenvolvidos são capazes de comparar
o desempenho dos programas na construção de mapas genéticos: freebayes, GATK como identificadores
de SNPs e genotipadores; updog, polyRAD e SuperMASSA como genotipadores; OneMap 3.0 e GUSMap
para construção de mapas. Além disso, foi desenvolvido o aplicativo shiny Reads2MapApp para avaliação
gráfica dos resultados dos workflows. No caso particular do conjunto de dados de Populus tremula, o
freebayes foi selecionado como identificador de SNPs e genótipos, e uma probabilidade de erro global de
5%, resultando em um mapa com 6936 marcadores e 3299.96 cM. Em seguida, também utilizando os
workflows, foi testado o impacto de duas das maiores melhorias do OneMap 3.0: o uso de probabilidades
genotípicas para estimativa das distâncias genéticas; e o uso de marcadores multialélicos baseados em
haplótipos provindos de identificadores de SNPs. Usando sequências de leituras simuladas foi possível
medir a eficiência de cada identificador de SNP e genótipo e suas influências na construção do mapa. O
impacto das probabilidades dos genótipos foi variável entre os programas de acordo com o cenário simu-
lado. Os resultados mostraram que o OneMap 3.0 é capaz de construir mapas genéticos de alta qualidade
se i) os genotipadores não cometerem muitos erros e a probabilidade de erro for de 5% para todos os
genótipos ou ii) se o genotipador cometer mais erros de genotipagem e atribuir probabilidades menores
para os genótipos errados. Além disso, o uso the marcadores multialélicos baseados em haplótipos revelou
um aumento na qualidade de ordenamento e estimativa de distância genética. Uma vez que os processos
anteriores à construção dos mapas têm grande impacto na sua qualidade, o uso combinado do OneMap
3.0, Reads2Map e Reads2MapApp, disponibiliza para os usuários ferramentas para construção de ma-
pas genéticos desde leituras de sequenciamento, e também gráficos diagnóstico para auxílio na escolha da
melhor combinação de programas e parâmetros.

Palavras-chave: Mapa de ligação, Haplótipo, Reprodutibilidade, Erro de genotipagem
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ABSTRACT

Building highly saturated genetic maps with OneMap 3.0: new approaches using workflows

OneMap is an R package developed by members of Statistical Genetics Laboratory at ESALQ/USP
(Brazil) released in 2008. It gained the attention of the scientific community for being one of the first
software for building integrated genetics maps for outcrossing species. It is now highly used worldwide.
However, it requires updates to deal with the new and abundant markers generated by high-throughput
genotyping techniques. In this work, we made a major update of OneMap to version 3.0, which includes:
higher speed of the genetic distance estimation; new methods for group and ordering markers; new qual-
ity diagnostic graphics tools; new features for making simulations; features to the conversion of VCF file
with biallelic and multiallelic to OneMap input file; possibility of include error or genotype probability
to estimate the genetic distances. Once OneMap was updated, we explored the steps upstream of the
map building process, which has an impact on the resulted map quality. For that, we developed the
Reads2Map workflows that perform the analysis, starting with empirical or simulated sequencing reads
until the final linkage maps. Because the presented workflows are written with Workflow Description
Language (WDL), they provide to users a findable, accessible, interoperable, and reusable code to build
maps. The workflows compare the performance of software in the linkage map building: freebayes, GATK
as SNP and genotype callers; updog, polyRAD, SuperMASSA as genotype caller; OneMap 3.0 and GUSMap
as linkage map builders. We also developed the shiny Reads2MapApp app to evaluate graphically the work-
flow’s results. In the particular case of an example dataset from Populus tremula, we select the freebayes
as SNP and genotype caller, and a global error probability of 5%, resulting in a map with 6936 markers
and 3299.961 cM. After also using the workflows, we tested the impact of two of the major OneMap 3.0
updates in the linkage maps: the usage of genotype probabilities to estimate the genetic distances and the
haplotype-based multiallelic markers from assembly-based SNP caller. Using simulated sequence reads
data we could measure each SNP and genotype caller efficiency and its influences in the resulted map.
The impact of the genotype probabilities was variable between software according to each simulated sce-
nario. The results showed that OneMap 3.0 can build high-quality genetic maps if i) the genotype callers
do not estimate wrongly many genotypes and a global error rate of 5% is applied for all genotypes or ii)
if the genotype caller estimate more genotypes wrongly it also gives lower genotype probabilities for the
wrong genotypes. Furthermore, the usage of haplotype-based markers reveals to increase the order and
genetic distance quality. Once the procedures upstream the genetic map building have a strong influence
in its quality, the combined usage of OneMap 3.0, Reads2Map and Reads2MapApp provide to users
tools to build linkage maps since the sequencing reads, and also diagnostic graphics and measures to help
them to choose the best combination of software and parameters.

Keywords: Linkage map, Haplotype, Reproducibility, Genotyping error
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1 INTRODUCTION

The OneMap package (Margarido et al., 2007) was release in CRAN repository in 2008 with
the novelty of building integrated genetic maps for outcrossing species. OneMap can build maps with all
types of markers (Table A.2) of outcrossing or inbred (RIL, F2 intercross, and F2 backcross) mapping
populations. At the time, OneMap was one of the software which opened the opportunity to better
understand the genetic architecture of outcrossing species such as yellow passion fruit, loblolly pine,
sugarcane, rubber tree, oil palm, eucalyptus, and salmon (Oliveira et al., 2008a; Xiong et al., 2016;
Garcia et al., 2006a; Souza et al., 2013; Jeennor and Volkaert, 2014; Bartholomé et al.,
2015c; Gonen et al., 2014).

OneMap is written in R, a free software environment for statistical computing and graphics.
Users need to have a least a little knowledge of the R language to be able to use the package. According
to TIOBE programming community index (the software quality company TIOBE, 2021), R had
low (rate of 0.06%) popularity in 2007. In 2010, its popularity started to increase because more people,
especially in the statistical science field, started to migrate from commercial statistical languages to R
(Figure A.1). The accessibility of OneMap increased together with the R popularity (Figure 1.1).

Figure 1.1. OneMap popularity since its release in 2008. A: Total number of OneMap downloads from CRAN by year
until 2020. Data obtained using cranlogs package (Csárdi, 2019). B: Total number of publications citing OneMap by
year from 2008 to 2020 according to Dimensions (2021) using the words ’onemap’, ’linkage map’ and ’ genetic’ as research
criterias. The orange dashed lines represents OneMap version updates in CRAN

Members of Statistical Genetics Laboratory in ESALQ/USP (Brazil) make constant improve-
ments and maintenance in OneMap algorithms and documentations, which also contribute to its success.
In 2013, we created an GitHub (Chacon and Straub, 2014) repository to store the OneMap develop-
ment version (https://github.com/augusto-garcia/onemap). The platform gives several advantages
to code development, including the track of all changes, teamwork optimization, and allows OneMap to
receives contributions from anyone around the world through pull requests or messages.

The improvements were made following novelties in statistical genetics research and according to
users’ feedbacks. Most of the users’ demands came together with high-throughput genotyping platforms
availability. Most of these demands focused on the conversion of VCF file format (Danecek et al.,
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2011b), the time-consuming analysis using Hidden Markov Model (HMM), the wrong group and ordering
of markers, and the inflated map sizes. In this work, we made updates to attend to each one of these
demands. All the updates compose a major modification in the OneMap version. Therefore, here we will
refer to the OneMap before this work updates as OneMap 2.0 and after this work updates as OneMap 3.0.

The HMM (Baum et al., 1970; Lander and Green, 1987) combined with the expectation-
maximization (EM) (Dempster et al., 1977) algorithm implemented in OneMap is a very robust method
to estimate the phases and genetic distance. It calculates iteratively the likelihoods for each possible phase
for each marker adding them sequentially and also considering the previous information. At the end of
the process, the HMM returns the most likely haplotype for each individual in the population. Thus, the
recombination fraction estimated between markers are based on entire sequence information (multipoint
approach). This is the best model possible to estimate the haplotypes, but demands an exhaustive
method. As the total number of markers in the sequence increases, it also increases the computational
resources and time needed (Wu et al., 2002d; Garcia et al., 2006b; Margarido et al., 2007).

OneMap version 2.0 already received updates focusing in speed up the HMM and EM algorithm.
The code was rewritten with a lower-level programming language, the C++, mainly by the developers M.
Mollinari and G. Margarido. The R package Rcpp (Eddelbuettel and François, 2011; Eddelbuet-
tel, 2013; Eddelbuettel and Balamuta, 2017) allowed an easy integration of C++ with the remaining
R code. Nevertheless, users still demanded more speed.

Another solution was proposed in Schiffthaler et al. (2017), which includes calculating
the linkage map in overlapping batches. The idea is that we do not need to perform the search for the
maximum likelihood for each marker considering all previous markers in the sequence when there are many
markers available. The previous information is indeed necessary to obtain accurate calculations of phase
likelihoods, but the return saturates after few markers are evaluated. Keeping the search will only overload
the model while offering no additional accuracy. In this case, we can limit this search using batches. The
batches still keep part of the information from the previous batches using the previously estimated phases
in overlapping markers. The Schiffthaler et al. (2017) simulations revealed that, once the batch and
overlap size are optimized, the method keeps the same accuracy of haplotype estimation as the original
one. We also made our simulation to confirm that (Attachment B).

The Schiffthaler et al. (2017) method also proposed the parallelization of the analysis in
different computer cores. The batches can not be considered as independent processes to compute in
separated cores, because of their overlapping markers. However, the parallelization can be made through
the four possible phases for outcrossing marker combinations. Thus, the analysis can be divided into a
maximum of four different computer cores. We also examined the possibility of parallelization through
the batches to increase the possible number of cores to be used. We tested the accuracy of the estimated
haplotypes by comparing the estimations in overlap markers among the batches in simulations. Despite
it compromises accuracy for some marker combinations, it can be useful to obtain fast estimations (see
Attachment B).

The Schiffthaler et al. (2017) modification was implemented in BatchMap package, a sepa-
rated fork of OneMap, released in CRAN in March 2017. However, BatchMap did not receive maintenance
and was removed from CRAN in December 2019. There is still the GitHub and Docker Hub versions
available. As mentioned before, GitHub platform offers several advantages to code development, how-
ever does not impose restrictions on unfunctional codes. Docker hub is a repository for container images.
The containers images are lightweight, standalone, executable package of software that includes every-
thing needed to run an application: code, runtime, system tools, system libraries and settings (Merkel,
2014a). Thus, with Docker containers users can reproduce the exact computer environment where de-
velopers made the code functional. However, the Docker hub and the GitHub versions of BatchMap
became outdated once OneMap received new updates. Here, we made the needed updates and merged
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the BatchMap modifications with the most recent version of OneMap.
The ordering step of linkage map building in OneMap also needed improvements to adjust

to high-throughput markers. All ordering algorithms implemented try to solve the ”traveling salesman
problem”. With high-throughput markers, the traveling salesman would have “more cities to visit” and
the problem became more complex. In 2016, Preedy and Hackett (2016) proposed the application of
multidimensional scaling for ordering markers in linkage maps as a rapid and efficient method for a large
number of markers. We also implemented the method in OneMap and made simulations to compare it
with the other ordering algorithms implemented (see Attachment C). It reveals to be an excellent method
for a global ordering of markers, despite keeping local misplacement.

Besides the increase in the number of markers available, the high-throughput sequencing geno-
typing also presented more errors. The users’ demands about the wrong grouping and the inflated map
sizes are consequences of these errors.

The grouping of markers in separated linkage groups is made in OneMap through the two-points
recombination fraction estimations. The logarithm of odds (LOD) score statistics can be applied to test
for linkage. LOD score is calculated by the log of the linkage probability of the observed data divided by
the probability of the loci be unlinked.

Equation 1.1 shows a simple example of the probability density function used to estimate the
described probabilities. This particular function is used for a backcross population.

l(r) = (n1 + n4)log(
1− r

2
) + (n2 + n3)log(

r

2
) (1.1)

In the equation 1.1, n1, n2, n3 and n4 refers to the four possible combination of two genotypes for
backcross population structure (AB|AB, AB|Ab, AB|aB and AB|ab) and r is the two-point recombination
fraction value. Under H0 hipothesis (unlinked loci) the recombination fraction parameter r is 0.5.

OneMap suggests a LOD threshold defined considering all two-points tests that will be per-
formed for all markers in the data set. It uses a global alpha controlling type I error with Bonferroni’s
correction. From this global alpha, the corresponding quantile from the chi-square distribution is taken
and then converted to LOD score.

Genotyping errors can distort the two-points estimations for some markers, which makes tradi-
cional OneMap grouping algorithm returns wrong linkage groups. The result usually presents a total
number of groups different of expected. It is tempting to increase the LOD threshold until the number of
groups reaches the expected for the species. This is a common mistake made by users. However, notice
that, because it refers to a log function, every slight increase or decrease in LOD value turns the analysis
very permissive or rigorous, causing error types I and II, respectively.

A fast, but still not the best solution for group issues was to make use of previous information
from the genome, drafts, or past linkage maps. We made an algorithm that separates sequences according
to the previous information and, after, tries to group the remaining markers using the group algorithm.
The OneMap group algorithm tests the linkage of each marker with markers already in the sequences to
decide if they are together.

With the presence of genotyping errors, every step of map building turns more difficult, because
the genotype frequencies used to estimate two-points recombination fractions are not trustful. The two-
points recombination fraction estimation does not allow to consider an error probability for each genotype,
but the HMM does. Once the groups are defined, the HMM can consider an error probability for each
genotype in its emission function to estimate the genetic distances. In other words, the HMM can consider
the genotypes, not as discrete values such 0 (“aa”), 1(“ab”), and 2 (“bb”), but continuous probabilities
referring to the chance of each possible genotype to be the true genotype. However, the success of the



14

approach depends on accurate genotype probabilities estimations in steps upstream OneMap (Taniguti,
2017; Bilton et al., 2018; Mollinari and Garcia, 2019; Mollinari et al., 2020).

Another problem surrounding the high-throughput markers is the low-informativeness of the
SNP markers. Their biallelic nature makes available only markers of types B3.7, D1.10 and D2.15 (see
A.2). Depending on the population, marker types D1.10 and D2.15 are more frequent than B3.7. In this
scenario, it is harder to find information to integrate parents’ meiosis information. As consequence, the
HMM and EM algorithms need to iterate in more phases possibilities until it reaches the best possible
solution, which demands more computer efforts and includes more uncertainties in the analysis.

Some SNP calling software like GATK (Poplin et al., 2017) and freebayes (Garrison and
Marth, 2012) uses an assembly-based haplotyping method to search for the polymorphisms in the data
sequences. As consequence, they provide phased markers in specific regions of the genomes where they
could define a local haplotype. This information can be useful to increase markers informativity in
the map building process. Also, it can reduce the possible phases to be estimated and consequently
reducing the HMM computational efforts. Therefore, to solve the issues about genotyping errors and
low-informativeness, we need to explore the bioinformatics steps upstream of the OneMap analysis.

With our own experience and with users’ feedback we already saw that the genetic map itself
can be an interesting tool to validate the upstream process because errors observed in the maps point to
a dissociation of the data from the genetic concepts. OneMap provides tools to measure the quality of
the built map. The heatmap color graphics of the recombination fraction can highlight outlier markers
breaking the expected recombination pattern. We implemented new graphical tools to draw the estimated
parents and progeny haplotypes and count the number of recombination breakpoints estimated. This new
tool demanded a major modification in F2 intercross algorithms for phase estimation (Attachment C). The
new tool highlights the excessive recombination breakpoints estimated when something wrong happened
in an upstream process, as contaminant individuals or genotyping errors. However, we need more tools for
diagnostics in the entire pipeline (from read sequence to built linkage map) which are the steps affecting
the map quality, or which are the ones that can bring solutions.

Even with diagnostic tools available for this upstream process, the dataset context, the software
and parameters to test are too many and we can not make a single solution or recommendation. Mostly
about the parameters, each software can have dozens of them and changing a single one can produce
different results. Therefore, we developed in Chapter 2 the Reads2Map workflows. They perform the
linkage map building from empirical or simulated sequencing reads datasets. The workflows are written
in Workflow Description Language (WDL) (Voss et al., 2017), which provides an organized, user-
friendly and reproducible structure to all the analysis. With them, users can perform the simultaneous
analysis using freebayes, GATK as SNP and genotype callers; updog, polyRAD, SuperMASSA as genotype
callers; OneMap 3.0 and GUSMap as linkage map builders. The results can be vizualized in the shiny app
Reads2MapApp, which contains graphical tools for diagnostics of the entire procedure to help users the
select the best combination of software and parameters for their particular case.

In Chapter 3, we used the workflows developed in Chapter 2 to measure the impact of two of
the major modifications of OneMap 3.0 in empirical and simulated data. One is the usage of genotype or
error probabilities in the HMM to estimate the genetic distances. We compared the genotype probabilities
profiles of the genotype callers and related them to the quality of the linkage map resulted. The second
is the usage of haplotype-based multiallelic markers from the assembly-based SNP callers. We observed
the capacity of each SNP caller to call these markers and compared the maps including them or not.
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1.1 Literature review

1.1.1 Linkage maps for outcrossing species

The first genetic maps, made from the 1910s to 1960s, had only a few morphological markers
for inbred-based populations of diploid species (F2, backcross and RILs). In the 1970s, with the spread
of electrophoresis techniques, plants genetic maps started to include isozymes markers (Nielsen and
Scandalios, 1974). The DNA markers were developed in the 1980s and the PCR-based markers in the
1990s (Nadeem et al., 2017). At this time, maps started to have from dozens to hundreds of markers,
significantly improving their resolution. After, boosted by the Human Genome Project, started in 2001
an exponential decrease in price and increase in quality of sequencing technologies. Nowadays, with
high-throughput sequencing, it is possible to automatically obtain millions of markers (Heather and
Chain, 2016).

Following these advances, statistical approaches were developed to build maps for different
mapping populations and different marker types. For diploid outcrossing species, which for some reason
have inbreeding depression or a long reproductive cycle, it is not possible to generate homozygous lines.
The mapping population available for these species are the F1 progenies.

The F1 mapping populations have 18 different segregation patterns (Wu et al., 2002d), once
there are up to four different alleles for each loci: if a locus presents three or four different alleles, it
produces four genotypes in the progeny at the 1:1:1:1 proportion; if a loci have two different alleles, with
both parents heterozygous, genotypes will follow the 1:2:1 proportion; if loci have two different alleles, but
one parent is homozygous, the pattern will be 1:1 (Table A.2). In this scenario, it is essential to estimate
the parental linkage phase for loci with segregation 1:2:1 and 1:1 to be possible to count recombinants
to build the map. Without phase information, it is not possible to distinguish parental and recombinant
configuration for map distance estimation. For highly informative markers, with segregation 1:1:1:1 the
phase is easily estimated because each allele is unique by parent homologs.

Focusing on the estimation of linkage phases, statistical methodologies for map building were
developed to include outcrossing species, starting with pseudo-testcross method (Ritter et al., 1990;
Grattapaglia and Sederoff, 1994), which consider only dominant markers and provide separated
maps for each parent. The method considers the segregation on the progeny to infer the parents’ phase.
After, Arús et al. (1994); Ritter and Salamini (1996); Maliepaard et al. (1997) revealed recom-
bination fraction maximum likelihood estimators for outcrossing populations allele configurations. Also,
a multipoint maximum likelihood estimator was proposed for inbred lines maps (Lander and Green,
1987; Jansen and Nap, 2001). Later, the method was expanded for outcrossing species (Wu et al.,
2002d). Wu et al. (2002d) presents a method to simultaneously estimates phase and the recombination
fraction using maximum likelihood estimators presented in Maliepaard et al. (1997), which made it
possible to integrate the separated maps for each outcrossing parent in only one. In Wu et al. (2002c),
the method was improved by using a multipoint algorithm based on HMM (Hidden Markov Model). The
method proposed by Wu et al. (2002d,c) was implemented in OneMap software (Margarido et al.,
2007).

The integrated genetic map makes more sense for association studies, once the analyzed phe-
notype is from progenies (not from parents). Besides that, integrated genetic maps can join every type
of marker and provide a dense genetic map. Also, with integrated genetics maps we can still measure the
difference in recombination frequency between the parents (Wu et al., 2002c). However, if there are
only markers of D1 and D2 types, it is not possible to joint the information of both parents, once these
markers carry recombination information from only one of them.



16

1.1.2 High-throughput genotyping

In the last few decades, we saw a gradual change in the molecular laboratory protocols from
efforts elaborating primers to obtain genetic markers based on fragment length, such as microsatellites,
to procedures to generate DNA libraries for high-throughput genotyping platforms (Seeb et al., 2011;
Grover and Sharma, 2014; Garrido-Cardenas et al., 2018). These platforms are able the generate
millions of molecular markers at an affordable price and without the need for much molecular laboratory
efforts.

The high-throughput genotyping platforms can be differentiated as array-based or sequence-
based. The array’s technologies consist of a solid surface with thousands of genomic sequences called
probes bonded covalently. The biological sample DNA fluorescently labeled hybridizes with the probes
emitting signals which are individually detected by the platform (Garrido-Cardenas et al., 2018).
It requires the previous information of the genome sequence to design the probes. Thus, it is usually
applied to well-known agronomic species like eucalyptus (Silva-junior et al., 2015) or maize (Xu
et al., 2017). It usually generates high-quality markers, but with a relatively high price. It can also
contain bias if the array probes are designed for a population evolutionarily distant from the studied one
(Liu et al., 2020).

The sequence-based technologies overcome the ascertainment bias because it allows a simulta-
neous SNP and genotype calling. Furthermore, it usually presents lower price (Liu et al., 2020). There
are also several methods of obtaining markers from sequencing. Generally, we can differentiate them
by how the DNA libraries are prepared: amplicon generation, whole-genome preparation, and target
enrichment (der Auwera et al., 2020).

Building genetic maps also requires a large population size to identify the recombination events.
In general, higher the population size, the higher is the map resolution. It is an important parameter
mostly when dealing with mapping populations which suffers only one recombination event and have
large disequilibrium blocks, such as outcrossing population (F1), F2 and backcross (Attachment D).

The higher size of populations required for genetic mapping makes the usage of the whole-
genome preparation library for this purpose unreliable because it would require sequencing all genomes
several times (depth) to have trusted genotypes. Despite the decrease in sequencing price, it is still
unaffordable for most researchers.

In the target enrichment method, only some pre-defined regions of the genome are sequenced.
It is widely applied in exome studies. It is simular to arrays-based genotyping, but instead of an array,
bait sequences (similar to PCR) primers are used to direct the sequencing to particularly regions (Figure
1.2) (der Auwera et al., 2020). But, also similar to arrays disadvantage, for most of the agricultural
species, we do not have much information about the genome to design the target sequences.

Sequencing genotyping technologies only started to be massively applied to plant and animal
mapping populations after the development of the amplicon generation libraries method. It does not
require previous information about the genome and allowed sequencing more individuals at the expense
of genome coverage. It comprises the reduction of genomic complexity with restriction enzymes (RADseq
methods) (Baird et al., 2008; Elshire et al., 2011; Peterson et al., 2012). Thus, the library
preparation includes digesting the genomic DNA with restriction enzymes, evaluating the sequece size
generated, adding barcodes and adapters to the sequence borders, and polymerase chain reaction (PCR)
amplification. The presence of barcodes in each read makes it possible to sequence several samples in the
same lane. The generated amplicons are fragments of DNA present in large numbers of copied that start
and stop at the same positions. There are several variants of RADseq protocol, see Andrews et al.
(2016) for a review of each RADseq variation.

The spread of RADseq methods usage contributed to significant advances in ecological (An-
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drews et al., 2016) and plant and animal breeding (Kim et al., 2015) studies. However, sequencing
a large mapping population can still be not affordable for many laboratories, even though the sequence
technologies are becoming less expensive and more readily available. To make it affordable, it is common
to perform low-depth sequencing combined with the RADseq methods.

In RADseq methods, the number of loci to be sequenced, or the genome coverage, is related to
the selected enzyme cut frequency in the genome. The number of samples is important to detect different
recombination events and to increase map resolution. The greater the number of loci and samples per
lane the lower the depth, that is, the number of reads per locus (Davey et al., 2011). While the number
of markers and samples affects the genome coverage and resolution, the depth of the sequencing affects
the quality of the information.

The decisions around coverage, resolution, and depth of the RADseq protocol need to be made
according to the genome characteristics and the study goals. For homozygous individuals, as recombinant
inbred lines (RILs) populations, low-depth sequencing produces different subsets of markers with reliable
genotypes for each individual. The missing data generated by the overlapping of the subsets can be easily
imputed if knowing the positions of the markers in a reference genome or genetic map (Xie et al., 2010).
However, low-depth sequencing for heterozygous loci carries more uncertainty.

For heterozygous genotypes, low-depth sequencing can randomly sample only one of the alleles
and erroneously call homozygous genotypes. Moreover, the low-depth emphasizes errors coming from
other sources, as sequencing errors, allelic bias coming from PCR amplification, erroneous reads align-
ments (Pompanon et al., 2005). As a consequence, the number of reads per allele is different than
expected. Their distribution can show outliers, overdispersion, and allelic bias (Gerard et al., 2018).

Rivera-Colón et al. (2020) traced two non-mutually exclusive sources of errors in RADseq
data: the unsuitable choice and application of a molecular protocol, and problems with library preparation
and sequencing. Considering all possible molecular protocols available for RADseq methods (Andrews
et al., 2016; Kim et al., 2015), it is important to choose the one that best fits the specific subject of
the research and correctly plan an experimental design. The RADinitio (Rivera-Colón et al., 2020)
software simulate read sequences according to RADseq protocols and intends to help researchers choose
the best protocol for their experiments.
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Figure 1.2. IGV (Robinson et al., 2011) image showing examples sequencing reads of two types of DNA library
preparation. A: the target enrichment as exome. B: the amplicon generation libraries such RADseq . The data used in this
example was simulated by SimusCoP (Yu et al., 2020) and RADinitio (Rivera-Colón et al., 2020), respectively, using
the SimulatedReads2Map WDL workflow developed in chapter 2.

der Auwera et al. (2020); Rivera-Colón et al. (2020) highlights the PCR-related tech-
nical bias as the leading source of genotyping errors for this type of datasets. The poor quantity and
quality of DNA available for generating the library limit the number of original molecules available for
the PCR enrichment and sequencing, which increases significantly its sampling bias. Particularly, the
alleles dropout can also be caused by mutations in restriction enzyme cut sites. However, Rivera-Colón
et al. (2020) shows through simulations that the alleles lost due to the random sampling associated with
library enrichment and sequencing are the main source of this type of error. The RADinitio tool is the
only one available capable of simulate RADseq read sequences including the PCR-related bias and the
allele dropout due to variants. Also, it allows to simulated user-defined variants and genotypes with a
VCF input.

1.1.3 Genotyping errors

The bioinformatics software developed to perform RADseq sequencing data analysis (Brad-
bury et al., 2007; Catchen et al., 2013a; Gerard et al., 2018; Clark et al., 2019) have the chal-
lenge to overcome the sources of errors coming from low-depth sequencing. The bioinformatics pipelines
to obtain the genetic markers and the genotypes starts with the alignment of the reads to a reference
genome or between themselves (if no reference genome is available). Then, SNP and genotype calls are
performed. When analyzing only a sample, SNP and genotype calling refers to the same procedure,
because the presence of the polymorphism also implies a heterozygote or a non-reference homozygous
genotype (Mielczarek and Szyda, 2016). But, when dealing with several samples, the SNP and geno-
type calling are different steps. The SNP calling consists only in the identification of polymorphic loci and
the genotype calling step consists in infers the genotypes of the samples at each identified polymorphic
locus (Nielsen et al., 2011).

Some SNP and genotype calling software, like GATK (Poplin et al., 2017; McKenna et al.,
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2010) and SAMtools (Li et al., 2009a), try to overcome sources of errors even before the SNP calling.
They perform first a local realignment and/or recalibration of Phred scores for the alignment and the
sequencing quality (Mielczarek and Szyda, 2016).

After the SNP calling, quality scores from each previous step can be applied to a priori dis-
tributions in probabilistic methods of genotype calling. Then, each genotype has a probability of being
homozygote for reference allele, or alternative allele, or heterozygote. The highest probability will define
the genotype and it will be normally used in software for build genetic maps.

Recently, Taniguti (2017); Bilton et al. (2018); Mollinari and Garcia (2019); Molli-
nari et al. (2020) demonstrated the advantage of using the genotypes probabilities instead of qualitative
genotypes to estimated the linkage maps. Thus, it is possible to estimate genetic distance by weighting the
distance between markers with the errors associated with the genotype probabilities. As a consequence,
the estimated genetic map distance is closer to the actual one, because, if not detected, the genotype
errors are counted as recombinant events and inflates the map distances (Buetow, 1991; Goldstein
et al., 1997; Cheema and Dicks, 2009; Hackett and Broadfoot, 2003; Rastas, 2017). A similar
approach using genotype probabilities instead of genotypes already has been applied to infer haplotypes
and for Genome-Wide Association (GWAS) studies (Kang et al., 2004; Browning and Yu, 2009).

Each genotype calling software considers a specific a priori according to the source of errors
considered at their probabilistic model and provides genotype probabilities that contains information
from each procedure applied upstream.

The HMM used to estimate the genetic distances in OneMap software allows easy implemen-
tation of the error probabilities in its emission function. The OneMap first version was designed to deal
with markers with few sources of errors, mostly SSRs. Thus, the error probability used in HMM received
a single value of 10−5. This value is not compatible with error probabilities for high-throughput markers.
As consequence, high-density genetic maps generated by the software accumulate errors in the genetic
distance estimation. The implementation of reliable error probabilities in OneMap will allow the soft-
ware to produce high-density genetic maps with genetic distances compatible with reality (Smith and
Nambiar, 2020).

Until now, the probabilities applied in the genotype calling procedure for map building in
diploids considered only errors coming from a random sampling of the alleles reads (Bilton et al.,
2018). Polyploid species present more challenges in genotype calling because their heterozygotes samples
can have several possible dosages. The software for calling polyploids genotypes have been more robust
in modeling the sources of errors compared with those designed only for diploid species (Gerard et al.,
2018; Serang et al., 2012; Clark et al., 2019).

In Mollinari and Garcia (2019), a population of 160 F1 offsprings and markers identified
using SolCAP Infinium 8303 potato array and genotyped with fitTetra genotype caller were used to build
a linkage map for an autotetraploid potato in MAPpoly R package for polyploid map building. The
MAPpoly package extended the OneMap HMM capabilities to polyploid species evaluations (Mollinari
and Garcia, 2019). For this autotetraploid potato map, they applied the genotype probabilities from
fitTetra and a global error rate of 5% in the HMM to build a linkage map for the autotetraploid potato with
MAPpoly R package. Despite both approaches reduced the linkage group sizes, the authors considered
that by applying a global error rate of 5% provided better results. The explanation for that is that a global
error rate gives the HMM more flexibility to estimate the genotypes according to the global chromosomal
structure. In Mollinari et al. (2020), genotypes probabilities from SuperMASSA (Serang et al.,
2012) were used to build a new map for a F1 population with 315 hexaploid sweet potato individuals.
Both polyploid maps mentioned counted with high-quality array data or high-depth sequencing data
obtained by an optimized genotyping-by-sequencing protocol (Wadl et al., 2018).
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1.1.4 Haplotype-based multiallelic markers

In addition to the genotype errors, the genetic mapping software are also facing a limited level
of information of high-throughput markers. It is caused by the biallelic nature of SNPs (Vignal et al.,
2008). In theory, there are four possible bases to differentiate a single position in the genome; in practice,
SNPs usually are restricted to only two. This happens because of the low frequency of single nucleotide
substitution at the genomes. For Arabidopsis thaliana it was estimated a spontaneous mutation rate
of 7x10−9 base substitutions per site per generation, with a bias favoring transitions (G : C → A : T )
(Ossowski et al., 2010). Therefore, the probability of two independent base changes occurring at a
single position is very low.

To overcome the low-informativeness, several studies of genome-wide association mapping
(GWAS) and genomic prediction combines adjacent biallelic markers in the same disequilibrium block
(high LD) into a single multiallelic haplotype. These haplotype-based markers showed more accuracy
in association analysis compared with individual SNP (Sehgal and Dreisigacker, 2019; Abed and
Belzile, 2019; N’Diaye et al., 2017; Gawenda et al., 2015; Lorenz et al., 2010; Liu et al., 2008;
Jiang et al., 2018). N’Diaye et al. (2017) pointed several advantages of haplotype-based markers
over the single SNP in these studies as the higher capacity of epistatic interactions identification (Jiang
et al., 2018), more information to estimate identical by descent alleles and reduction of the number of
tests and hence the type I error rate.

Haplotypes can be defined as sequences of consecutive loci over a chromosome which shares
high similarity with k − 1 other chromosomes in diploid (k = 2) and polyploids (k > 2) (Motazedi
et al., 2018a). They do not necessarily present a lack of recombination breakpoints but have a known
linkage phase.

The usage of haplotypes is particularly effective when there is a high level of linkage disequilib-
rium (LD), which group markers in large blocks in the genome (Rafalski, 2002). If there are high LD
and a high number of markers available covering the genome, there will be a lot of redundant markers for
recombination information, because of the low resolution (see Figure AT28). Despite being considered
redundant for recombination, this excess of markers can integrate haplotypes and add more allelic infor-
mation. As an example, the SNPs highlighted with “*” in Figure 1.3 can differentiate only two alleles
individually, but combined it become a haplotype block able to differentiate four alleles (Figures 1.3 and
1.4).
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Figure 1.3. Figure from Rafalski (2002). Example with eight SNPs and one indel identified in maize. The horizontal
rows correspond to 32 individuals. If combined, the markers identify four haplotypes.

There are several methods to build the haplotypes in sequencing data available (Browning
and Browning, 2011). They can be divided into three different approaches: user-defined length, sliding-
window, and linkage disequilibrium. In the user-defined length approach, the genome are divided in
blocks of sequences with size defined by the user and the SNPs within each sequence are combined into
haplotypes. This way, the genome are divided into haplotypes blocks with same length. This is the
most simple approach but requires a good quality reference genome and does not consider any biological
aspect as the LD, population structure, or evolutionary history. In the sliding-window approach, the
target genomic regions of interest are divided into uniform or variable size windows which compose the
haplotype blocks, but similarly the user-defined length approach, the sliding-windows does not consider
the LD information (Sehgal and Dreisigacker, 2019). Both approaches, the user-defined length and
the sliding-window are sometimes also called bins (Huang et al., 2009a; Xie et al., 2010).

The LD-based approaches are the most advantageous because they consider the biological as-
pects of the population studied (Sehgal and Dreisigacker, 2019). Build genetic maps is one of the
methods using the linkage disequilibrium approach. It provides haplotypes referring to the parents and
progeny of entire chromosomes with the phasing and measure of genetic distances between all markers.
However, as mentioned before, build the entire chromosome haplotype with only biallelic markers require
phases estimation comparing many possibilities when dealing with outcrossing populations. This task is
even more difficult when thousands of markers are available and some of them contain genotyping errors,
requiring many statistical tests and also inserting a bias in the linkage estimations.
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Figure 1.4. A hypothetical biparental cross of an outcrossing species and the expected genotypes for four loci. Figure
A shows the parents’ genotypes. Locus 1, 2, and 3 are the SNPs marked with “*” at figure 1.3. They together differentiate
four haplotypes, but separated, they differentiate two alleles at each locus. Figure B shows the hypothetical genetic map,
the SNPs 1, 2, and 3 are redundant for recombination information, they belong to the same disequilibrium block.

One idea to optimize the entire chromosome haplotype building via linkage maps is to combine
it with another approach of haplotype building that combines SNP marker in smaller blocks of the
chromosome. The smaller haplotype blocks estimated may become multiallelic markers for the genetic
map, called here haplotype-based markers.

The haplotype-based markers have already being used to assist linkage map building in RILs
populations (Huang et al., 2009a; Xie et al., 2010; Yu et al., 2011; Xu, 2013). For that, the SNP
markers are ordered by physical position in a well-assembled reference genome. Combining the order
and the genotypes it is possible to identify the regions that come from each parent and consequently
the recombination breakpoints of each individual of the progeny. The approach used to identify the
recombination breakpoints is based on a sliding window that evaluates groups of consecutive SNPs.
The approach is able to identify genotype errors because isolated genotypes coming from a parent are
observed inside a region with predominant genotypes from the other. However, for outcrossing species,
it is not possible to identify from which parent each part of the chromosome was inherited without phase
estimation, even with genomic positions available.

In the outcrossing context, we can obtain phased genotypes in haplotype-based multiallelic
markers using assembly-based SNP callers. The SNP calling procedure is already needed in the linkage
map building pipeline. Thus, if we use SNP callers to identify the haplotype-based markers we do not need
to include extra steps in the pipeline. Software as PolyBayes (Marth et al., 1999), samtools (Li, 2011),
freebayes (Garrison and Marth, 2012),GATK (Poplin et al., 2017; McKenna et al., 2010) and
Platypus (Rimmer et al., 2014) uses assembly-based haplotyping approaches to identify variants based
on the read sequences alignment to a reference genome, not only positions. These software do not focus
on mapping populations studies and the approach was implemented with a different purpose than genetic
map building. They are all focused on association studies in natural populations, for which genotype
imputation is an important step and it is also improved with high informative markers (Garrison and
Marth, 2012). Also, assembly-based methods based on Bruijn-like implemented in Platypus and GATK
graphs increase the accuracy of indels call (Rimmer et al., 2014; Poplin et al., 2017).
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2 READS2MAP: PRACTICAL AND REPRODUCIBLE WORKFLOWS TO BUILD
LINKAGE MAPS FROM SEQUENCING DATA

Abstract

The high-throughput genotyping methods make available millions of read sequences for genetics
research. To build genetic maps from read sequences, researchers need to perform diverse bioinformatics
and statistical analysis. For each step of the analysis there are several tools available, all with differ-
ent methods and parameters to be selected by users. In this context, users struggle to find the best
combination of software and parameters to be used and also to create reproducible pipelines for that.
Workflows systems such as Workflow Description Language (WDL) offers a structure to organize the
entire pipeline, producing a fixed structure and metadata of each step. It also guarantees reproducibility
by making interface with containers environments, such as Docker. Here we present two workflows: Em-
piricalReads2Map and SimulatedReads2Map to build linkage maps with empirical and simulated
sequencing data. SimulatedReads2Map simulates sequencing data using SimusCoP for whole-genome
sequencing (WGS) and exome DNA libraries; and RADinitio for restriction site associated DNA sequenc-
ing RADseq library. In both workflows, the analyses are performed using GATK, freebayes as SNP callers
and genotype callers; updog, polyRAD, SuperMASSA as genotype callers; and OneMap and GUSMap as
linkage map builders. We also present the shiny app Reads2Map to evaluate graphically the results of
workflows. We exemplify their usage running the workflows and selecting the method to re-build a link-
age map of Populus tremula. We obtained a linkage map with 6936 markers and 3299.961 cM selecting
freebayes as SNP and genotype caller and OneMap as map builder.

Key words: Genetic maps; Workflow; Container; Reproducibility.

2.1 Background

The advances in sequencing technologies and the development of different library protocols make
available millions of genetic markers able to genotype hundreds of samples in a single sequencing run.
For building linkage maps, having more markers and larger sample size better is the capacity of locating
where in the genome the recombination events occur (higher genetic map resolution). Also, markers from
sequencing technologies overcome efforts with molecular laboratory methods and can be considered more
affordable (Heather and Chain, 2016). However, it increases significantly the computer analysis efforts
because of the need of using multiple analytic tools and their application to hundreds of experimental
samples.

Once the samples are sequenced, many steps follow before being able to build a map. These
steps can be divided as the preprocessing of reads, with demultiplexing and cleaning; the alignment to a
reference genome; the SNP calling; the genotype calling; the filtering of markers; the grouping; ordering;
phases and genetic distances estimations. For each of these steps, there are multiple software available
and each software has specific parameters for each feature.

Users that are not familiar with bioinformatic pipelines may find difficult to run their analysis
and find the best pipeline for their specific dataset. Performing separately each step can generate several
independent scripts and unconnected intermediate files compromising its FAIR Data Principles (Findable,
Accessible, Interoperable and Reusable - (Wilkinson et al., 2016)).

Metascience studies highlight a big lack of reproducibility in science, sometimes even called as
“reproducibility crises” (Munafò et al., 2017), which have motivated research to adopt new approaches
to overcome this concerning issue. For computational methods the lack of reproducibility can be measured
by trying to run codes from five or ten years ago. The possibility of success is very low. In 2019, the
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Nature journal (Nature, 2019) even promoted the “Ten Years Reproducibility Challenge” launched by
ReScience C journal (Rescience, 2019) to researchers try to do that with their own codes.

During all the map building procedure there are some important parts with decisions that
need to be made carefully according to the study of biological aspects, such as the choosen software and
their specific parameters. However, other parts are only standard procedures as file conversions, software
installation, and computational resources optimization, that can be a lot time-consuming and reduce the
research quality if made in a wrong way (Reiter et al., 2020).

Workflow systems are a good solution to overcome technical issues, allowing users to focus on
the important decision and also reach FAIR practices. It integrates the analysis in a single structure
connecting each step by inputs and outputs. The steps, here called tasks, can also be combined in sub-
workflows to users who want to run only specific parts of the analysis. Intermediate files are stored and
organized with a standardized structure together with metadata and reports of parameters used in each
task. Furthermore, conditional structures can be used to manage exceptions and options. The workflow
organized structure makes it possible to generate flowcharts automatically given a complete overview of
the workflow (Reiter et al., 2020).

Workflow systems also provide built-in tools to monitor and manage resource usage. The
Cromwell Execution Engine can execute workflows on any computing platform (local, High Performance
Computing - HPC or cloud) (Voss et al., 2017). Furthermore, the integration with containers like
Docker (Merkel, 2014b) and singularity (Kurtzer et al., 2017) overcome the need for software instal-
lation and offers specific software versions, making it significantly more reproducible.

Snakemake (Grüning et al., 2018), Nextflow (Di Tommaso et al., 2017), CWL (Amstutz
et al., 2016) and WDL (Voss et al., 2017) can be cited as four of the most widely used bioinformatics
workflows system. The Workflow Description Language (WDL) presents advantages for production-
level pipelines because of its capacity to deal with hundreds or thousands of samples (Reiter et al.,
2020). It is successfully used by Genome Analysis Toolkit (GATK) team (Van der Auwera et al.,
2013) to provide read-to-results Best Practices workflows that can be executed in the Terra platform
(Terra.bio, 2020). With these optimized and tested workflows available, researchers do not need to
learn the workflow system syntax to make use of its benefits.

In this work, we developed workflows to perform the analysis from read sequencing to linkage
maps including some of the most used software for the SNP and genotype calling and map build: freebayes,
GATK (Poplin et al., 2017; McKenna et al., 2010) as SNP and genotype callers; updog (Gerard
et al., 2018), polyRAD (Clark et al., 2019), SuperMASSA (Serang et al., 2012) as genotype
caller; OneMap 3.0 and GUSMap (Bilton et al., 2018) as linkage map builders. The provided WDL
workflow performs sequencing reads simulations based on user empirical library protocol and dataset.
With this cross-platform tool, users can make optimized usage of their time and available computer
resources to focus on the important decisions about the best software, algorithms, and parameters for
their dataset. The simulation studies can validate the analytical methods applied and indicate which
requires adaptations or improvements.

The genetic map itself can also be a powerful tool to validate upstream methods. Wrong
decisions in any one of the upstream steps can be identified in the outputted map, once errors make the
map proprieties dissociate of biological concepts. For example, genotyping errors can generate an inflated
map size showing an excessive number of recombinations during the meiosis. Since the first genetic map
studies by Sturtevant in 1915, it is observed that is unlikely that crossing-overs happen too close to
each other, a phenomenon described as interference (Sturtevant, 1915). Recent studies also described
meiosis molecular mechanisms confirming the low expected number of recombination events during the
meiosis (Smith and Nambiar, 2020). The OneMap package to build linkage maps for inbred (RILs, F2

intercross, and backcross) and outcrossing mapping populations (Margarido et al., 2007) have the
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biological concepts of meiosis as assumptions and provides graphical tools to diagnose the dissociation
between them.

Besides the proposed workflows, we also integrated them with interactive visualizations in a
shiny app to visualize generated maps and intermediary results. The R package shiny (Chang et al.,
2020) allows to build interactive web pages, where the results can be visualized in real-time according to
user-specifiable parameters.

2.2 Implementation

Workflow Description Language (WDL) was used to generate two main workflows: i) Em-
piricalReads2Map, that has as input the FASTQ files from empirical data, and performs SNP and
genotype calling and map building (Figure 2.1); ii) SimulatedReads2Map: performs simulations of
RADseq Illumina FASTQ files, the SNP and genotype calling, and map building (Figure 2.2).

The two main workflows are composed of sub-workflows, which are composed of tasks. Each
task has a public available Docker hub (Merkel, 2014a) image defined to perform the analysis in con-
tainers. The containers images are lightweight, standalone, executable packages of software that includes
everything needed to run the specific task: code, runtime, system tools, system libraries and settings
(Merkel, 2014a). The Dockerfiles with specifications to generate the images are also available to-
gether with the workflows. Twenty images are used in total (Table A.1).

The Broad Institute Workflow Object Model (WOM) tools were here applied to validate the
workflows, generate its input files templates, and the Graphviz (Ellson et al., 2003) files to draw the
graphic (Figures 2.1, 2.2, 2.3). Cromwell Execution Engine was used to run the analysis. An example of a
command to run the workflows via prompt terminal and via cromwell server is available in the appendix
listing 4.1 and Figure A.2.

2.2.1 Pre-processing reads

The EmpiricalReads2Map workflow requires demultiplexed FASTQ files already filtered
for quality measurements. We made available an auxiliary workflow to perform these procedures to
reads coming from restriction-site associated DNA sequencing (RADseq), technologies using one or two
restriction enzymes (Figure 2.3). The workflow is composed of two tasks. The PreprocessingReads
task uses the STACKS plugin process_radtags (Catchen et al., 2013a) to perform the demultiplexing,
filter reads by the presence/absence of enzyme cut site, and by reads quality. The task RemoveAdapt
uses cutadapt (Martin, 2011) to remove adapters from sequences and filter them by reads length.

The parameters to be used in this step depends on the sequencer and protocol used. We suggest
defining them after an overview of available sequences using FASTQC (Andrews, 2010) and MULTIQC
(Ewels et al., 2016).

In this work, we evaluate the dataset from Zhigunov et al. (2017). It is composed of RADseq
sequences for 122 F1 progenies and the two parents of a bi-parental cross of Populus tremula. The
enzymes HindIII and NlaIII were used in their library protocol and specified in the PreprocessingReads
workflow task. The reads with uncalled bases were filtered. Reads with average quality Phred score below
10 within a sliding window with half of the total read size were discarded. The Illumina Universal Adapter
was removed and reads filtered by a minimum length of 64.

2.2.2 Sequencing reads simulation

The simulation was based on a given reference genome chromosome sequence. If a reference
linkage map and a VCF file are provided, the workflow simulates the marker genetic distances and parents’
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Figure 2.1. Workflow EmpiricalReads2Map to perform SNP and genotype calling, and build linkage
maps.



33

Figure 2.2. Workflow SimulatedReads2Map to perform FASTQ files simulations of RADseq, exome
or WGS reads, SNP and genotype call, and linkage map building.
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Figure 2.3. PreprocessingReads workflow to filter FASTQ sequences.

genotype frequencies based on them. A cubic spline interpolation with Hyman method (Hyman, 1983) is
applied to simulate centimorgan position for each marker physical position based on this same relation in
the reference linkage map provided. The genotype frequencies of parents define the frequency of marker
types available for the F1 population (Table A.2).

If a reference linkage map is not provided, a uniform relation between genetic and physical
distance is applied according to a given recombination rate measure in centimorgan by megabase pairs.
If a VCF file is not provided, polymorphisms are simulated using pIRS (Hu et al., 2012a) software and
parents genotypes frequency must be provided by the user.

PedigreeSim software (Voorrips and Maliepaard, 2012) simulates the meiosis event to gen-
erate F1 progenies. The genetic map is simulated considering Haldane (Haldane, 1919) map function.
PedigreeSim output files are converted to VCF file using OneMap 3.0 function pedsim2vcf (Figure 2.4).

Users can also define which library protocol will be simulated. The single and double digest
restriction-site associated DNA (sdRAD and ddRAD), exome and whole-genome sequencing (WGS) se-
quencing libraries are available. RADseq reads are simulated with RADinitio (Rivera-Colón et al.,
2020). This software presents several parameters such as the number of PCR cycles, enzymes, reads, and
sequence length. RADinitio outputs FASTA files, a Phred score of 40 (probability of incorrect base call
is 0.0001) is added to the FASTA sequences using seqtk (Li, 2020) to make its conversion to FASTQ,
needed for the next steps.

For exome and WGS reads simulation we developed a package called simuscopR with wrapper
functions for SimuSCoP software (Yu et al., 2020) and functions to convert VCF to its input files. The
simuscopR package is available in https://github.com/Cristianetaniguti/simuscopR. For exome
simulations, users must provide an alignment BAM file to define the exons regions.

To exemplify the usage, we simulate ddRAD reads for five families of 200 F1 individuals from
a bi-parental cross using 38% of the chromosome 10 of Populus trichocarpa reference genome (Tuskan
et al., 2006) version 4.0, the linkage map, and the VCF file outputted by the EmpiricalReads2Map
workflows. The mean depth of the simulation was set to 20 and the parent’s depth was eight times higher
(160). An example of workflow input JSON file and details of this specific example can also be found in
appendix listing 4.2.

2.2.3 SNP calling

The EmpiricalReads2Map and SimulatedReads2Map share the same sub-workflows for
SNP calling. The sequences in FASTQ files are aligned to a reference genome using BWA-MEM (Li, 2013).
The sample and library information are kept in the BAM file header for further analysis. Alignment
BAM files for each sample are inputs for sub-workflows with GATK and freebayes approaches. We
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Figure 2.4. Sub-Workflow create_alignment_from_read_simulations.
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followed GATK Best Practices to reproduce their joint genotyping via GATK, GenomicsDBImport,
and GenotypeGVCFs and applied the suggested hard-filtering. Freebayes and BWA-MEM can be run in
parallel, the maximum number of cores allowed must be defined in the input file. After obtaining the
VCF files, they are normalized with BCFtools (Li, 2011) and multiallelic markers are separated into a
new VCF file. BCFtools is also used to find the read depths information for each allele in BAM files and
update the allele depths information in the AD (allele depth) field of VCF file. Therefore, each SNP
calling method results in three VCFs: i) biallelic markes with read counts outputted by the SNP callers;
ii) biallelic markers with counts from BAM files; iii) multiallelic markers. In SimulatedReads2Map,
markers from SNP callers are compared with the simulated to estimate SNP calling efficiency.

2.2.4 VCF filters

Empirical datasets can have diverse and complex variant density, read depth, and sequencing
quality patterns. Before proceeding with empirical analysis, we suggest users evaluate theVCF files
generated by SNP calling sub-workflow (snpcalling_emp) to decide the proper filters for the identified
variants. After, proceed to the map building tasks in map_emp sub-workflow.

Nowadays, sequence technologies make available millions of markers to build genetic maps, and
this amount of data requires high RAM to be evaluated in R environment by map building packages.
As an example, if all SNPs identified for the P. tremula dataset would be evaluated together it would
require 88 GB of RAM just to keep the OneMap object and the two-points recombination fraction in the
R workspace. Because of this, in Reads2Map workflows, we filter VCF file by a selected chromosome
and perform all the analysis using this filtered VCF. Users should run the complete workflow for one
chromosome, identify the best combination of software and parameters, and download the complete
VCF file from SNP calling workflow. With the complete VCF users can repeat the analysis for other
chromosomes, using only the selected procedure and R environment (Figure A.3). Also, if users are using
draft genomes and there are many markers in not assembled scaffolds, they can be included in major
sequences after the workflow is concluded and the best combination of parameters and software is selected.
OneMap has the functions combine_onemap, group_seq, and try_seq for this purpose.

2.2.5 Genotype calling methods

The genotyping software considered in this study are: GATK (McKenna et al., 2010), free-
bayes (Garrison and Marth, 2012), SuperMASSA (Serang et al., 2012), polyRAD (Clark et al.,
2019) and updog (Gerard et al., 2018). The GATK and freebayes have as input the BAM files and
perform both SNP calling and genotype calling. SuperMassa, polyRAD, and updog only perform the
genotype calling using the allele depth measures. All software provide genotype probabilities according
to their procedures, which will be applied to build genetic maps by OneMap 3.0.

GATK and Freebayes may introduce an unexpected bias towards the reference allele when used
to process low-coverage sequence data. In the case of GATK, it inserts the bias when reads are filtered
in the local re-assembly step to avoid sequencing errors (Ros-Freixedes et al., 2018). To overcome
the bias during the genotype call, the workflow applies two different measures of alleles depth, one from
VCF and the other from BAM files.

We create an R package called genotyping4onemap to provide wrapper functions to run updog,
polyRAD, and SuperMASSA and automatically convert the genotypes in OneMap objects. The package is
available at https://github.com/Cristianetaniguti/genotyping4onemap.
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2.2.6 Linkage maps

In the workflows, maps are built with OneMap 3.0 (Margarido et al., 2007) and GUSMap
(Bilton et al., 2018) for datasets from all combinations of SNP and genotype calling methods and
considering allele counts coming from VCF and BAM files. This results in 34 maps. In Simulate-
dReads2Map, workflow maps are built for the complete dataset, including false-positive markers and
also removing them. Therefore, the simulation workflow results in 68 linkage maps.

If provided, VCF with multiallelic markers is combined with the biallelic markers and receive
an error probability of 0.05. VCF files can have markers that are not considered informative for the
genetic map building (e.g. in F1 progeny, markers with both parents homozygous), or genotypes that are
not expected by the segregation pattern. Thus, it is essential to apply other filters provided by the map
builders.

In OneMap, our datasets filtered out markers with more than 25% of missing data, segregation
pattern deviation with a p-value threshold of 0.05 after Bonferroni multiple test correction. In GUSMap,
the datasets were filtered by minor allele frequency (MAF) of 0.05, more than 25% of missing data,
segregation pattern deviation with a p-value threshold of 0.05.

In the workflows, the markers are ordered by the genome position. In OneMap 3.0, BatchMap
(Schiffthaler et al., 2017) parallelization in four cores of HMM was applied to build the maps. In
OneMap and GUSMap, if markers did not reach the linkage criteria of recombination fraction less than 0.5,
it was automatically discarded during genetic distance estimation by HMM. In SimulatedReads2Map,
the Haldane map function was used to convert recombination fraction to centimorgan measure. In
EmpiricalReads2Map, the Kosambi map function was applied.

2.2.7 Read2Map Workflows App

Output files from the main workflows can be uploaded in Reads2MapApp, a shiny app with a
shiny-dashboard framework. The usage of the app in our server has a limit of an input file size of 1Gb
by user. For higher inputs, users need to install and run the shiny app package from the GitHub repository
https://github.com/Cristianetaniguti/Reads2MapApp. The docker image cristaniguti/rstudio_onemap
contains RStudio and all OneMap and Reads2Map Workflows App dependencies, which can be useful
to run the app and also to perform possible manipulations in the built map using OneMap or GUSMap
functions in R.

The Reads2MapApp provides guidance on how to use the Reads2Map workflows and also
graphics and tables to evaluate their results. Each feature is defined in shiny dashboard icons on the left
side of the app (Figure 2.5):

• Content: redirect users to manual pages depending on user interests. Manuals describing how to
use OneMap, Reads2Map and Reads2MapApp are included;

• SNP calling efficiency (exclusive for simulations): number of simulated markers, number of SNPs,
MNPs and indels markers identified and the number of false positives and false negatives markers;

• Filters: total number of informative markers, number of markers filtered by missing data, segrega-
tion pattern deviation, redundancy, and non-grouped;

• Marker type: number of markers by types. In simulations, it also shows the correct amount of
markers of each type;

• Times: time spent to build each map. Only considers the processing time of the HMM;
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• Depth and genotyping: shows allele counts distributions, estimated and real homozygous and het-
erozygous genotypes, and the genotypes probabilities provided by each software. For the real
dataset, it provides a table with statistics to measure the difference between simulated and esti-
mated genotypes;

• Genotype probabilities (exclusive for simulations): Plots the parents and progeny errors probability
and the genotypes concordance using conditional probabilities;

• ROC curves (exclusive for simulations): summarizes each genotype caller model predictive power
using receiver operating characteristic (ROC) curves;

• Map size each family (exclusive for simulations): shows the difference between estimated and real
markers positions in each map;

• Overview of map size (exclusive for simulations): mean, variance, standard deviation, and total
map distances in all simulated families;

• Map size (exclusive for empirical evaluations): plots and tables to show the linkage map interval
sizes;

• Phases (exclusive for simulations): plots and tables to evaluate the difference between estimated
and simulated phases for all simulated families;

• Maps: plot heatmap of recombination fraction matrix and the linkage group draw using OneMap
and GUSMap functions. In this screen it is also possible download RData from the chosen pipeline
map sequence (see Figure A.3);

• Plotly heatmaps (exclusive for empirical evaluations): Interactive heatmap of recombination fraction
matrix;

• Progeny haplotypes (exclusive for OneMap maps): draw the progeny estimated haplotypes. For
simulations, also plots the real haplotypes;

• Breakpoints count (exclusive for OneMap maps): graphics and tables to show the number of re-
combination breakpoints estimated in linkage maps. For simulations, graphics and tables are also
generated for the real map;

• cMxMb: scatter plot with the relation between the genetic and physical position of each mapped
marker;

• Workflow tasks times: the user can upload the log file of the workflow run to build an interactive
graphic with the time spent to run each task.

2.2.8 Selecting the pipeline

To select the best method to P. tremula map building, we consider all available evaluations in
Read2MapApp for EmpiricalReads2Map and SimulatedReads2Map results. For further discussion
about all workflow results and evaluations, see Chapter 3.

We chose to create the map using freebayes SNP calling, read counts from VCF file, and global
error of 0.05 in OneMap HMM. Heatmaps of recombination fraction highlight erroneous markers that
break the expected color pattern in all approaches considered in the workflow. Therefore, the selected
linkage group generated by EmpiricalReads2Map was downloaded from “Map” Read2MapApp screen
(Figure A.3), and the erroneous markers were removed using OneMap in the R environment. We also
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Figure 2.5. Graphical user interface of Read2Map Workflows App.
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downloaded the VCF file with markers from all reference genome sequences and built the other linkage
groups using the selected approach.

2.3 Results and Discussion

2.3.1 Genetic map

The EmpiricalReads2Map and SimulatedReads2Map results for the Populus tremula
dataset can be visualized in the Read2MapApp example results. They showed that the best pipelines
for this dataset are GATK and freebayes as SNP and genotype callers, using either their output genotype
probabilities or a global error of 0.05. We chose to keep the pipeline with freebayes as SNP and genotype
caller and error probability of 0.05. Expanding the pipeline to other groups and removing outlier markers,
we obtained a map with 6936 markers and 3299.96 cM. OneMap 3.0 package also returned the progeny
haplotypes, and they presented a total of 8329 recombination breakpoints in the population with a mean
of 1.9 and a standard error of 0.0215 by haplotype (Figures 2.6, 2.7, Table A.3).

Figure 2.6. Populus tremula genetic map.

The study, which originated the dataset (Zhigunov et al., 2017), used the pseudo-testcross
approach to build the maps. Thus, they created two maps, one for each parent. The female map having
1000 markers and 3045.99 cM, and the male map 1055 markers and 3090.56 cM. The pseudo-testcross
approach was used to generate the firsts genetic maps for outcrossing populations (Ritter et al., 1990;
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Figure 2.7. Recombination breakpoints counts in estimated progeny haplotypes of a bi-parental cross
of Populus tremula.

Grattapaglia et al., 1995) when only dominant markers were available, and we it was not possible
to join information from markers types D1 and D2.

The multipoint approach proposed in Wu et al. (2002c) and implemented in OneMap allowed
us to integrate this information using more informative markers (e.g., A or B) in the dataset and a
multipoint approach to estimate genetic distances. Because we do not need to split the markers into two
datasets, the integrated maps are denser and carry more allelic and phase information.

The built progeny haplotypes highlight the difference between the integrated and the pseudo-
testcross approaches. With integrated maps, we can identify which parts of the four parents’ haplotypes
compose each progeny homologs (Figure A.6). The pseudo-testcross approach can identify in progeny
only two of the four parent haplotypes in a separate way. For each individual in progeny, instead of
having two progeny homologs composed by the combination of four possible parent haplotypes, we would
have four homologs composed of two possible parent haplotypes. In OneMap, it would be equivalent to
obtain two maps of the backcross population.

2.3.2 Pipeline validation with linkage map

Reliable genetic maps at the end of the process are good diagnostic for all the upstream pro-
cedures, including the pollination, DNA extraction, sequencing protocol, and all bioinformatic steps in
the workflow. Furthermore, we can explore abnormalities in the genetic maps to fix possible errors in
previous steps.

The Zhigunov et al. (2017) study identified seven contaminants (II_3_08, II_1_37, I_4_62,
I_4_28, I_4_21, I_2_72, I_3_70) in the dataset through ancestry analysis in ADMIXTURE (Alexan-
der and Lange, 2011). They removed these individuals from the dataset before building the map. Here,
we kept these individuals to test the consequences on the map. The stability of HMM analysis in OneMap
makes it possible to identify five of these individuals (I_3_08, II_1_37, I_4_62, I_4_21, and I_3_70)
because they presented an excessive number of recombination breakpoints in the estimated haplotypes
(Figures A.4 and 2.7). The irregularities in breakpoints counts confirm the ancestry analysis for these
individuals. They are not hybrids from the studied cross. Individuals I_4_28 and I_3_72, also identified
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as contaminants in Zhigunov et al. (2017), did not show irregularities in breakpoints counts. However,
we also removed them from the analysis to follow the previous study.

Reads2Map workflows require a reference genome to perform the SNP calling. By default,
the workflow uses the marker genome position also to sort the markers. Differences between the reference
genome markers position and their positions in the genetic map can be evaluated by a heatmap graphic
of the recombination fraction matrices (Figure A.8). Wrong positioned markers use to break the expected
color pattern in the heatmaps. Interactive graphics in OneMap help to identify and remove these markers.
Without consulting this information, we can not know if the differences between genome reference and map
built are consequences of biological inversions or errors in marker ordering. The heatmap of chromosome
12 presented the inversion of a sequence containing 64 markers (Figure 2.8).

Figure 2.8. Heatmap of recombination fraction suggest an inversion in chromosome 12 of P. tremula
compared with P. trichocarpa reference genome. For well-ordered maps, we expect that the diagonal of
the graphic have heat colors and the up left and down right present cold colors. It means that adjacent
markers are more linked than distance markers. We can see in the left graphic that there is a break in
the diagonal color pattern, indicating a disruption in the map order. In the right graphic, we inverted
the sequence from the color break until the first marker in the group. After, the color pattern is more
close to the expected.

In the previous study (Zhigunov et al., 2017), they found inversions in groups 1, 11, 15, 18.
The difference between our map and the last built can be explaned by the different approaches applied:
the integrated map and the ordering based on the reference genome.

2.3.3 Pipeline validation with simulations

The workflows can also be used as a validation tool for software developers. As an example,
running the SimulatedReads2Map workflow without VCF normalization (Tan et al., 2015), we found
some small inconsistencies in freebayes VCF markers positions (Figure A.7). Some marker’s positions
recorded in VCF were slightly displaced compared with the positions of the simulated markers.

Freebayes VCF requires normalization to be possible to make the correspondence of identified
markers with the simulated ones. It is an excellent practice to always normalize the alleles represen-
tation format in VCF files once this representation is not unique when dealing with different software.
Normalization involves reducing descriptions of a variant to a canonical representation. A safe represen-
tation considers parsimony of the polymorphism length and its left alignment to define the position (Tan
et al., 2015). Here we used BCFtools (Li, 2011) to perform the normalization of VCFs.

Freebayes and GATK identified a total of 2.399.744 (640284 indels and 1759460 SNPs) and
2.029.600 (217577 indels and 1812023 SNPs) markers, respectively, in P. tremula dataset. VCF normal-
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ization realigned 284336 sites in freebayes VCF. Moreover, it converted 27460 indels into SNPs (Table
A.4). The right marker positions are particularly important in our workflow because we want to com-
pare the SNP calling efficiency comparing the position of identified markers with the simulated and also
because we use these positions to recover read depth information from BAM alignment files.

2.3.4 Genome assembly assisted by linkage maps

As pointed out by Fierst (2015), linkage maps have been used to help reference genome
assembly. Here we use the P. thrichocarpa reference genome (Tuskan et al., 2006) to define the linkage
group and order the markers, but we still can help the assembly of sequences that are not included in
the major scaffolds. The P. thrichocarpa genome was the first published genome of a tree and it is now
in version 4.0, but still has 27 scaffolds not included in the 19 chromosome sequences. These scaffolds
sum approximately 3 Mb of 397 Mb in the genome. Freebayes identified 7379 markers in these sequences.
After filters, six markers were added in chromosome 19 (Figure 2.6), all from scaffold 25, suggesting a
relationship between these two genome sequences.

Genome assembly and linkage map tools are complementary in the task of ordering markers
or sequences. The genome assemblies joint small reads into larger sequences, solving the possible local
misplacements. Still, without long sequenced reads, it faces problems in ordering markers that are far
located in the genome, because some genome regions, such as repetitive regions, are difficult to assembly.

The linkage map is useful to understand where larger sequences are located. Building linkage
maps requires the identification of recombination breakpoints in individuals in populations. With a
limited number of individuals in progeny, the map does not have enough resolution to order markers
that are located close in the genome, even if we use efficient algorithms to solve the traveling salesman
problem, such as multidimensional scaling (MDS) (Preedy and Hackett, 2016). Thus, the capacity of
the linkage map to local ordering is not precise, especially in small populations.

2.3.5 Workflow flexibility

The workflow system presented was created to reproduce the same analysis with different
datasets. The designed workflows were limited to test two SNP callers, five genotype callers, and two
genetic map builders. They are modularized and the connection between tasks or sub-workflows has few
inputs and outputs, which makes it easy to locate specific functionalities (Voss et al., 2017). Therefore,
users with few programming skills can easily make changes in parameters. Other software can also be
included in our comparison, despite needing more WDL programming skills.

For development purposes, the simulations, combined with the shiny app, can be useful tools
to identify semantic errors in produced code. It is suggested that users test their modifications first
in a subset of data. Subset samples for simulations and empirical data workflows are available in the
repository.

In this context, the available Cromwell configuration to save cache in a database is also useful
and it allows access to the Cromwell server mode, which gives access to other tools to evaluate the process.

2.4 Conclusions

The HMM approach implemented in software to build linkage maps is robust and able to return
the best estimation possible of genetic distances. However, it is a lot of computer resources and time-
consuming. Also, many different tools can be applied in the upstream processing of genetic map building
with sequencing markers, such as the SNP and genotype calling. Testing every possible scenario to select
the best pipeline for the specific dataset can be very difficult.
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The workflows here provided offer a tool to test and select different combinations of software
and parameters to build linkage maps from sequencing reads. The entire procedure is facilitated by the
available configurations, Docker images, and graphical interface. Thus, users can focus on statistical and
genetic aspects evolving the linkage map building instead of technical issues.

We consider the SimulatedReads2Map workflow more useful for developers because it pro-
vides an overview of the entire procedure and facilitates the search for logical errors in codes. The
EmpiricalReas2Map is useful for users who want to select the best combination of software and pa-
rameters to build their genetic maps. To avoid users spend too much time with this pipeline selection,
we suggest running the map_emp sub-workflow with a subset of data (e.g. a single chromosome).
Once selected the pipeline, users can apply it for the entire dataset using genotyping4onemap, OneMap or
GUSMap in R environment.

The shiny app Reads2MapApp guides the users through several quality criteria for each approach
built genetic map. The main criteria to select the approach are the right color pattern in the recombination
fraction heatmaps and the number of recombination breakpoints identified. The heatmaps highlight the
grouping and ordering aspects of the map and the number of recombination breakpoints highlight the
presence/absence of genotyping errors in the dataset.

We can validate all upstream procedures of obtention of molecular markers and their usage to
genotype individuals if they can reproduce known genetic proprieties of linkage maps. The tools developed
in this work provide an easy way to test protocols and software for molecular marker application studies.

2.5 Availability and requirements

We tested the workflows in local computer, HPC and Google cloud services. The local computer
used had 8 cores and 32GB of RAM. The processor is a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz.
We tried in three HPC system, two of them presented issues with singularity permissions, revealing that
the workflows require proper singularity configurations by the HPC administrators. The workflows run
successfully in the University of São Paulo Aguia Cluster. It uses Slurm Workload Management (Yoo
et al., 2003) to manage the job submissions and has 128 nodes with 20 cores with 24GB RAM per core.
The processor is Intel(R) Xeon(R) CPU E7- 2870 @ 2.40GHz.

Project name: Reads2Map

Project home page: https://github.com/Cristianetaniguti/Reads2Map
https://github.com/Cristianetaniguti/Reads2MapApp

Platform: independent
Programming language: WDL
Other requirements: Java and Docker
License: GNU
Any restriction to use
by non-academics: defined by each software implemented
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3 THE EFFECT OF CONSIDERING GENOTYPE PROBABILITIES AND
HAPLOTYPE-BASED MULTIALLELIC MARKERS IN BUILDING LINKAGE MAPS
WITH HIGH-THROUGHPUT GENOTYPING

Abstract

Linkage maps are important tools for genetic studies. Nowadays, with high-throughput geno-
typing, there are millions of genetic markers available to build a map. The markers coming from this
technique have different characteristics compared with those commonly used, such as SSRs. The soft-
ware used to estimate the linkage map needed adaptations to deal with this new scenario and overcome
new issues. One of these issues is the genotyping errors generated by different sources such as sequenc-
ing errors, alignment, and PCR errors. Without proper analyses, it causes inflated genetic maps. One
possible solution for that is to consider the genotype probabilities coming from the genotype caller in
the Hidden Markov Model (HMM) used to estimate the genetic distances. However, to the best of our
knowledge, there is not yet available a clear recommendation about which genotype probability would
give the best results. Here we not only implemented this feature in OneMap 3.0 package but also used
the Reads2Map workflows to test the impact of freebayes, GATK, updog, polyRAD and SuperMASSA
genotype probabilities in the map build process, with empirical and simulated RADseq data. Each ap-
proach presented different results depending on the choice of the parameters. The results showed that
OneMap 3.0 can build high-quality maps if i) the genotype caller did not make many mistakes and we use
a global error rate of 5% or ii) if the genotype caller make mistakes but it also provides lower genotype
probabilities for wrong genotypes. In our study, the scenarios that showed to be the most advantageous
in terms of genotype probabilities used in the HMM were the freebayes as SNP caller, read counts from
VCF, and a single error rate of 5% or with genotype probabilities from SuperMASSA and PolyRAD.
They produced a denser map, closer to the expected recombination fraction matrix values and smaller
size. The other issue found in building linkage maps with high-throughput markers is the low informa-
tiveness of the SNPs. Because of their biallelic nature, SNPs bring a lack of information for the ordering
of the markers and the phase estimation in oucrossing species. The solution presented here is the us-
age of haplotype-based markers identified by the assembly-based haplotyping SNP callers freebayes and
GATK. We also tested the differences of using or not these markers with the Reads2Map workflows. We
observed improvements in the genetic distances and ordering in the presence of multiallelic markers, but
also higher map inflation caused by these markers if they contain genotyping errors. The final approach
selected was the freebayes as SNP and genotype caller, a global error probability of 5% and the presence
of haplotype-based multiallelic markers. We re-built the Populus tremula chromosome 10 linkage group
with 107 haplotypes-based multiallelic markers and 440 SNPs totaling 216.99 cM.

Key words: Linkage map; Genotyping error; Haplotype-based marker; RADseq.

3.1 Introduction

Since the first genetic map was built by Sturtevant in 1913, methodologies for building genetic
maps have been improved to deal with different and more complex genomes, like those from outcrossing
and polyploids species, and with different mapping populations. All efforts that have been done are
motivated by the importance of this tool for genetic researches, since genetic maps provide valuable
information.

Linkage maps are commonly applied to quantitative trait loci (QTL) studies. The QTL map-
ping estimates the genetic architecture of traits, which include mapping the molecular polymorphisms
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responsible for variation in complex traits; determining their gene frequencies and their homozygous,
heterozygous, epistatic, and pleiotropic effects in multiple environments (Mackay, 2001b).

Nowadays, with Breeding 4.0, QTL have also a great application for gene editing technologies
(Wallace et al., 2018). QTLs allow the identification of genes responsible for important phenotypes
and candidates to be edited. The gene edition allows breeders to add new alleles from germplasm in
breeding programs without lose the alleles of the well-established lines. As an example, Zsögön et al.
(2018) applied gene editing of six important genes of tomato to give wild lines the yield and productivity
similar to cultivated ones. Previous QTL studies needed to be made to identify these six genes effects
(Ashrafi et al., 2012; Frary et al., 2000).

Furthermore, it has becoming more usual to apply linkage maps to solve genome assembly
issues (Fierst, 2015). For many species, especially non-model organisms with large genome size, it is
still unaffordable to obtain reliable reference genome assemblies. For many species, only draft genomes
are available with thousands of sequenced segments (contigs) and very limited information on how these
can be assembled into chromosome sequences. Linkage maps can give content for ordering, orienting,
positioning and phasing linked sequences (Pengelly and Collins, 2018).

The growing accessibility of sequencing technologies is providing genome information for great
understandings about its structures, and how the genome diverges between individuals. The high-
throughput genotyping technology to obtain markers can provide ultra-dense genetic maps, which are
promising for advances for association studies. However, it also brings challenges for genetic map build-
ing procedures. Markers now are identified on large scale automatically, without the need for handwork,
which provides clear advantages to produce low-cost markers but they also have more genotyping errors.
Especially when high-throughput sequencing technology is applied to reduced representation libraries
(RADseq), which have an excess of duplicated sequenced sequences starting and finishing at the same
point of the genome. In RADseq data, the most of duplicated sequences are products from PCR, which in-
clude errors difficult to be identified by bioinformatics tools (der Auwera et al., 2020; Rivera-Colón
et al., 2020).

The excess of genotyping errors in datasets have been generated inflated genetic maps, with
unrealistic genetic distances (Smith and Nambiar, 2020), once each genotype error is considered an
extra recombination event. Studies have been made to search the sources of errors and correct them in
bioinformatics and statistical methods for SNP and genotype calling procedures (Hackett and Broad-
foot, 2003; Rivera-Colón et al., 2020; Gerard et al., 2018; Clark et al., 2019). The sources
of errors can also be considered in map building algorithms to provide reliable ultra-dense genetic maps
(Bilton et al., 2018; Mollinari and Garcia, 2019).

Another characteristic of high-throughput genotyping is the low-informativeness that comes
with the biallelic codominant nature of SNPs. In populations coming from inbred lines, this characteristic
does not have a significant impact, but, in outcrossing species, this brings as consequence difficulties to
integrate recombination from both parents and to ordering the markers. The low-informativeness of
non-integrated genetic maps brings limitations in further QTL analysis of multiallelic traits (Gazaffi
et al., 2020).

One possible solution to solve low-informativeness is to use assembly-based haplotyping SNP
callers in previous steps of map building, such as PolyBayes (Marth et al., 1999), samtools (Li, 2011),
freebayes (Garrison and Marth, 2012), GATK (Poplin et al., 2017; McKenna et al., 2010) and
Platypus (Rimmer et al., 2014), which combine close located biallelic markers into haplotypes and
output them as phased markers or multiple nucleotide markers (MNP).

The available algorithms in OneMap (Margarido et al., 2007) can build integrated genetic
maps and generate the linkage group haplotypes of each individual in the mapping population. To
estimate linkage phases, OneMap uses a multipoint approach with a Hidden Markov Model (HMM)
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method, but it requires high computational resources, time to process, and it is not efficient if there
are many genotyping errors and not at least a few informative markers. In this work, we adapted
OneMap algorithms to deal with high-throughput markers. Using the Reads2Map workflows (chapter
2), we tested the consequences of considering genotype error probabilities and haplotype-based multiallelic
markers to build linkage maps from sequencing reads. The workflows allowed the comparision using
freebayes, GATK (Poplin et al., 2017; McKenna et al., 2010) as SNP and genotype callers; updog
(Gerard et al., 2018), polyRAD (Clark et al., 2019), SuperMASSA (Serang et al., 2012) as
genotype caller; OneMap 3.0 and GUSMap (Bilton et al., 2018) as linkage map builder.

3.2 Material and Methods

The analysis here was made in R environment (R Core Team, 2020), and through workflows
written with Workflow Definition Language (WDL) and executed with Cromwell Execution Engine (Voss
et al., 2017). These workflows are available at https://github.com/Cristianetaniguti/Reads2Map.
The workflows results were evaluated with the shiny app Reads2MapApp (available at https://github.
com/Cristianetaniguti/Reads2MapApp).

3.2.1 Genotype probabilities in OneMap Hidden Markov Model

Here we updated the OneMap package to version 3.0 to include user-defined error probabilities
in the emission function of the already implemented HMM. With a combination of the HMM and EM
algorithm, OneMap can perform multipoint estimation of map genetic distance for F2, backcross, RILs,
and outcrossing populations. For the multipoint estimation, OneMap algorithms have adapted code from
R/QTL package (Broman et al., 2003) to use HMM approach (Lander and Green, 1987; Baum
et al., 1970).

Considering the latent variable Gi, i = 1,...,n, denote the true underlying genotypes for the
individual at a set of n ordered loci, the observed variable Oi as the molecular phenotype (observed
genotypes) for the locus i, the HMM can be represented as described in Broman et al. (2009):

P (O|Gi = gi) =
∑
g1

...
∑
gi−1

∑
gi+1

...
∑
gn

π(g1)

n−1∏
j=1

tj(gj , gj+1)

n∏
j=1

e(gj , Oj) (3.1)

The initial probability π(g1) is the probability of having a given genotype for the first locus
(G1) and its value depends on the cross-type. For example, for an outcrossing population, this value
will be 0.25, assuming a uniform distribution of possible genotypes (AB, BA, AB, and BB). The same
reasoning applies for backcross, with probabilities of 0.5, since there are only two genotypes (AA and
BB).

The transition probability tj(gj , gj+1) is the probability of the genotype in a locus (Gj=i+1)
change to the next locus genotype (Gj+1). The probability is based on the phase and recombination
fraction estimated by a two-points approach using maximum likelihood estimators (Maliepaard et al.,
1997). For example, if the estimated recombination fraction between two specific loci is 0.1, it will be
considered that there is a chance of 0.1 of that individual have a non-parental genotype for the two loci
evaluated.

The emission probability e(gj , Oj) is the probability of the observed variable given the genotype.
This probability is defined by an associated genotyping error (see Appendix VIII for details). The OneMap
software, until version 3.0, considered this error probability as a single value of 0.00001, for every genotype.
In version 3.0, this value is kept as default, to maintain the users’ code reproducibility. It can still be
applied for fragment-based markers, like SSRs, which have less chance to be wrong than SNPs from
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sequencing technologies. But in version 3.0 this probability can be unreliable for several situations.
Thus, a variable error rate can be applied according to the quality of each genotype.

Using SNPs from sequencing technologies it is possible to infer genotypes using bioinformatics
tools, which can consider diverse sources of errors and generate genotype probabilities based on that.
For example, errors in the alignment of sequences or by PCR bias and errors from random sampling
in low-depth sequencing. In context, OneMap 3.0 algorithm allows different values of error probabilities
in the emission probability of HMM. Users can customize these values using create_probs function.
Users can provide three types of values: one global value (global_error); an error probability for each
inferred genotype (genotypes_error); or genotype probabilities for each possible genotype in individuals
(genotypes_probs). Considering all available methods of SNP and genotype calling, there are many
options of values to be used in the new OneMap feature. However, there are no recommendations yet
about which are the best and how to obtain them. Users can be confused without clear selection criteria.
In this work, we tested the consequences of building maps applying different genotype probabilities coming
from genotype caller software and a global error rate of 0.05.

Here we used GATK (McKenna et al., 2010), freebayes (Garrison and Marth, 2012),
polyRAD (Clark et al., 2019), SuperMASSA (Serang et al., 2012) and updog (Gerard et al.,
2018) to estimate the genotypes and genotypes probabilities. For GATK and freebayes caller, we used the
Phred score genotype error (GQ FORMAT value) converted to probabilities.

OneMap uses the forward-backward algorithm (Baum et al., 1970) to compute the HMM
combined with the expectation-maximization algorithm (EM). Since version 3.0, OneMap presents the
possibility to parallelize the HMM using the approach described in Schiffthaler et al. (2017). It
parallelizes the procedure into a maximum of four cores. We used this new OneMap feature to estimate
the genetic distances in this work.

3.2.2 Empirical data

The dataset evaluated here already have a map built in Zhigunov et al. (2017). The authors
made the Illumina dataset available at NCBI under the BioProject PRJNA395596. The dataset comprises
sequences of a F1 full-sib mapping population from the intraspecific cross of two aspen genotypes (P.
tremula) (Zhigunov et al., 2017). RADseq libraries were constructed using HindIII and NalI enzymes
and sequenced as 150 base pair single-end reads on an Illumina HiSeq2500. Eight library replicates were
built and sequenced for the parents and only one for each of the 116 F1 offsprings.

The sequencing reads were filtered using the PreprocessingReads workflow. It uses the
Stacks plugin process_radtags (Catchen et al., 2013a) to filter sequences by restriction site and se-
quencing quality. The reads were discarded if the average quality score of 50% of its length was below
the Phred score of 10 (or 90% probability of being correct). Cutadapt (Martin, 2011) was used to re-
move adapters and filter by minimum read length of 64 pb. The sequences were then evaluated in the
EmpiricalReads2Map workflow.

First, the EmpiricalReads2Map workflow performs the alignment with BWA mem (Li, 2013).
Here, we used the Populus trichocarpa genome version 3.0 (Tuskan et al., 2006) as reference for the
reads alignment. The workflow merges the same samples BAM files (Li, 2011) keeping the libraries
identification on BAM header and use them to perform the SNP calling and genotype calling with
freebayes and GATK. Multiallelic makers are separated from biallelic using VCFtools (Danecek et al.,
2011a). Using BCFtools (Li, 2011), the position of identified markers are used to recover the read counts
for reference and alternative alleles of the biallelic markers from the BAM alignment files and create a
new VCF file (Danecek et al., 2011a) with updated measures, as suggested in Ros-Freixedes et al.
(2018).
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For the following steps, we kept only markers in chromosome 10. The biallelic markers were
filtered by Phred score of sequencing quality higher than 20, minor allele frequency (MAF) of 5%, maxi-
mum missing data allowed of 25%, and mean depth of 6 reads. The multiallelic markers were filtered by
sequencing quality, MAF of 5% and maximum missing data of 25%. VCF files with biallelic markers from
freebayes and GATK, and with read counts source from VCF and BAM files are input for the genotype
caller software updog, SuperMASSA and polyRAD. The estimated genotypes and genotypes probabilities
from each combination of SNP caller, genotype caller, and source of read depth are input for OneMap
3.0 and GUSMap. The workflow offers the possibility of including or not the multiallelic in the dataset
to build the map; here we performed the analysis with both possibilities.

To estimate the genetic distances we kept the reference genome markers positions. Markers
were also filtered by OneMap using maximum missing data of 25%, because the conversion of the VCF
file to OneMap raw data includes missing data in unexpected genotypes according to the loci segregation
(e.g. in a cross “AA x AB”, genotypes “BB” would be converted to missing data). We also filtered the
markers with segregation distortion using alpha 0.05 and Bonferroni correction and by GUSMap using
MAF of 5%, maximum missing data of 25%, and p-value of 5% for segregation distortion test. In OneMap,
genetic distances are estimated by HMM multipoint (Wu et al., 2002d,c) approach using as emission
probability a global error rate of 10−5 (default in OneMap version < 3.0, here we will refer to this scenario
as “OneMap_version2”), a global error rate of 0.05 (5%), and the genotypes probabilities estimated by
each genotype caller. All multiallelic markers received an error rate value of 0.05.

Considering all the pipeline combinations, the workflow outputted 34 possible maps for chro-
mosome 10. Here we obtained 68 because we analyzed with and without the multiallelic approach. Table
3.1 makes an overview for notations used to refer to each evaluated scenario.

To also test the influence of the presence of the multiallelic markers in the ordering procedure,
we used the built map for the chromosome 10 linkage group, and ordered its markers using MDSMap
(Preedy and Hackett, 2016) (also implemented in OneMap 3.0, see Attachment B) and order_seq
ordering algorithms with and without the multiallelic markers.

3.2.3 Simulation data

We also run SimulatedReads2Map workflow to perform the simulations of ddRADseq li-
braries and sequencing based on the 37% of the chromosome 10 sequence of Populus trichocarpa version
3.0, which refers to a sequence with 8.5 megabases from a total chromosome size of about 23 megabases.
This sequence comprises 38 cM of the group 10 built in chapter 2, or 21% of the linkage group total size.
The SimulatedReads2Map workflow uses RADinitio software to perform the RADseq simulations. The
RADinitio works in three separated steps: i) simulation of the variants and multiple individuals via a
coalescent simulation under a user-defined demographic model using msprime; ii) the simulations of the
RAD alleles with user-defined enzymes and considering the possibility of allele dropout; iii) the simu-
lations of the library enrichment and sequencing, where the RAD alleles are sampled with replacement
proportionally to the user-defined depth of sequencing.

The SimulatedReads2Map workflow skips the RADinitio first step to simulate natural pop-
ulations. Instead, it simulates a F1 population based on user-defined parents haplotypes or a VCF file
containing marker and allelic dosage information and a genetic map. Here, we used as reference the out-
put VCF from the GATK obtained with EmpiricalReads2Map workflow evaluation of the Zhigunov
et al. (2017) dataset with markers filtered using VCFtools (Danecek et al., 2011a). We filtered the
reference VCF with MAF 0.05, and maximum missing data of 25%. The parents’ haplotypes were sim-
ulated keeping the proportion of B3.7, D1.10, D2.15, and non-informative (“AA x BB”) marker types
found in the parents reference VCF file.
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The relation between physical and genetic distances of previous maps was used to train a
monotone cubic (or Hermite) spline interpolation (Hyman, 1983) model, which was applied to predict
the position in centimorgan to each marker physical position in the reference VCF. We investigate the
predictions based on three previous maps: from chapter 2, from Zhigunov et al. (2017) and Tong
et al. (2020).

The genetic map and the parents’ haplotype information were used as input for PedigreeSim
(Voorrips and Maliepaard, 2012), a software to perform the meiosis simulations and generate the
progeny haplotypes. We did not consider the interference in meiosis events (Haldane (1919) map
function). PedigreeSim output was converted to VCF file format which is input for the step “ii” of
RADinitio to add the polymorphisms in the reference genome sequence and simulate the ddRAD sequences.
The RADinitio uses the inherited efficiency model (Best et al., 2015) to simulate a PCR amplificated
pool of molecules. The model includes the heterogeneity of the PCR amplification and the polymerase
substitutions errors. After, RADinitio uses the user-defined ratio between DNA original molecules to
be sequence and PCR duplicates (we used the default parameter with a proportion of 4:1) to create a
distribution that will define the number of times the pool of loci is sampled, the number of duplicate
molecules that are generated from a RAD locus template, and the distribution of PCR errors in the
resulting reads. Besides the PCR errors inserted during the pool sampling, the software also includes
Illumina sequencing normal error pattern, where 3’ end of the read accumulates more errors than the 5’
(Glenn, 2011).

We tested different values of PCR cycles (5, 9, and 14) and mean depth (5, 10, and 20) to
simulate the FASTA files. We set the other simulation parameters to obtain 150 bases of read length,
sequence size of 350, and restriction enzymes HindIII and NalIII. The mean read depth parameter for
parents individuals was eight times superior to the progeny.

The RADinitio does not output the sequence scores of quality. By now, we converted the FASTA
file format to FASTQ format including a Phred score of 40 to every base simulated using seqtk (Li, 2020)
software. After obtaining the FASTQ files, the SimulatedReads2Map workflow followed the same
tasks as the EmpiricalReads2Map, with alignment, SNP, genotype calling and linkage map build.

The SimulatedReads2Map workflow makes comparisons between real and estimated results
within each step. The comparisons made during the entire workflow can be visualized in the shiny app
Reads2MapApp. See details of SimulatedReads2Map workflow and the shiny app in chapter 2. Not
all comparisons were possible to be made with GUSMap package because we could not have access to its
intermediary information, as the estimated genotypes and their associate probability for each individual
in progeny.

The combination of parameters that produced results closer to observed in empirical data
was selected to perform the analysis with five repetitions (five families) and two mean depths. Each
SimulatedReads2Map workflow run generates 68 maps with combinations of SNP caller, genotype
caller, source of the reads counts, map builder packages, and the presence or absence of false-positive
markers. We also run the Simulated2Map workflows two times in the presence and the absence of
haplotype-based multiallelic markers. Therefore, the experiment has a total of 5*2*2*68 (1360) maps
built for the first 8.5 Mb of the chromosome 10 of Populus trichocarpa genome. Table 3.1 makes an
overview of the notations used to refer to each evaluated scenario.
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Table 3.1. Notation used to refer to each scenario in empirical and simulated datasets.

Workflow step Notation Description

Reads simulations depth 10 Mean read depth used
to simulate the dataset

depth 20

SNP calling

freebayes Software used to identify the variants
in the datasets read sequences

GATK
BAM Source files of read counts information
VCF

Genotype calling

polyRAD Software used to perform the estimation of
genotype for a given read count information.

SuperMASSA
updog

freebayes/GATK

Depends of which software performed
the SNP calling. For example, If
the SNP calling was performed
with freebayes, the genotype

calling will also be.
In these cases, the only source of

read counts is the VCF files, because
using BAM would return the same results.

Genotype calling +
map building GUSMap This software performs together the

genotype calling and the map building.

Map building

polyRAD Maps built with genotypes
probabilities from polyRAD

SuperMASSA Maps built with genotypes
probabilities from SuperMASSA

updog Maps built with genotypes
probabilities from updog

freebayes/GATK
Maps built with genotype probabilities

from freebayes or GATK
dependending of which SNP caller.

polyRAD (5%) Map build with genotypes from
polyRAD and global error of 0.05

SuperMASSA (5%) Map build with genotypes from
SuperMASSA and global error of 0.05

updog (5%) Map build with genotypes from
updog and global error of 0.05

freebayes/GATK (5%) Map build with genotypes from freebayes
or GATK and global error of 0.05

OneMap_version2 Map build with genotypes from freebayes
or GATK and global error of 0.00001

3.2.4 Statistical analysis

The analysis was performed in markers from each combination of SNP caller, genotype caller,
and source of read counts after they were filtered by sequencing quality, MAF, segregation distortion,
redundancy, and missing data. Outlier markers breaking the pattern of the recombination fraction matrix
were removed only for the ordering test with and without haplotype-based multiallelic markers in the
empirical dataset.

We evaluate the estimated progenies genotypes concordance by comparing the agreement be-
tween real and estimated heterozygous, reference allele homozygous (homozygous-ref), and alterna-
tive allele homozygous (homozygous-alt). For that, we used conditional probabilities: P (Estimate =

E|Method = M ∩ Real = R). It returns the probability of an estimated genotype given a method and
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a real genotype. The methods are the combination of each SNP caller, genotype caller, and reads count
source. We expect that a good method results in high probabilities for the same estimated and real geno-
types (e.g. P (E = heterozygous|M ∩ R = hetetozygous)) and low probabilities when they are different
(e.g. P (E = heterozygous|M ∩R = homozygous− alt)).

To summarize each genotype caller model predictive power according to their outputted geno-
type probabilities we used receiver operating characteristic (ROC) curves. It plots the sensitivity
( true positives
true positives+false negatives ) in the vertical axis versus (1 - specificity) ( false positives

false positives+true negatives ) on
the horizontal axis for all possible thresholds π0 in a logistic regression (Berkson, 1944):

logit[π(x)] = log[
π(x)

1− π(x)
] = α+ βx

or

π(x) =
eα+βx

1 + eα+βx

where x is the error rate of the genotypes (1 - highest genotype probability) and the binary response
variable is if they were called correctly or wrongly. The formula implies that π(x) changes as an S-shaped
function of x. Parameter β determines the rate of increase or decrease of the S-shaped curve for π(x)

(Sloane and Morgan, 1996).
Higher is the sensitivity value for each (1 - specificity), better this particular error rate threshold

can differentiate wrong and correct genotypes. The best threshold would be the one more close to the left
superior corner of the graphic. Therefore, the better the predictive power, the higher is the ROC curve.
Because of this, the area under the curve provides a single value that summarizes predictive power. The
greater the area, the better the predictive power of the outputted error rate from the genotype call model
used (Bradley, 1997).

To test the capabilities of software correctly estimating the parents’ genotypes, we used the
same conditional probability, but, instead of measuring the similarities between individuals’ genotypes, we
tested the combination of both parents’ genotypes. To do that we performed the conditional probabilities
analysis between the marker types (e.g. P (E = B3.7|M ∩R = B3.7)).

Based on Mollinari et al. (2009), we compare the centimorgan distances of markers in the
maps estimated by each method and the real map using the Euclidean distance (D):

D = [(m− 1)−1(d̂− d)′(d̂− d)]1/2

where m is the number of markers evaluated, d̂ is the vector of estimated distances, d is the vector of real
distances, and ′ indicates vector transposition. A value of D = 1 means that the estimated map differs
with an average of 1 cM with the built map, regarding all genomic positions.

We evaluate the orders provided by the different ordering algorithms applied to empirical data
with and without the haplotype-based multiallelic markers. For that, we use the absolute value of the
Spearman’s rank correlation coefficient ρ (Spearman, 1902) calculated with:

ρ = 1− 6

m∑
i=1

d2i /m(m2 − 1)

where m is the number of markers evaluated, di is the difference between the rank of marker Mi on the
order obtained from a given ordering procedure, and the rank of marker Mi on the reference genome
position. We compared the marker’s distances between each ordering algorithm with the map built with
genomic position also using the Euclidean distance (D).
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3.3 Results and Discussion

3.3.1 SNP calling

After the filtering of FASTQ files by Phred quality score, the presence of the restriction enzyme
cut site, and the adaptors, and only reads alignment to the chromosome 10 reference sequence, it remained
in the empirical P. tremula dataset about 300 thousands of read sequences for the parents’ samples and
a highly variable number in progeny samples, with a minimum of 12 thousand and a maximum of 469
thousands of read sequences (Figure 3.1). The mean percentage of duplicated reads in the empirical
dataset was 76% (SE 0.55) and in the simulated dataset with mean depth 10 was 88% (SE 0) and in
the dataset with mean depth 20 was 92% (SE 0) according to picard MarkDuplicates tool (Institute,
2009). It shows that RADinitio simulates more duplicates by cycle than the empirical PCR performed to
generate the P. tremula dataset, for which was performed 14 cycles (Zhigunov et al., 2017).

To our best knowledge, the RADinitio software for sequencing reads simulations is the only one
available by now that was specific designed for RADseq data sets and able to simulate the duplicates.
Here we did not use the RADinitio first step to simulate the individuals and variants. Instead, we based
our simulations on the variants identified in the P. tremula empirical dataset by GATK software in the
EmpiricalReads2Map workflow. The GATK software VCF format, with MNP markers split by row,
made it possible to simulate single SNPs and the MNPs haplotypes, but indels needed to be removed
because of RADinitio currents limitations. The default parameter used of RADinitio simulates a ratio of
four DNA template molecules per sequenced DNA reads (4:1). The RADinitio also allows the user to
define the mean depth of the sequencing. With the Reads2Map workflows, we tested several values for
these parameters, to try to be as similar as possible with the empirical data (Figure 3.3). Changing the
values of the parameters we found that with low mean depths (5) and any of the number of PCR cycles
tested (5, 9, and 14) maps could not be built with markers identified by GATK, because the segregation
test filters out all of them. Setting the mean to 10 and a high number of PCR cycles (9 and 14) also kept
few markers in the GATK analysis. Thus, our experiments confirmed what der Auwera et al. (2020)
already pointed about the reduced capacity of GATK method to identify markers in PCR-based libraries
with a high number of duplicated sequences. However, GATK demonstrated high and stable accuracy in
datasets with fewer duplicates (Table 3.3). This GATK characteristic was also demonstrated in previous
comparisons (Schilbert et al., 2020; Yao et al., 2020; Perea et al., 2016) and in its spread usage
with RADseq data. Therefore, we performed all the simulated scenarios using 5 PCR cycles with mean
depths of 10 and 20.

In the empirical data, both freebayes and GATK SNP calling resulted in about 2 million markers
considering the entire P. tremula genome, and about 304 and 134 thousands respectively for the chromo-
some 10. Filtering the VCF files by sequencing quality, MAF, missing data and depth, we only kept 6%
of markers identified by freebayes and 7% by GATK (Table 3.2).
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Figure 3.1. Number and percentage of duplicated reads in empirical and simulated sequences. For the
empirical data, the library preparation was conducted with 14 PCR cycles. For the simulations with
RADinitio, 5 PCR cycles was considered.
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Table 3.2. The filters applied to markers indetified by freebayes and GATK software in P. tremula
RADseq data. The values in the table refer to the sum of total biallelics and multiallelics markers.
Filtered and normalized VCF biallelic markers positions were used to recover allele depth information
from the BAM files. ∗ Datasets used as inputs in maps_emp workflow to build the linkage maps with
34 different approaches. ∗∗ Dataset reference for the simulations.

Filters freebayes GATK
Chr10 304468 (100%) 133782 (100%)
Chr10 - mean quality >20 229474 (75%) 133782 (100%)
Chr10 - MAF <5% 152634 (50%) 61804 (46%)
Chr10 - missing data >25% 103983 (34%) 25715 (19%)
Chr10 - mean depth by marker <6 45731 (15%) 15717 (12%)

Chr10 - mean quality >20
- MAF <5%
- missing data >25%
- mean depth by marker <6

VCF 17621 (6%)* VCF 9723 (7%)*

BAM 15614 (6%)* BAM 13961 (11%)*

70 % of Chr10 - MAF <5%
- missing data >25%
- indels

- 1003 (0.7%)**

- -

For our simulation data, the freebayes and GATK kept a higher number of false-positive (type
I errors) and false negative (type II errors) markers. Despite the simulation presented a higher number
of duplicates than expected in an empirical dataset, the filters applied were able to remove most of the
SNP calling errors, mainly in the markers identified by GATK (Table 3.3).

Table 3.3. Percentages of mean rate of false negative (FN) and false positive (FP) markers identified by
SNP callers freebayes and GATK in the simulated data after datasets were filtered according to sequencing
quality, MAF, depth, and missing data. The comparision between the VCF files was made using GATK3
VariantsEval tool

.
freebayes GATK

Filters depth 10 depth 20 depth 10 depth 20

Chr10
Total markers (#) 27707 65272 10940 5841

FN (%) 82.6 81.4 78.7 78.8
FP (%) 99.4 99.7 98.1 96.5

Chr10 - MAF >5%
Total markers (#) 178 174 1374 1898

FN (%) 84.2 85.0 79.4 78.9
FP (%) 13.2 15.5 85.3 89.1

Chr10 - missing data >25%
Total markers (#) 27774 65312 9696 4124

FN (%) 82.6 81.7 78.8 79.2
FP (%) 99.4 99.7 97.9 95.1

Chr10 - mean depth by marker >6
Total markers (#) 27705 65312 9713 4152

FN (%) 83.0 81.7 78.6 78.7
FP (%) 99.4 99.7 97.8 95.0

Chr10 - mean quality >20
- MAF >5%
- missing data >25%
- mean depth by marker >6

Total markers (#) 178 174 200 202
FN (%) 84.2 85.0 79.6 79.4

FP (%) 13.2 15.5 0.493 0

Each step of the pipeline, starting by collecting the samples until the built linkage map can
include errors in the estimated genotypes. If markers are not filtered properly during the procedure,
in the end, the map building software will demand lots of computational resources and would not be
able to estimate the phases and genetic distances precisely. The approach of considering the genotype
probabilities in the HMM can only identify the errors if all polymorphisms were identified correctly by
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the SNP callers, if the genotype errors are not the majority of the dataset and if the markers are in the
correct order.

In the SNP calling step, type II errors are consequences of wrong nucleotide bases inserted in
the sequence or wrong alignment. Some of the nucleotide substitutions can be caused by DNA damage
during the extraction (Chen et al., 2017; Costello et al., 2013), or by spontaneous deamination of
methylated cytosine to uracil (Chen et al., 2014). Also, the polymerase errors in the PCR step (Best
et al., 2015) and sequencer addition of wrong nucleotides to the sequence (Ma et al., 2019). The
errors caused by the wrong alignment of the sequences can be reduced by filtering only reads that aligned
exactly to the sequence, with a high MAPQ value (Marshall et al., 2012).

For WGS and exome sequencing data is recommended to filter out duplicated sequences. These
sequences come from the library preparation using the PCR or also, from erroneous detection of a single
amplification cluster as multiples by the optical sensor of the sequencing instrument (Depristo et al.,
2011). For those library types, we expect an overlap of just part of the reads. Thus, duplicates are
redundant data that can add more errors to the analysis. In this context, the identification of the
duplicates to be filtered is usually made based on the quality score of the sequence bases. However,
duplicated sequences are expected for RADseq data because all sequences have a common starting point:
the restriction enzyme cute site. Filtering duplicates, in this case, would filter out most of the dataset,
reducing the read depth by loci and increasing the uncertainties about which presents the right sequence
(Kagale et al., 2016). Duplicates in RADseq presents advantages to sequencing depth, however, they
also bring more erroneous nucleotide substitutions from PCR.

The amount of false positives markers identified by GATK and freebayes reveal the importance of
applying the proper filters to the dataset. There are different strategies for filtering variants (Schilling
et al., 2014). Some based on simple measures as the read depth, alignment quality, minor allele fre-
quency, and others more robust, like those available in GATK toolkit, which implemented machine learning
methods to model the errors in the dataset based on a validated variant database (Depristo et al.,
2011; Auwera et al., 2013). Mapping populations have the advantage of having known segregation,
once it is a controlled cross. Filters based on biological aspects used to be more efficient than others
(Schilling et al., 2014). Here we applied filters to empirical data to keep in the dataset only high
depth markers to not overload the HMM with too many genotyping errors and also to reduce the total
number of markers to be evaluated by the maps_emp workflow, once the analysis is computational
demanding.

For the simulations, we kept the only 37% of the original chromosome, then we could perform
all the procedures without using other filters than the biological and the missing data. However, this
approach kept to the next step false positive markers in some studied scenarios (Figure 3.2, see also
notation Table 3.1).
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Figure 3.2. Frequency of correct SNPs, haplotype-based multiallelic and false positives markers iden-
tified by GATK and freebayes in the simulated data after filtered by segregation distortion, redundancy,
and missing data.

The false negatives markers reduce the genome coverage of the analysis. The low coverage in
RADseq is already expected because of the representation reduction of the libraries with the restriction
enzymes. In the F1 population context, with a large disequilibrium size, the low coverage usually is not
a problem. In our simulated data, we simulated markers close to the restriction enzyme cut site that
was identified in P. tremula empirical data. However, the simulations consider that the efficiency of the
enzyme can vary across libraries what may explain the high number of false negatives observed (Table
3.3). We used more permissive filters in the GATK VCF used as a reference for simulations to increase
the possible number of SNPs to be found in the studied region of the chromosome.

3.3.2 Genotype calling

Once the markers are identified, the genotypes of each individual can be estimated according
to the read count at each locus. Ideally, in a diploid individual, the homozygous would receive the same
allele from both parents, and the heterozygous would have half of the reads containing one allele and half
a different one. However, we can observe deviation of this ideal scenario using RADseq data (Figure 3.3).
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Figure 3.3. Read counts for genotypes alternative and reference alleles from VCF and BAM files
identified by freebayes and GATK in the P. tremula and in simulated datasets. Plots were made with a
subset with 3× 105 genotypes.

The RADinitio simulation results in alleles read counts distribution close to observed in the
progeny of the empirical data in terms of dispersion, allelic bias, and allelic dropout (Rivera-Colón
et al., 2020), but it could not simulate the low-depth counts for parents and neither the outlier genotypes
presented in the empirical dataset. Thus, our simulations were not able to cover these two characteristics
that can be found in empirical datasets.

The allelic bias has been observed frequently in RADseq data (Gerard et al., 2018; Rivera-
Colón et al., 2020). The main source of bias of RADseq data is related to the PCR amplification step
in its library preparation (der Auwera et al., 2020; Rivera-Colón et al., 2020). PCR reagents
randomly amplify DNA molecules with the presence of specific primers. If the reaction environment
contains few or poor quality original DNA molecules, the primers will not hybridize in all unique molecular
sequences at the first PCR cycle. As consequence, the target sequences identified by the primers only in
later cycles will have few copies compared with those identified in the first. Or maybe some molecules
would never be identified by the reaction reagents, causing the allele dropout. This is likely to happen
because, after several cycles, the PCR cloned sequence are more abundant in the reaction than the
original, making them easier targets for the PCR primers.
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OneMap 3.0 estimate genetic distances properly if i) the genotype caller do not make mistakes
estimating the genotypes and keep low error rate for these correctly inferred genotypes (e.g. in Figure
A.15 column “Real:homozygous-ref/Est:homozygous-ref” where P (E = homozygous − ref |M ∩ R =

homozygous − ref) = 1 and e = 0) ; or ii) if doing mistakes, the software output a high error rate for
the wrong genotypes (e.g P (E = homozygous− alt|M ∩R = heterozygous) = 0.2 and e = 0.4 in Figure
A.13 column “Real: heterozygous/Est: homozygous-alt”).

With the simulations we could measure the reliability of each software outputted genotype
probabilities for situation ii). Figure 3.4 shows the specificity and sensitivity profile considering different
thresholds in the genotype probabilities for each scenario. Higher is the area under the curve, the higher is
the genotypes probabilities reliability. Genotype probabilities thresholds closer to the left superior corner
have a higher capacity to differentiate right and wrong genotypes. Scenario with freebayes SNP caller,
and VCF as the source of counts presented the most reliable genotype probabilities for all genotype caller.
Considering the GATK SNP caller, the probabilities are better when read count source is the BAM files.
In scenario with freebayes SNP caller, polyRAD and updog genotype callers and BAM as counts source,
the result was a diagonal line because almost half of the dataset is composed by wrong genotypes (Table
3.4) and the probabilities values are random distributed between right and wrong genotypes (Figures
A.15, A.13 and A.14).

Table 3.4. Percentage of wrong genotypes in each studied scenario. The genotype call with GATK and
freebayes using the read count from BAM files would output the same results as using the VCF files,
then, we did not repeat the analysis and there are no results available for these scenarios.

.

SNPCall CountsFrom depth freebayes/GATK polyRAD SuperMASSA updog
freebayes VCF Depth 10 2.25 1.68 7.88 2.45
freebayes VCF Depth 20 0.16 1.15 2.08 0.17
GATK VCF Depth 10 7.31 5.09 14.70 10.68
GATK VCF Depth 20 0.98 0.67 5.12 3.08

freebayes BAM Depth 10 not applicable 48.99 7.77 49.00
freebayes BAM Depth 20 not applicable 49.69 2.07 49.78
GATK BAM Depth 10 not applicable 2.44 8.14 2.87
GATK BAM Depth 20 not applicable 1.91 2.36 0.46

In general, the results showed that all software presents more reliable genotypes for reference
homozygous than alternative or heterozygous, which is a consequence of the bias for the reference allele
in the dataset. Gerard et al. (2018); Van De Geijn et al. (2015) proposed methods to overcome
this issue. Van De Geijn et al. (2015) points to the alignment step as the cause of the bias because
reference alleles have more similarity with the target genome and tend to be easily aligned. The authors
propose a simple bioinformatic method to avoid this problem. The method comprises align the reads
two times, one with the original genome sequence and the other replacing the alternative bases identified
in their specific position in the genome. Only reads aligned in both cases are kept for the analysis.
However, Gerard et al. (2018) argument that the alignment could not be the only reason it happens.
Thus, the authors propose on Bayesian model to adjust the bias based on allele count distribution after
bioinformatics traditional approaches. The method of Gerard et al. (2018) is implemented in updog.
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Figure 3.4. ROC curves considering the real and estimated genotypes from the five families simulated
with mean depth 10 and 20 and with the firsts 8.5Mb of the chromosome 10 (38 cM). Here only biallelic
markers are considered.

The SuperMASSA (Serang et al., 2012) was designed to estimated ploidy and allele dosage
in polyploid species. Using a Bayesian approach it combines information of reads depths in parents
and progeny and the population structure to estimate the genotypes. Here we use the F1 model and a
modified version of the software to output the genotypes probabilities of each individual. Similarly with
updog, it uses the population segregation as a priori to model the distribution. The polyRAD (Clark
et al., 2019) was also designed to estimate alleles dosage in polyploid species also using the Bayesian
approach and considering population structure as priori.

OneMap 3.0 does not consider the parents’ genotype probabilities or error rates. Both parents’
genotype information is combined and identified by the expected segregation for the locus cross (Table
A.2). Thus, it is important to plan the sequencing experiment with high-quality parents’ genotypes,
because if they contain errors, they would not be identified by the map building procedure and it will
cause distortions in the resulted distances and haplotypes. Here, the empirical dataset presented eight
replicates for parents samples to be sequenced and we also simulated the parents with eight times more
mean depth.
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The informative combinations for outcrossing species with biallelic codominant markers must
have at least one heterozygous genotype in one of the parents, which includes the marker types B3.7,
D1.10, and D2.15. The haplotype-based multiallelic codominant markers can also present types A.1, A.2,
D1.9, and D2.14.

The approach implemented in SimulatedReads2Map workflow simulates the parents’ hap-
lotypes using the same proportion of marker types identified in the empirical VCF file. This approach
overcomes the missing data present in the empirical dataset. The VCF file used here as reference to
the simulations contains 4 markers A.2, 76 B3.7, 173 D1.10, 1 D1.9, 2 D2.14, 162 D2.15, and 219 non-
informative markers. We considered non-informative markers those with both parents homozygous.

To measure the genotyping concordance in parents we did not compare the real and estimated
individual parents genotypes, but the combination of each locus in both parents. We separated the
analysis between multiallelic and biallelic markers for each method (Figure 3.5). In our simulations, only
haplotype-based markers from freebayes remained in the dataset after filters.

Figure 3.5. Frequencies of each marker type observed according to estimated and real parents genotypes.
Here we did not account with false negative markers. The total number of markers here are the same in
real and estimated representations.

We expect that all multiallelic markers come from combinations of biallelic marker types, then
we found high conditional probabilities in this case (Appendix XII). The comparison showed the amount
of B3.7, D1.10, D2.15, and non-informative markers converted to A.1, A.2, D1.9, and D2.14 haplotype-
based markers. A higher proportion of B3.7 markers were converted to A.1 and A.2. The markers D1.9
and D2.14 haplotypes-based were converted from D1.10 and D2.15 SNPs combinations, respectively. Also,
the haplotyping approach could combine a few non-informative into A.1, D1.9, and D2.14 markers.

Considering only biallelic markers in the conditional probabilities analysis, the identification of
multiallelic marker types means erroneous estimated parents’ genotypes. We observed higher number of
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genotyping errors estimating parents’ heterozygous genotypes because of the already described dispersion
effect and also because they require higher sequencing depth to avoid random sampling of reads effect.
As consequence, some B3.7 markers are called D1.10 or D2.15.

We also observed a relatively high proportion of estimated markers as D2.15 type given D1.10 as
real and vice-versa by GUSMap, SuperMASSA, and updog in some scenarios (Figures A.22 and A.21). For
the SuperMASSA and updog genotype caller, we identify the markers presenting this error and evaluated
the pattern of the progeny estimated genotypes and the allele read counts. The GUSMap uses the read
counts directly in the genetic map distance estimation by HMM, we could not access progeny intermediary
genotype values or genotype probabilities to explore the reasons for the erroneous marker types estimated.

The Figure 3.6 and 3.7 represents patterns frequently observed in markers D2.15 erroneously
called as D1.10 and vice-versa. In both images we can see allele dropout in some individuals’ genotypes,
some of them should be called heterozygous (real genotype) but only presented the reference allele.
We identify different reasons for this scenario: i) if GATK software interprets a genotype as missing
data according to its filtering criteria, it always outputs the total allele read counts in the reference
count field of the VCF file (Figure 3.6 B). When extracting the counts directly from the VCF file,
the genotype callers GUSMap, updog, SuperMASSA, and polyRAD can not identify alternative alleles for
these genotypes. Using the read counts from the BAM files solves this issue (Figure 3.6 A); ii) the local-
alignment of freebayes can differ significantly from the BWA alignment, using the BWA BAM files as
the source of reads counts information may result in different read count proportions (Figure 3.7); iii) the
allele dropout can also be a consequence of polymorphisms in enzyme cut site or the non-amplification
of one allele in the PCR step. Despite we could not identify a particular marker with this pattern in our
simulated dataset, it can be found in an empirical dataset (Rivera-Colón et al., 2020).

Updog and SuperMASSA genotype callers models consider the segregation pattern of population
to infer the genotypes. When the progeny presents expected segregation closer to 1:1, the models estimate
one of the parents as heterozygous, but they can make mistakes about which of the parents is the one.
It can also be the cause of the wrong estimations of non-informative markers.

OneMap does not consider the parents’ genotype probabilities in the HMM genetic map es-
timation, then, to avoid this problem, these erroneous markers must be removed before the linkage
map building. This can be done easily by filtering the parents’ genotypes according to their genotype
probabilities if these values reflect the wrong estimation.
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Figure 3.6. Allele read counts in marker Chr10_1311451 identified by GATK considering all individuals
in a simulated population with mean depth 10. Colors represent the heterozygous and homozygous
genotypes. The marker was simulated as D2.15 marker type, but updog estimate it as D1.10 when read
counts from VCF file was used. This marker was considered non-informative by GATK and polyRAD. This
example case represents a frequently observed pattern of erroneous genotype estimations by SuperMASSA
and updog.
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Figure 3.7. Allele read counts in marker Chr10_2324067 identified by freebayes considering all individ-
uals in a simulated population with mean depth 20. Colors represents the heterozygous and homozygous
genotypes. The marker was simulated as D1.10 marker type, but updog and SuperMASSA estimate it as
D2.15 when read counts from BAM file were used. This marker was considered non-informative accord-
ing to freebayes genotype calling. The polyRAD software estimated the parents’ genotypes correctly using
this same marker. This example case represents a frequently observed pattern of erroneous genotype
estimations by SuperMASSA and updog.

3.3.3 Linkage map building

Until this session, we explored only the datasets obtained running the Reads2Map workflow
including the haplotype-based markers. Here we will discuss also the datasets evaluated only with biallelic
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and compare the difference between them in real and empirical data (Figures 3.8 and 3.9).

Figure 3.8. The total map size and the number of markers in the genetics maps built by Empirical-
Reads2Map workflow for P. tremula dataset.

Figure 3.9. The total map size and the number of markers in the genetics maps built by Simulate-
dReads2Map workflow based on 37% of P. trichocarpa chromosome 10. For this graphic, we did not
filtered out the false positives markers present in the dataset. GUSMap maps presented high variantion
between the simulations repetitions. Some of their maps presented size of 12000 cM, which distorted this
figure graphic scale. The comparision including these maps is in Figure A.24

.
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The empirical and real results are not comparable in terms of total size because they refer to
different chromosome sizes. The SimulatedReads2Map workflow would require unreliable time and
computer resources to run all 1360 maps in our experiment considering the entire chromosome. Even
with the parallelized BatchMap (Schiffthaler et al., 2017) approach, the estimation of the distance
with HMM is still the slowest step in the workflow when there are too many markers (see times spent to
estimate the map distances in A.25 and A.26).

We selected the map built in chapter 2 to be our reference for the recombination rate simulation
because it presented a lower number and smaller size of gaps compared with other previous maps and it
did not present many inversions compared with the reference genome (Appendix IX).

Running GUSMap with fixed order as presented in Bilton et al. (2018), we obtained “Inf”
value for the map genetic distances in some of the scenarios tested in EmpiricalReads2Map. It usually
happens because the algorithms identify non-linked markers in the same linkage group. Then, it returns
a numerical problem because of the non-expected value. OneMap used to have the same problem. To
overcome this issue, in SimulatedReads2Map we include a function to automatically remove these
markers from OneMap and GUSMap analysis.

The workflows build maps from sequencing reads considering the filter parameters defined in
the input file. It can not remove automatically possible outliers markers. The outliers removal requires
careful evaluation of diagnostic graphics, such as the heatmaps of recombination fraction matrix. Thus,
the maps built by the workflows include outliers which expand disproportionately the map size (see Figure
A.3). It makes the Reads2Map workflows an interesting tool just for a first selection of the method
to build the map. The resulted map built would require extra manipulation to achieve good quality.
The presence of outliers also makes the total size of the maps not a good parameter for our comparison.
Therefore, we used the average Euclidean distances to compare the estimated distances between the
markers with the real distances (Figure 3.10).

The haplotype-based multiallelic markers showed to be advantageous for almost all scenarios,
with exception of freebayes with counts from BAM and for maps built with updog genotype caller. These
results for simulated data differ from the empirical data results which showed an increase in the map size
in most of the scenarios. This can be the consequence of outliers markers more present in the empirical
data than the simulated. Because multiallelic markers are more informative, errors in these types of
markers can have a higher effect in maps than biallelic markers. Further investigations about multiallelic
markers in empirical data were made in the next session.

By the results of the Euclidean distance (D), we can also observe smaller distances in the
scenario with freebayes as SNP caller and counts source from VCF and considering any of the genotype
callers, except the updog for depth 10, freebayes and GUSMap. This scenario also presented the most
reliable genotype probabilities (Figure 3.4). The freebayes as genotype caller for this scenario did not
present reliable genotype probabilities but had few wrong genotypes. Thus, when the error rate was fixed
as 0.05 for all genotypes in this scenario, the variance in D is not observed.
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Figure 3.10. Average Euclidean distance (D) comparing estimated and real distances between markers.
GUSMap and OneMap 3.0 maps presented high variantion between the simulations repetitions. Some
of its Euclidean distances were higher than 7000 cM, which distorted this figure graphic scale. The
comparision including these maps is in Figure A.27.

Figure 3.11 shows the linkage maps built for one of the families simulated with depth 10 and
evaluated with freebayes SNP caller, counts from VCF and with multiallelic markers scenario. We can
see that several of the simulated maps built were reliable for this scenario, but some had more outlier
markers than others and would require more edition. The figure also shows the same scenario in the
empirical dataset. It presented some reliable maps built by polyRAD and freebayes. We selected the one
with few outliers: the one built with freebayes as genotype caller using a global error rate of 0.05. Then,
we download the sequence of the empirical data from the Reads2Map app and made editions removing
outlier markers. The obtained map for the linkage group of chromosome 10 has 557 markers and 217.61
cM total size.
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Figure 3.11. Maps built using approach with freebayes as SNP caller and counts source from VCF.
These linkage groups were build by SimulatedReads2Map and EmpiricalReads2Map workflows
running them with and without multiallelic markers. They need aditional edition to be reliable, but the
workflow approach allows the selection of best approach. GUSMap maps presented large map size which
distorted this figures scale, it is available in the Reads2Map shiny app.

3.3.4 Haplotype-based markers and ordering algorithms

Freebayes and GATK optimize their methods with haplotype reconstruction, then we can observe
phased genotypes in VCF outputted files. Both also output multiallelic SNPs, which can be confounded
with MNPs. It is important to differentiate the multiallelic SNPs from MNPs phased genotypes. The
multiallelic SNPs would require that multiple polymorphisms exist in a single base, which is unlikely to
happen because of the SNP biallelic nature, as discussed before. Then we interpreted the multiallelic
SNPs in the dataset as artifacts and they were filtered out.

Freebayes represents the haplotype-based markers in a single line of the VCF, by adding different
alternative alleles in its ALT field and varying the genotype numbers according to the respective allele
(e.g. ’ab’ as ’1/2’, ’ad’ as ’1/4’) (Figure A.11). This format, despite being less informative about the
SNPs individual positions, is fastly converted by new the algorithm in onemap_read_vcfR OneMap
function. The phased genotypes in format split by rows like the one outputted by GATK needs extra
manipulation to be represented as multiallelic markers in OneMap, but the algorithm to do that is also
already implemented in the function onemap_reads_vcfR. Note that not all phased markers can be
converted to multiallelic. It would depend on the combination of polymorphism present in the haplotype
block. Phased markers with no increase in the allelic information were kept as non-informative or biallelic
SNP in the VCF file.
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In our simulations, we allowed the possibility of the SNP callers to identify multiallelic markers
by considering the positions of the markers close to each other in the input reference VCF. The genotypes
at each position are simulated randomly, then we did not control which markers could be converted to
haplotype-based markers. As observed in empirical data, freebayes was able to identify more multiallelic
markers than GATK in our simulations (Figure 3.2).

The limitation of GATK to provide haplotype-based markers is because it builds the haplotypes
individually by sample. This approach is a robust and computational intensive method evolving de-
Bruijn-like graphs for local-reassembly and pair-HMM to calculate the likelihood for each read originate
of each haplotype. The computational demand to apply the method makes it not possible to perform the
haplotype and genotype call on a populational scale in the same analysis. To combine sample information,
GATK combines only the genotype likelihoods stored from all samples (Poplin et al., 2017). Thus, it
offers an accurate and scalable method of calling variants as SNPs and indels, but not haplotype-based
markers. The developers suggest imputation algorithms as Beagle (Browning and Browning, 2007)
to perform the phasing.

On the other hand, freebayes uses a Bayesian approach specifically to perform physical phasing
calling of multiallelic loci in sets of individuals (Garrison and Marth, 2012). It can identify more
multiallelic, however, brings more uncertainties about marker positions.

If the ordering of markers is already known, as was our case with P. tremula dataset, the
multiallelic markers provides phase information to the HMM to estimate the genetic distances. The
estimated linkage group of the P. tremula chromosome 10 contains 107 haplotype-based multiallelic
markers of type A.2. Theoretically, the presence of multiallelic markers reduces the time needed for
the analysis because the HMM does not need to test every possible phase. However, we observed small
diferences in HMM processing time between maps with only biallelic and maps with both biallelic and
haplotype-based multialllelic markers (Figure A.26 and A.25). The observed differences can be related to
the amount of markers in each linkage group and not to the marker type (Figure A.24). Also, because of
the higher informativeness, the presence of multiallelic markers provides more accurate genetic distance
estimations (Figure 3.12 C). The presence of multiallelic markers is particularly interesting when the
order of the markers is not known.

Algorithms that use two-points recombination fractions estimations to order only biallelic mark-
ers have to deal with missing linkage information between markers type D1 and D2. These markers can
only be related to each other in the presence of more informative markers, as B3.7 or the multiallelic. Fig-
ure 3.12 B shows the impact of including the multiallelic markers in the two-points-based MDS algorithm
(Preedy and Hackett, 2016). The presence of multiallelic markers slightly increases the Pearson cor-
relation and drastically reduces the Euclidean distance between the estimated ordering and the genomic
order. The genetic distance in the Figure 3.12 is estimated by OneMap HMM approach.

The order_seq algorithm is a strategy developed to apply HMM in the ordering procedure
(Margarido et al., 2007). It starts estimating the sequencing likelihood for a subset (default of
five markers) of the highest informative markers in the dataset, ordered by exhaustive, and after, it
adds sequentially all the others testing each possible position in the already established sequence. This
strategy used to be very accurate when dealing with few informative markers (as SSRs) but presents
a wrong order with only biallelic. Now, with the presence of haplotype-based multiallelic markers, the
strategy returns a high-quality order, reproducing almost completely the genomic order and the correct
pattern of recombination fraction matrix (Figure 3.12 A).
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Figure 3.12. Comparision between ordering algorithms performance in P. tremula chromosome 10
linkage group with only biallelic markers, and with biallelic and haplotype-based multiallelic markers.
The heatmaps represent the recombination fraction matrix between markers positioned at both axes. In
well-ordered linkage groups, we expect a gradient from hot colors in the diagonal (adjacent markers)
to cold color in the upper left and downright corners. The figure also presents the Spearmans’ rank
correlation (ρ) and the Euclidean distances (D) between the estimated map and the map build with
markers ordered by the genomic positions.

3.4 Conclusion

OneMap 3.0 offer to users the possibility to read and consider in the genetic map building
the genotype probabilities and haplotype-based multiallelic markers information from the input files
(OneMap format or VCF file). The success of genetic map building will be proportional to the quality
of the information provided by upstream procedures such as library preparation, SNP and genotype
calling, genotype probabilities estimation, and the combination of SNPs into haplotype-based makers.
As the upstream procedures for genotyping and identification of haplotype-based multiallelic markers are
improved, updates can be easily made in Reads2Map workflows, and no modification is required in
OneMap 3.0 algorithms, once only the values in the standard VCF file changes.

Only recently, it was developed a software able to simulate RADseq reads, however it still
presented a higher number of duplicated sequences and probably more genotyping errors than empirical
datasets. Also, it could not reproduce the indels and outlier markers. These differences can limit the
possible relation between empirical and simulated results in this study. We can also update Reads2Map
workflows as RADinitio or other simulation software are improved.

The relation between genotyping errors and genetic map quality was highlighted by our simu-
lation results. We considered high-quality maps those with the expected pattern of heatmap graphics of
recombination fraction matrix and number of recombination breakpoints (the consequence of the genetic
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distance between markers). We could get high quality genetic maps if they were built with datasets with
few genotyping errors and single error rate as observed in the genetic map built with freebayes as SNP
and genotype caller with a single error rate of 5%. Also, it is possible to obtain high-quality genetic maps
with a higher number of genotyping errors if the provided genotype probabilities correct differentiate
wrong and right genotypes, as presented by SuperMASSA software in the scenario with freebayes as SNP
caller, or by polyRAD when GATK is the SNP caller and VCF is the read counts source.

The simulations also showed consequences of some technical issues, that could be easily changed
to significantly increase the final genetic map built by the approach. The OneMap 3.0 new features
implemented were validated using the simulation results. OneMap 3.0 is still not able to consider the
parents’ genotype probabilities in the HMM, thus, it is important to only add in the map building
procedure high-quality parents’ genotypes.

The usage of haplotype-based multiallelic markers showed to improve significantly the ordering
and map distance estimation. They are also important for the integration of both parents’ genetic maps.
However, they can also add more genotyping errors to the analysis making editions needed for the outlier
markers removal.
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4 FINAL CONSIDERATIONS

Here we updated the OneMap package and presented user-friendly and reproducible workflows
to build linkage maps from read sequencing. The procedure in the Reads2Map workflows starts with
the filtering of the reads, then the alignment, SNP and genotype calling, and the map building. Several
software are considered. The shiny app Reads2MapApp helps users to select the software and parameter
combinations that result in the best linkage maps for their specific dataset.

OneMap 3.0 have updates to improve the speed and quality of the built maps, and also qual-
ity diagnostic graphic tools. The OneMap 3.0 major modifications were the implementation of vari-
able genotype probabilities in the HMM to estimate the genetic distances and the possibility of include
haplotype-based multiallelic markers generated from sequencing technologies. All OneMap 3.0 updates
were validated by application in empirical and simulated datasets in Reads2Map workflows.

Using genotype probabilities from different software in the HMM for estimating the genetic
distances are efficient depending on the dataset characteristics and upstream methods applied. We could
not make a single suggestion for all possible dataset profiles, but with the workflows Reads2Map, users
can try easily all possibilities and select the best for each dataset. The Reads2Map flexibility and an
organized structure make easy its adaptation if some of the software considered receives updates or to
include other software.

The presence of haplotype-based multiallelic markers improves the map quality and helps the
building map procedure. However, it can also bring more errors. It is necessary an edition of the
maps built by the workflows to remove the outlier markers, which deviates from the expected pattern of
recombination fraction and segregation.

Because the quality of the genetic maps depends on all upstream applied approaches, the
workflows Reads2Map combined with OneMap 3.0 are powerful tools to build linkage maps with markers
from sequencing technologies.
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APPENDICES

Appendix I - R popularity

Figure A.1. R language popularity according to January 2021 TIOBE index (the software quality company TIOBE,
2021)

Appendix II - Docker images

The workflows can be run in containers using docker images available in the Docker hub with
the following identification. Some of them were created particularly for this work.

Table A.1. Identification and versions of Docker hub images used in workflows.

Docker hub image Version
kfdrc/bwa-picard latest-dev

taniguti/gatk-picard 1.0
python 3.7

cristaniguti/r-samtools 1.0
cristaniguti/onemap_workflows 1.0

taniguti/gatk-picard 1.0
biocontainers/bcftools 1.3.1

taniguti/stacks 1.0
taniguti/pirs-ddrad-cutadapt 1.0

cristaniguti/radinitio 1.0
cristaniguti/simuscopR 1.0

taniguti/java-in-the-cloud 1.0
taniguti/miniconda-alpine 1.0

cristaniguti/onemap_workflows 1.0
taniguti/freebayes 1.0
lifebitai/bcftools 1.10.2-105-g7cd83b7

cristaniguti/vcftools 1.0
taniguti/vcftools 1.0
kfdrc/cutadapt latest
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Appendix III - Marker types for outcrossing populations

Table A.2. Marker types according to parents genotypes combinations and progeny segregation. The
letters “a”, “b”, “c” and “d” represent different alleles and the letter “o” represents null alleles. Adaptated
from Wu et al., (2002).

Parents Progeny
Marker type Cross Observed genotypes Expected segregation

A

1 ab x cd ac,ad,bc,bd 1:1:1:1
2 ab x ac a,ac,ba,bc 1:1:1:1
3 ab x co ac,a,bc,b 1:1:1:1
4 ao x bo ab,a,b,o 1:1:1:1

B
B1 5 ab x ao ab,2a,b 1:2:1
B2 6 ao x ab ab,2a,b 1:2:1
B3 7 ab x ab a,2ab,b 1:2:1

C 8 ao x ao 3a,o 3:1

D

D1

9 ab x cc ac,bc 1:1
10 ab x aa a,ab 1:1
11 ab x oo a,b 1:1
12 bo x aa ab,a 1:1
13 ao x oo a,o 1:1

D2

14 cc x ab ac,bc 1:1
15 aa x ab a,ab 1:1
16 oo x ab a,b 1:1
17 aa x bo ab,a 1:1
18 oo x ao a,o 1:1

Appendix IV - Codes to run workflows

Listing 4.1. Example code needed to run the workflow in a prompt terminal. File cromwell_cache
here is an example of cromwell configuration file. Configurations for HPC or cloud are defined here,
including how many jobs can be run parallelized at the same time. File SimulatedReads2Map.wdl in
the WDL workflow developed to simulated sequencing reads and perform all downstream steps and the
linkage map building. The SimulatedReads2Map.depth20.popsize200.json is an example file of inputs
specifications, see 4.2 for details.

java -jar \
-Dconfig.file=/some/path/to/Reads2Map/.configurations/cromwell_cache.conf \
-jar /some/path/to/cromwell -55.jar run /some/path/to/Reads2Map/SimulatedReads2Map.wdl \
-i /some/path/to/Reads2Map/inputs/SimulatedReads2Map.depth20.popsize200.json

# Access cromwell server
java -jar \
-Dconfig.file=/some/path/to/Reads2Map/.configurations/cromwell_cache.conf \
-jar /some/path/to/cromwell -55.jar server
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Listing 4.2. Example of JSON input file for SimulatedReads2Map.wdl workflow. This template
can also be generated automatically using WOMtools inputs function. If users do not want to change any
other software-specific parameter, this file is the only one that needs adaptations of directories paths to
run the workflow.
{

"SimulatedReads.number_of_families": 5,
"SimulatedReads.family": {

"seed": 5050,
"popsize": 200,
"ploidy": 2,
"cross": "F1"

},
"SimulatedReads.references": {

"ref_fasta": "/some/path/to/Chr10.populus.fa",
"ref_dict": "/some/path/to/Chr10.populus.dict",
"ref_ann": "/some/path/to/Chr10.populus.fa.ann",
"ref_sa": "/some/path/to/Chr10.populus.fa.sa",
"ref_amb": "/some/path/to/Chr10.populus.fa.amb",
"ref_bwt": "/some/path/to/Chr10.populus.fa.bwt",
"ref_fasta_index": "/some/path/to/Chr10.populus.fa.fai",
"ref_pac": "/some/path/to/Chr10.populus.fa.pac"

},
"SimulatedReads.global_seed": 6000,
"SimulatedReads.sequencing": {

"emp_vcf": "/some/path/to/reference.vcf",
"enzyme1": "HinDIII",
"enzyme2": "NlaIII",
"library_type": "ddRAD",
"chromosome": "Chr10",
"pcr_cycles": "14",
"read_length": "150",
"insert_size":"350",
"depth": "20",
"depth_parents":"160",
"ref_map": "/some/path/to/reference.map.Chr10.csv",
"multiallelics": "yes",
"vcf_parent1": "PT_F",
"vcf_parent2": "PT_M"

},
"SimulatedReads.max_cores": "20",
"SimulatedReads.ReadSimulations.filters": "--maf 0.05 --max-missing 0.75"

}
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Figure A.2. Cromwell server options to submit and consult status of workflow run. This interface can
be accessed via web browser once command described in 4.1 is active.
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Appendix V - Linkage map built for Populus tremula population

Figure A.3. On ”Map” screen of Reads2MapApp, user can download the RData file of selected pipeline
to further edition in R environment.



88

Table A.3. Overview of built map characteristics.* Markers located in scaffolds not assembled in the
reference genome.

Chromosome Number of markers Group size (cM) Markers in scaffolds* B3.7 D1.10 D2.15
1 683 332.64 0 160 268 255
2 461 211.81 0 90 203 168
3 390 175.36 0 57 170 163
4 406 179.99 0 75 157 174
5 489 188.23 0 82 215 192
6 520 275.04 0 106 202 212
7 290 112.81 0 57 119 114
8 389 167.54 0 92 154 143
9 276 128.6 0 53 118 105
10 452 173.05 0 82 184 186
11 274 198.42 0 55 103 116
12 258 122.65 0 51 114 93
13 318 166.94 0 63 126 129
14 383 161.38 0 72 146 165
15 314 149.78 0 66 128 120
16 247 129.52 0 42 115 90
17 291 162.14 0 45 134 112
18 250 129.62 0 44 112 94
19 245 134.43 6 41 103 101
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Appendix VI - Pipeline validation with linkage map

In this work, we test the capability of OneMap HMM to identify contaminant individuals in
the mapping populations. The haplotypes estimated by the HMM approach highlight the contaminants
(I_3_08, II_1_37, I_4_62, I_4_21 and I_3_70) because they present excess of recombination break-
points.

Figure A.4. Recombination breakpoints counts in estimated progeny haplotypes of a bi-parental cross
of P. tremula and seven contaminant individuals included in the progeny.
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Figure A.5. Missing data for each progeny individuals of a bi-parental cross of P. tremula including
seven contaminants.
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Figure A.6. Graphical view of the individuals 4 and 5 haplotypes for groups 1, 2, and 3. The graphic
is generated based on HMM posterior probabilities for the phased genotypes after the map is built in
OneMap.
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Appendix VII - Pipeline validation with simulations

Figure A.7. Graphical view of one SimulatedReads2Map workflow result. The y-axis shows the
difference in centimorgans between marker position from real and estimated genetic maps; the x-axis
represents each genotyping method included in the workflow. The markers colored in red do not have
the same position in the reference genome as its simulated correspondent. They will be considered false
positives if the VCF file is not corrected by normalization. Graphics were generated using different
workflow seeds. But, independently of the seed, the red dots appear in all maps built using freebayes
VCF if it is not normalized.

Table A.4. VCF normalization effect in markers codifications. Total of 284336 markers were realigned
in freebayes VCF.

VCF SNPCaller Number of markers
Indels SNPs

Raw Freebayes 640284 1759460
HaplotypeCaller 217577 1812023

With bcftools normalization Freebayes 612824 1786920
HaplotypeCaller 217577 1812023
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Figure A.8. Heatmap graphic measuring the recombination fraction between markers in each group of
P. tremula genetic map.
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Appendix VIII - Emission function for outcrossing

In the emission step of the HMM procedure, it considers a probability for every possible phased
genotype. For outcrossing and F2 intercross, there are four possibilities. Here we will denote them
generically as “AA”, “AB”, “BA”, and “BB”. The probability value that each one will receive depends
on which genotype was observed, the marker type (table A.2), and the associated error of the genotype
(e). As an example, If we have a marker type A (“ab” x “cd”) we can observe four different genotypes, if
we observe the genotype “ac” with high confidence (e = 0), the phase “AA” would receive the maximum
probability (1) and the others would receive 0. In the older version, OneMap considered a unique error
of 10−5 (e), which means that if the genotype was called as “ac”, the “AA” phased genotype have a
probability of 1 − 10−5 and the others have 10−5/3. This way we can include an uncertainty between
observed genotype and estimated phased genotype, this characterizes the hidden aspect of the Hidden
Markov Model.

For marker type A this could not seem very useful, because the genotype phased is already
represented in the observed genotypes. But other marker types do not have a direct relationship between
the observed genotype and the estimated phased genotype. For example, if we have a marker type
B3.7 and observe the “ab” genotype, the estimated phased genotype can be the “AB” or “BA” and we
will consider equal probabilities for them in the emission function. The multipoint aspect of the HMM
combined with the expectation-maximization (EM) will change these probabilities and, in the end, we
will be able to differentiate between phased genotypes.

In OneMap 3.0, users now can provide customized error rates or genotype probabilities to control
specific errors in their dataset. The values defined by users will be applied in three different ways in the
emission function of the HMM. The variable e represents the error rate described in equation 3.1 of
chapter 2. If users define a single value (global_error argument), it will be the error rate for all observed
genotypes. If users provide the genotype errors (genotype_errors), each genotype observed can receive a
different value of error rate. If users provide a probability for each genotype (genotypes_probs), the values
in each cell of the following table will be replaced by their respective user-provided genotype probability.
The tables below are based on R/QTL (Broman et al., 2003) emission function and describe how the
error values are implemented in OneMap HMM.

Each observed genotype (columns) receives specific genotype probabilities according to marker
type segregation and the error rate. The emission function returns from the iterative steps of the HMM
the estimated probability for the phased genotypes. In general, the error rate gives flexibility to the
HMM to change the genotypes according to the information from the entire sequence (Mollinari and
Garcia, 2019) or batches with proper size (Schiffthaler et al., 2017).

Table A.5. Emission function values according to marker types. The error rate is represented by e,
unphased genotypes as “a”, “b”, “c”, “d” and the combination of them. The estimated phased genotypes
are represented by “AA”, “AB”, “BA” and “BB”. The “o” represents null alleles. Marker types follow
the segregation pattern as described in table A.2

Marker type A observed genotypes

Marker sub-types

A1 ac ad bc bd
A2 ad ac a a
A3 bc ba bc b
A4 bd bc b o

Estimated phased genotypes

AA 1-e e/3 e/3 e/3
AB e/3 1-e e/3 e/3
BA e/3 e/3 1-e e/3
BB e/3 e/3 e/3 1-e

OneMap codification 1 2 3 4
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Table A.6. Continued from table 4
Marker type B1 observed genotypes
Marker sub-types B1.5 a ab b

estimated phased genotypes

AA 1-e e/3 e/3
AB 1-e e/3 e/3
BA e 1-e e/3
BB e e/3 1-e

OneMap codification 1 2 3

Table A.7. Continued from table 4
Marker type B2 observed genotypes
Marker sub-types B2.6 a ab b

estimated phased genotypes

AA 1-e e/3 e/3
AB e 1-e e/3
BA 1-e e/3 e/3
BB e e/3 1-e

OneMap codification 1 2 3

Table A.8. Continued from table 4
Marker type B3 observed genotypes
Marker sub-types B3.7 a ab b

estimated phased genotypes

AA 1-e e e/3
AB e/3 1-e e/3
BA e/3 1-e e/3
BB e/3 e 1-e

OneMap codification 1 2 3

Table A.9. Continued from table 4
Marker type C observed genotypes
Marker sub-types C.8 a o

estimated phased genotypes

AA (1-e)/3 e/3
AB (1-e)/3 e/3
BA (1-e)/3 e/3
BB e 1-e

OneMap codification 1 2

Table A.10. Continued from table 4
Marker type D1 observed genotypes

Marker sub-types

D1.9 ac bc
D1.10 a ab
D1.11 a b
D1.12 ab a
D1.13 a o

estimated phased genotypes

AA 1-e e
AB 1-e e
BA e 1-e
BB e 1-e

OneMap codification 1 2
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Table A.11. Continued from table 4
Marker type D2 observed genotypes

Marker sub-types

D2.14 ac bc
D2.15 a ab
D2.16 a b
D2.17 ab a
D2.18 a o

estimated phased genotypes

AA 1-e e
AB e 1-e
BA 1-e e
BB e 1-e

OneMap codification 1 2
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Appendix IX - Reference linkage maps

Figure A.9. Centimorgan and megabase pair relation of markers position in chromosomes 8 to 12
estimated in previous linkage maps built in chapter 1 and in Tong et al. (2020) and Zhigunov et
al. (2017) for Populus gender species. The figure also shows the simulated centimorgan position for
markers identified in Zhigunov et al. (2017) dataset using GATK. Read dots represents markers in
linkage map with inverted genome positions. They were removed from the dataset to train the spline
model for the simulations.
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Figure A.10. Centimorgan and megabase pair relation of markers position in chromosome 10 of reference
genetic map built previously in chapter 2 and in simulated with splines. Chromosome 10 sequence was
used as input for all sequences simulations here presented. Read dots represents markers in linkage map
with inverted genome positions. They were removed from the dataset to train the spline model for the
simulations.

Appendix X - Haplotype-based multiallelic markers

Figure A.11. Examples of haplotype-based multiple nucleotide polymorphism markers (MNP) repre-
sented in freebayes and GATK outputted VCF and their conversion to OneMap data.
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Appendix XII - Genotypes and error probabilities

Figure A.12. Frequencies of real and simulated heterozygous, reference and alternative homozygous
genotypes in the experiment. Each dot represents the frequency observed in one of the five repetitions
for each studied scenario.
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Figure A.13. The proportion of heterozygous, reference and alternative homozygous genotypes in
progeny correctly and incorrectly estimated and the associated error rate outputted by each genotype
caller used. The proportion (blue) is calculated with conditional probability P (E = estimated|M =
method ∩ R = real). The error rate (red) is outputted by each software according to the approach
implemented to call the genotypes. We obtained the error rate with 1 − P (E). The two mean depth of
sequencing used to simulate the RADseq reads are represented by the shape of the dots. The genotype
call with GATK and freebayes using the read count from BAM files would output the same results as
using the VCF files, then, we did not repeat the analysis and there are no results available for these
scenarios. Note that the probabilities here are relative to the real genotype frequency in the dataset
evaluated. Check their absolute frequency in figure A.12. In some cases the genotype estimated was
considered as homozygous despite having same number of reads for alternative and reference alleles,
these are here identified as ”homozygous-alt==ref”.
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Figure A.14. Figure A.13 continued.
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Figure A.15. Figure A.13 continued.
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Figure A.16. The conditional probability of haplotype-based estimated marker type given the method
and the real genotype. Here, the proportion of markers B3.7, D1.10, and D2.15 estimated as A.1, A.2,
D1.9 and D1.14 are consequences of haplotype-based SNP calling. The proportions here are relative to
the real genotype frequency in the dataset evaluated. Check their absolute frequency in figure 3.5 to
better view the proportions of each one in the total dataset. We highlight the change in scale between
left and right graphics. The genotype call with GATK and freebayes using the read count from BAM files
would output the same results as using the VCF files, then, we did not repeat the analysis and there are
no results available for these scenarios.
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Figure A.17. Figure A.16 continued.
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Figure A.18. Figure A.16 continued.
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Figure A.19. Figure A.16 continued.
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Figure A.20. The conditional probability of biallelic estimated markers type given the method and
the real genotype. Here, discordances between the real and estimated map can be considered errors in
genotype estimation. The proportions here are relative to the real genotype frequency in the dataset
evaluated. Check their absolute frequency in figure 3.5 to better view the proportions of each one in the
total dataset. We highlight the change in scale between left and right graphics. The genotype call with
GATK and freebayes using the read count from BAM files would output the same results as using the
VCF files, then, we did not repeat the analysis and there are no results available for these scenarios.
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Figure A.21. Figure A.20 continued.
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Figure A.22. Figure A.20 continued.
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Figure A.23. Figure A.20 continued.
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Appendix XIII - Simulated maps profiles

Figure A.24. Total size and number of markers of all maps built in the experiment.
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Figure A.25. Time spent by OneMap 2.0 and 3.0 and GUSMap in EmpiricalReads2Map to estimate
the P. tremula chromosome 10 linkage group genetic distances.



112

Figure A.26. Time spent by OneMap 2.0 and 3.0 and GUSMap in SimulatedReads2Map to estimate
the genetics distances for the simulated maps based on 38% of chromosome 10 of P. trichocarpa genome.
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Figure A.27. Average Euclidean distance (D) comparing estimated and real distances between markers
for all studied methods.
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ATTACHMENTS

Attachment A: Simulations with OneMap

During the OneMap update, we developt three ways to simulate mapping populations data
to test our new algorithms. The most complex, based on workflows, is described in this work and the
following tutorial explain how to use the other two: pedsim2raw and pedsim2vcf.

The tutorial also shows how to perform genotyping with updog (Gerard et al., 2018),
polyRAD (Clark et al, 2019), and SuperMASSA (Serang et al., 2012) using package genotyp-
ing4onemap with wrapper functions. This package was developt to give support to the workflows, but its
functions can be used independently.

Attachment B: OneMap Hidden Markov Model parallelization

Here we used the simulations functions described in Attachment A to certify the correct imple-
mentation in OneMap 3.0 of BatchMap (Schiffthaler et al., 2017) parallelization approach and to
test the alternative parallelization parmap.

Attachment C: Adaptation to build maps with F2 populations and dominant markers

Here we used the simulations functions described in Attachment A to certify the correct mod-
ification in the F2 functions to better deal with dominant markers and to be possible to build haplotype
graphics for each individual in progeny.

Attachment D: Maps resolution

Here we used the simulations functions described in Attachment A to demonstrate the impact
of population size in the map resolution.



Attachment A - Simulations with OneMap

OneMap 3.0 also makes interface with PedigreeSim (Voorrips and Maliepaard 2012) software to perform
simulations. There are three different ways to simulate maps in OneMap:

• Converting PedigreeSim output to OneMap raw data: function pedsim2raw

This function just converts the PedigreeSim files to OneMap raw data. The only source of errors is missing
data controlled by miss.perc argument.

• Converting PedigreeSim output to VCF file simulating allele depth with different distributions: function
pedsim2vcf

Simulating the VCF you can include other sources of errors. The map is simulated in PedigreeSim, and
according to each genotype, the chosen statistical distribution will simulate the reference and alternative
alleles counts. The genotypes can be reestimated according with the alleles counts simulated using the
genotype callers Updog (Gerard et al. 2018) (function updog_genotype), polyRAD (Clark, Lipka, and
Sacks 2019) (function polyRAD_genotype) and Supermassa (Serang, Mollinari, and Garcia 2012) (function
supermassa_genotype of genotyping4onemap package (C. H. Taniguti 2021a).

• Use a chromosome of a reference genome to simulate a bi-parental cross and RADseq Illumina reads for
each individual: workflow SimulatedReads2Map.wdl

The workflow SimulateReads2Map is available in Reads2Map workflows (C. H. Taniguti and Taniguti 2021)
repository in Github. It performs the simulation of RADseq Illumina reads for outcrossing population, the
SNP calling is made in Freebayes (Garrison and Marth 2012) and HaplotypeCaller (Poplin et al. 2017)
software, the genotype calling in updog (Gerard et al. 2018), SuperMASSA (Serang, Mollinari, and Garcia
2012) and polyRAD (Clark, Lipka, and Sacks 2019), and build genetics maps using every combination in
OneMap and GUSMap (Bilton et al. 2018). The workflow is wroten in Workflow Description Language
(WDL) and Cromwell workflow management system (Voss, Gentry, and Auwera 2017). The parameters of
every software implemented can be easily changed. All the results can be evaluated in a shiny app (C. H.
Taniguti 2021b).

Run PedigreeSim
First, download PedigreeSim java file. It will require java installed. You can run PedigreeSim directly and just
use the output files in OneMap or you can use a function named run_pedsim that facilitates this procedure.

The function does not provide every possibility offered by PedigreeSim software. If you want to change any
parameter that is not available in the function, please use directly the PedigreeSim software.
# For outcrossing population
run_pedsim(chromosome = "Chr1", n.marker = 54, tot.size.cm = 100, centromere = 50,

n.ind = 200, mk.types = c("A1", "A2", "A3", "A4", "B1.5", "B2.6", "B3.7",
"C.8", "D1.9", "D1.10", "D1.11", "D1.12", "D1.13",
"D2.14", "D2.15", "D2.16", "D2.17", "D2.18"),

n.types = rep(3,18), pop = "F1",
path.pedsim = "/home/cristiane/Programs/PedigreeSim/",
name.mapfile = "mapfile.map", name.founderfile="founderfile.gen",
name.chromfile="sim.chrom", name.parfile="sim.par",
name.out="sim_out")
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# For F2 population
run_pedsim(chromosome = c("Chr1", "Chr2"), n.marker = c(75, 75),

tot.size.cm = c(100,100), centromere = c(50,50),
n.ind = 200, mk.types = c("A.H.B","C.A", "D.B"),
n.types = rep(50,3), pop = "F2",
path.pedsim = "/home/cristiane/Programs/PedigreeSim/",
name.mapfile = "mapfile_f2.map", name.founderfile="founderfile_f2.gen",
name.chromfile="sim_f2.chrom", name.parfile="sim_f2.par",
name.out="sim_f2")

The function allows us to create f2 intercross and backcross populations from bi-parental cross of inbred
lines and segregating F1 population from bi-parental cross of heterozygous parents. You can define it in pop
argument. You must change the path.pedsim to the path where the PedigreeSim.jar is stored in your system.
You can also define the number of chromosomes (argument chromosome), the number of markers in each
chromosome (n.marker), the total size of the groups in cM (tot.size.cm), the position of the centromere
(centromere), number of individuals in the population (n.ind), the marker types (mk.types, see the table
in session Creating the data file of Outcrossing populations vignette and the number of markers of each
type (n.types).

We suggest you open the output files founderfile, chromfile, mapfile and parfile to check if they agree
with your intentions before proceeding to other analyses.

Simulate OneMap raw data
Once you run PedigreeSim, you should have the output file genotypes.dat. To convert this to OneMap raw
file, you just need to specify the cross-type (cross), which ones are the parents (parent1 and parent2), and
if you want to include missing genotypes (miss.perc). Only cross types outcross and f2 intercross are
supported by now.
# For outcrossing population
pedsim2raw(genofile = "sim_out_genotypes.dat", cross="outcross",

parent1 = "P1", parent2 = "P2", out.file = "sim_out.example.raw", miss.perc = 0)

onemap.obj <- read_onemap("sim_out.example.raw")

p <- plot(onemap.obj, all = F)
ggsave(p, filename = "plot_onemap1.jpeg")

# For F2 population
pedsim2raw(genofile = "sim_f2_genotypes.dat", cross="f2 intercross",

parent1 = "P1", parent2 = "P2", out.file = "sim_f2.example.raw", miss.perc = 0)
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onemap.obj <- read_onemap("sim_f2.example.raw")

p <- plot(onemap.obj, all = F)
ggsave(p, filename = "plot_onemap2.jpeg")

Simulate VCF file
The same output file from PedigreeSim, the genotypes.dat can be used to simulate a VCF file together with
the PedigreeSim mapfile and chrom. The advantage to simulate a VCF instead of OneMap raw file is that
VCF is a standard file format and can store a lot of other information including the allele counts, usually in
the field AD or DPR. The pedsim2vcf function can simulate the allele counts using negative binomial or updog
distributions (argument method). The main parameters for the distributions are defined with arguments
mean.depth, that defines the mean allele depth in the progeny, p.mean.depth that defines the mean allele
depth in the parents, argument disper.par defines the dispersion parameter, mean.phred defines the mean
Phred score of the sequencing technology used. The function can also simulate missing data (miss.perc).
Through argument pos and chr you can define vectors with physical position and chromosome of each marker.
With argument haplo.ref you define which one of the haplotypes in genotypes.dat will the considered
the reference. Establishing phase as TRUE, the VCF will have phased genotypes. After allele counts are
simulated, the genotypes are re-estimated using a binomial distribution. The VCF generated by this function
only has one or two FORMAT fields, the GT and AD (if counts = TRUE). Dominant markers are not
supported by this function.
run_pedsim(chromosome = "Chr1", n.marker = 42, tot.size.cm = 100, centromere = 50,

n.ind = 200, mk.types = c("B3.7", "D1.10", "D2.15"),
n.types = rep(14,3), pop = "F1",
path.pedsim = "/home/cristiane/Programs/PedigreeSim/",
name.mapfile = "mapfile.map", name.founderfile="founderfile.gen",
name.chromfile="sim.chrom", name.parfile="sim.par",
name.out="sim_out")

# For outcrossing population
pedsim2vcf(inputfile = "sim_out_genotypes.dat",

map.file = "mapfile.map",
chrom.file = "sim.chrom",
out.file = "simu_out.vcf",
miss.perc = 0,
counts = TRUE,
mean.depth = 100,
p.mean.depth = 100,
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chr.mb = 10,
method = "updog",
mean.phred = 20,
bias=1,
od=0.00001,
pos=NULL,
chr=NULL,
phase = FALSE,
disper.par=2)

library(vcfR)
vcfR_out.obj <- read.vcfR("simu_out.vcf")
onemap_out.obj <- onemap_read_vcfR(vcfR.object = vcfR_out.obj,

cross = "outcross", parent1 = "P1", parent2 = "P2")

p <- plot(onemap_out.obj, all=F)
ggsave(p, filename = "plot_onemap3.jpeg")

# For F2 population
run_pedsim(chromosome = c("Chr1", "Chr2"), n.marker = c(75, 75),

tot.size.cm = c(100,100), centromere = c(50,50),
n.ind = 200, mk.types = c("A.H.B"),
n.types = 150, pop = "F2",
path.pedsim = "/home/cristiane/Programs/PedigreeSim/",
name.mapfile = "mapfile_f2.map", name.founderfile="founderfile_f2.gen",
name.chromfile="sim_f2.chrom", name.parfile="sim_f2.par",
name.out="sim_f2")

pedsim2vcf(inputfile = "sim_f2_genotypes.dat",
map.file = "mapfile_f2.map",
chrom.file = "sim_f2.chrom",
out.file = "simu_f2.vcf",
miss.perc = 0,
counts = TRUE,
mean.depth = 100,
p.mean.depth = 100,
chr.mb = 10,
method = "updog",
mean.phred = 20,
bias=1,
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od=0.001,
pos=NULL,
chr=NULL,
phase = FALSE,
disper.par=2)

vcfR_f2.obj <- read.vcfR("simu_f2.vcf")
onemap_f2.obj <- onemap_read_vcfR(vcfR.object = vcfR_f2.obj,

cross = "f2 intercross", parent1 = "P1",
parent2 = "P2", f1 = "F1")

p <- plot(onemap_f2.obj, all=F)
ggsave(p, filename = "plot_onemap4.jpeg")

Graphical view of genotypes and allele counts
Function create_depth_profile generates dispersion graphics with x and y-axis pointing the reference and
alternative allele counts, respectively. The function is only available for biallelic markers and for outcrossing
and f2 intercross population. Each dot represents a genotype considering mks markers and inds individuals.
If are established NULL for both arguments, all markers and individuals are considered. The color of the dots
are according with the genotypes present in OneMap object (GTfrom = onemap) or in VCF file (GTfrom =
vcf) or the color can represent the error rate (1 - highest genotype probability) of each genotype in OneMap
object (GTfrom = prob). An rds file is generated with the data in the graphic (rds.file). The alpha
argument controls the transparency of color of each dot, regulate this parameter is a good idea when having
a big amount of markers and individuals.
# For outcrossing population
p <- create_depths_profile(onemap.obj = onemap_out.obj,

vcfR.object = vcfR_out.obj,
parent1 = "P1",
parent2 = "P2",
vcf.par = "AD",
recovering = FALSE,
mks = NULL,
inds = NULL,
GTfrom = "vcf",
alpha = 0.1,
rds.file = "depths_out.rds")

ggsave(p, filename = "depth_prof1.jpeg")
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# For f2 intercross population
p <- create_depths_profile(onemap.obj = onemap_f2.obj,

vcfR.object = vcfR_f2.obj,
parent1 = "P1",
parent2 = "P2",
f1 = "F1",
vcf.par = "AD",
recovering = FALSE,
mks = NULL,
inds = NULL,
GTfrom = "vcf",
alpha = 0.1,
rds.file = "depths_f2.rds")

ggsave(p, filename = "depth_prof2.jpeg")

If you choose to simulate allele counts in pedsim2vcf it is also possible to reestimate the genotypes using these
counts. Doing this, you will include errors in your data, coming from random sampling, if considering only
Poisson or negative binomial distributions, and/or dispersion, outliers and bias errors, if using updog model.
Another advantage is that reestimating genotypes with any of these software, you can obtain genotypes
probabilities to be used in the map building instead of only genotypes.

warning: The re-estimation of genotypes is only performed in biallelic codominant markers.

Updog, polyRAD, and SuperMASSA are software designed for genotyping polyploid species, which involve a
more complex procedure compared with diploid species. These software consider not only the proportion of
alleles to define the genotypes but other aspects as the expected distribution in the progeny according to
parent’s genotypes. See more about them in their manuals.
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Genotypes probabilities usage
OneMap 3.0 has three options to define error probability in the HMM emission phase. The default method
is to consider a global error rate for every genotype 10−5. Until this present version, only this procedure
was implemented. Now, with the function create_probs, we offer the option to change the global error
rate (global_error argument) or consider an error rate by genotype (genotypes_errors) or a genotype
probability for each genotype (genotypes_probs).

With updog

The function updog_genotype make the interface of OneMap with Updog to perform the genotype calling.
onemap_geno.updog <- updog_genotype(vcfR.object=vcfR_out.obj,

onemap.object= onemap_out.obj,
vcf.par = "AD",
parent1="P1",
parent2="P2",
f1=NULL,
recovering = FALSE,
mean_phred = 20,
cores = 4,
depths = NULL,
global_error = NULL,
use_genotypes_errors = TRUE,
use_genotypes_probs = FALSE)

p <- create_depths_profile(onemap.obj = onemap_geno.updog,
vcfR.object = vcfR_out.obj,
parent1 = "P1",
parent2 = "P2",
vcf.par = "AD",
recovering = FALSE,
GTfrom = "vcf")

ggsave(p, filename = "depth_prof3.jpeg")

With polyRAD

The function polyRAD_genotype make the interface of OneMap with polyRAD to perform the genotype
calling.
onemap_geno.polyRAD <- polyRAD_genotype(vcf="simu_out.vcf",

onemap.obj = onemap_out.obj,
parent1="P1",
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parent2="P2",
f1="F1",
crosstype="outcross",
global_error = NULL,
use_genotypes_errors = TRUE,
use_genotypes_probs = FALSE,
rm_multiallelic = F)

p <- create_depths_profile(onemap.obj = onemap_geno.polyRAD,
vcfR.object = vcfR_out.obj,
parent1 = "P1",
parent2 = "P2",
vcf.par = "AD",
recovering = FALSE,
GTfrom = "vcf")

ggsave(p, filename = "depth_prof4.jpeg")

With SuperMASSA

The function supermassa_genotype make the interface of OneMap with SuperMASSA to perform the
genotype calling.
onemap_geno.supermassa <- supermassa_genotype(vcfR.object=vcfR_out.obj,

onemap.object= onemap_out.obj,
vcf.par = "AD",
parent1="P1",
parent2="P2",
f1=NULL,
recovering = FALSE,
mean_phred = 20,
cores = 4,
depths = NULL,
global_error = NULL,
use_genotypes_errors = FALSE,
use_genotypes_probs = TRUE,
rm_multiallelic = F)

p <- create_depths_profile(onemap.obj = onemap_geno.supermassa,
vcfR.object = vcfR_out.obj,
parent1 = "P1",
parent2 = "P2",
vcf.par = "AD",
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recovering = FALSE,
GTfrom = "vcf")

ggsave(p, filename = "depth_prof5.jpeg")

Example
Here we want to compare the best map using updog counts simulations and updog, polyRAD and SuperMASSA
genotyping and genotypes probabilities. As a simple example, we will simulate only one family and one
chromosome. Simulation scenarios:

• Mean depth: 10, 50, and 100;
• Genetic map size: 100 cM
• Number of markers: 42
• Marker types: 14 B3.7; 14 D1.10; 14 D2.15

for(depth in c(100, 50, 10)){
run_pedsim(chromosome = "Chr1", n.marker = 42,

tot.size.cm = 100, centromere = 50,
n.ind = 200, mk.types = c("B3.7","D1.10", "D2.15"),
n.types = rep(14,3), pop = "F1",
path.pedsim = "/home/cristiane/Programs/PedigreeSim/",
name.mapfile = "mapfile.map", name.founderfile="founderfile.gen",
name.chromfile="sim.chrom", name.parfile="sim.par",
name.out="sim_out")

# VCF with unmodified genotypes
pedsim2vcf(inputfile = "sim_out_genotypes.dat",

map.file = "mapfile.map",
chrom.file = "sim.chrom",
out.file = "simu_out.vcf",
miss.perc = 0,
counts = FALSE)

vcfR_out.obj <- read.vcfR("simu_out.vcf")
onemap_out.obj <- onemap_read_vcfR(vcfR.object = vcfR_out.obj,

cross = "outcross", parent1 = "P1", parent2 = "P2")

twopts <- rf_2pts(onemap_out.obj)
seq_ord <- make_seq(twopts, order(as.numeric(onemap_out.obj$POS)))
map_real <- map(seq_ord, phase_cores = 4)
p <- rf_graph_table(map_real, main = paste0("Real_",depth))
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ggsave(p, filename = paste0("real", depth,".jpeg"))

# Simulating counts
pedsim2vcf(inputfile = "sim_out_genotypes.dat",

map.file = "mapfile.map",
chrom.file = "sim.chrom",
out.file = "simu_out.vcf",
miss.perc = 0,
counts = TRUE,
mean.depth = depth,
p.mean.depth = depth,
chr.mb = 10,
method = "updog",
mean.phred = 20,
bias=0.8,
od=0.0001,
pos=NULL,
chr=NULL,
phase = FALSE,
disper.par=2)

vcfR_out.obj <- read.vcfR("simu_out.vcf")
onemap_out.obj <- onemap_read_vcfR(vcfR.object = vcfR_out.obj,

cross = "outcross", parent1 = "P1", parent2 = "P2")

onemap_geno.updog <- updog_genotype(vcfR.object=vcfR_out.obj,
onemap.object= onemap_out.obj,
vcf.par = "AD",
parent1="P1",
parent2="P2",
f1=NULL,
recovering = TRUE,
mean_phred = 20,
cores = 4,
depths = NULL,
global_error = NULL,
use_genotypes_errors = FALSE,
use_genotypes_probs = TRUE,
rm_multiallelic = F)

twopts <- rf_2pts(onemap_geno.updog)
seq_ord <- make_seq(twopts, order(as.numeric(onemap_geno.updog$POS)))
map_updog <- map(input.seq = seq_ord, phase_cores = 4, rm_unlinked = T)
# If HMM find problems between two markers, one of them will be automatically
# discarted and the sequence of markers without it will be returned
while(is(map_updog, "vector")){

# if the result is a sequence of marker numbers, then HMM is run again
# This will be repeteated until HMM can run with no problems
seq_temp <- make_seq(twopts, map_updog)
map_updog <- map(input.seq = seq_temp, phase_cores = 4, rm_unlinked = T)

}
p <- rf_graph_table(map_updog, main = paste0("Updog depth",depth))
ggsave(p, filename = paste0("updog", depth,".jpeg"))
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onemap_geno.polyRAD <- polyRAD_genotype(vcf="simu_out.vcf",
onemap.obj = onemap_out.obj,
parent1="P1",
parent2="P2",
f1="F1",
crosstype="outcross",
global_error = NULL,
use_genotypes_errors = FALSE,
use_genotypes_probs = TRUE,
rm_multiallelic = F)

twopts <- rf_2pts(onemap_geno.polyRAD)
seq_ord <- make_seq(twopts, order(as.numeric(onemap_geno.polyRAD$POS)))
map_polyRAD <- map(input.seq = seq_ord, phase_cores = 4, rm_unlinked = T)
while(is(map_polyRAD, "vector")){

seq_temp <- make_seq(twopts, map_polyRAD)
map_polyRAD <- map(input.seq = seq_temp, phase_cores = 4, rm_unlinked = T)

}
p <- rf_graph_table(map_polyRAD, main = paste0("polyRAD depth", depth))
ggsave(p, filename = paste0("polyrad", depth,".jpeg"))

onemap_geno.supermassa <- supermassa_genotype(vcfR.object=vcfR_out.obj,
onemap.object= onemap_out.obj,
vcf.par = "AD",
parent1="P1",
parent2="P2",
f1=NULL,
recovering = FALSE,
mean_phred = 20,
cores = 4,
depths = NULL,
global_error = NULL,
use_genotypes_errors = FALSE,
use_genotypes_probs = TRUE,
rm_multiallelic = F)

twopts <- rf_2pts(onemap_geno.supermassa)
seq_ord <- make_seq(twopts, order(as.numeric(onemap_geno.supermassa$POS)))
map_supermassa <- map(input.seq = seq_ord, phase_cores = 4, rm_unlinked = T)
while(is(map_supermassa, "vector")){

seq_temp <- make_seq(twopts, map_supermassa)
map_supermassa <- map(input.seq = seq_temp, phase_cores = 4, rm_unlinked = T)

}
p <- rf_graph_table(map_supermassa, main = paste0("supermassa depth", depth))
ggsave(p, filename = paste0("supermassa", depth,".jpeg"))

onemap_0.05 <- create_probs(onemap_geno.updog, global_error = 0.05)

twopts <- rf_2pts(onemap_0.05)
seq_ord <- make_seq(twopts, order(as.numeric(onemap_0.05$POS)))
map_0.05 <- map(input.seq = seq_ord, phase_cores = 4, rm_unlinked = T)
while(is(map_0.05, "vector")){

seq_temp <- make_seq(twopts, map_0.05)
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map_0.05 <- map(input.seq = seq_temp, phase_cores = 4, rm_unlinked = T)
}
p <- rf_graph_table(map_0.05, main = paste0("0.05", depth))
ggsave(p, filename = paste0("0.05", depth,".jpeg"))

draw_map2(map_real, map_updog, map_polyRAD,
map_supermassa, map_0.05, main = depth,
group.names = c("Real", "UD", "PR", "SM", "0.05"),
output = paste0(depth,"_maps.jpeg"))

}

Sequencing depth 100
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Sequencing depth 50

Sequencing depth 10
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Conclusions
The functions pedsim2raw and pedsim2vcf can be useful to test new algorithms and genetic questions which
not need to consider genotyping errors. Besides updog has a robust model to simulate and identify sequencing
errors, it can not be used to test its own performance. To be possible to make a fair comparison, errors
must be simulated with another approach, as the one implemented in Reads2Map workflows. The simulation
performed here was just to demonstrate the usage; we can not make any conclusions based on that.

Simulate Illumina reads
This one is a bit more complex, and its tools are stored in the GitHub repository Reads2Map workflows (C.
H. Taniguti and Taniguti 2021). Please, access it for more information.

Remove generated files

system("rm sim* founderfile* mapfile* *rds ")
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Attachment B - OneMap Hidden Markov Model parallelization

The goal here is to optimize the speed of OneMap Hidden Markov Model (HMM) (Margarido, Souza, and
Garcia 2007) algorithm to genetic distance estimation. For this, we implemented in OneMap two approaches:
parmap function and the approach proposed in BatchMap package (Schiffthaler et al. 2017), a fork from
OneMap.

The parmap splits an ordered sequence into groups according to the number of cores available to the analyses.
The groups have an overlap of markers in their edges, to be possible the later joint of them. Here we use
these overlap markers also to compare the estimated genetic distance between groups and see how the process
can affect the maps distances.

The approach implemented in BatchMap (and now in OneMap) also divides the sequence into batches, but
the parallelization is limited by the number of possible phases. Therefore, a maximum of four cores can be
used to estimate genetic distances for outcrossing species.

To be a fair comparison, here we use four cores for both approaches.

Tests:

All scenarios have 1 chromosome with 100 cM, 5 family F1, progeny size of 150 individuals, 504 markers, 6
cores, and overlap of 5 markers.

• Scenario 1: 28 markers of each one of the 18 possible types, without missing data
• Scenario 2: 168 markers of D1.10, D2.15, and B3.7 types, without missing data
• Scenario 3: 28 markers of each one of the 18 possible types, 25% of missing data
• Scenario 4: 168 markers of D1.10, D2.15 and B3.7 types, 25% of missing data

Measures:

• Total size
• Recombination fraction difference between overlap markers
• Time to run

Another test applied was to increase the tolerance value of the HMM. All scenarios were repeated with
tolerance value of 10−3 (the default value is 10−5).

Packages

library(parallel)
library(onemap) # Since version 2.2.0
library(tidyverse)

Functions

runcomp <- function(n.marker, mk.types, n.types, miss.perc,tol=10E-5){
n.fam <- 5
int.tot.size <- par.tot.size <- int.time <- vector()
par.time <- int.cms <- par.cms <- diff2 <- vector()
batch.tot.size <- batch.time <- batch.cms <- vector()
for(w in 1:n.fam){

run_pedsim(chromosome = c("Chr1"), n.marker = n.marker,
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tot.size.cm = c(100), centromere = c(50),
n.ind = 200, mk.types = mk.types,
n.types = n.types, pop = "F1", path.pedsim = "~/Programs/PedigreeSim/",
name.mapfile = "mapfile.map", name.founderfile="founderfile.gen",
name.chromfile="sim.chrom", name.parfile="sim.par",
name.out="sim_out")

pedsim2raw(cross="outcross", genofile = "sim_out_genotypes.dat",
parent1 = "P1", parent2 = "P2",
out.file = "sim_out.example1.raw", miss.perc = miss.perc)

df <- read_onemap("sim_out.example1.raw")

twopts <- rf_2pts(df)

seq1 <- make_seq(twopts, "all")

batch_size <- pick_batch_sizes(input.seq = seq1,
size = 80,
overlap = 30,
around = 10)

batch.time <- rbind(batch.time,
system.time(batch.map <- map_overlapping_batches(input.seq = seq1,

size = batch_size,
phase_cores = 4,
overlap = 30, rm_unlinked = T)))

batch.cms <- rbind(batch.cms, cumsum(c(0, haldane(batch.map[[1]]$seq.rf))))
batch.tot.size <- c(batch.tot.size, batch.cms[length(batch.cms)])

int.time <- rbind(int.time, system.time(int.map <- map(seq1, tol=tol)))
int.cms <- rbind(int.cms, cumsum(c(0,haldane(int.map$seq.rf))))
int.tot.size <- c(int.tot.size, int.cms[length(int.cms)])

par.time <- rbind(par.time,
system.time(map2 <- parmap(input.seq = seq1,

cores = 6, overlap = 5, tol=tol)))

diff2 <- rbind(diff2, map2[[1]])

par.map <- map2[[2]]
par.cms <- rbind(par.cms, cumsum(c(0,haldane(par.map$seq.rf))))
par.tot.size <- c(par.tot.size, par.cms[length(par.cms)])

}
result <- list(diff2, int.tot.size, par.tot.size, batch.tot.size,

int.time, par.time, batch.time, int.cms, par.cms, batch.cms)
names(result) <- c("diff", "int.tot.size", "par.tot.size",

"batch.tot.size", "int.time", "par.time",
"batch.time", "int.cms", "par.cms", "batch.cms")

return(result)
}
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Running each scenario
• scenario (1)

cen1 <- runcomp(n.marker = 504,
mk.types = c("A1", "A2", "A3", "A4", "B1.5", "B2.6", "B3.7",

"C.8", "D1.9", "D1.10", "D1.11", "D1.12", "D1.13",
"D2.14", "D2.15", "D2.16", "D2.17", "D2.18"),

n.types = rep(28,18),
miss.perc = 0)

• scenario (2)
cen2 <- runcomp(n.marker = 504,

mk.types = c("B3.7","D1.10", "D2.15"),
n.types = rep(168,3),
miss.perc = 0)

• scenario (3)
cen3 <- runcomp(n.marker = 504,

mk.types = c("A1", "A2", "A3", "A4", "B1.5", "B2.6", "B3.7",
"C.8", "D1.9", "D1.10", "D1.11", "D1.12", "D1.13",
"D2.14", "D2.15", "D2.16", "D2.17", "D2.18"),

n.types = rep(28,18),
miss.perc = 25)

• scenario (4)
cen4 <- runcomp(n.marker = 504,

mk.types = c("B3.7","D1.10", "D2.15"),
n.types = rep(168,3),
miss.perc = 25)

• scenario (1) tol
cen1.tol <- runcomp(n.marker = 504,

mk.types = c("A1", "A2", "A3", "A4", "B1.5", "B2.6", "B3.7",
"C.8", "D1.9", "D1.10", "D1.11", "D1.12", "D1.13",
"D2.14", "D2.15", "D2.16", "D2.17", "D2.18"),

n.types = rep(28,18),
miss.perc = 0, tol=10E-4)

• scenario (2) tol
cen2.tol <- runcomp(n.marker = 504,

mk.types = c("B3.7","D1.10", "D2.15"),
n.types = rep(168,3),
miss.perc = 0, tol=10E-4)

• Scenario (3) tol
cen3.tol <- runcomp(n.marker = 504,

mk.types = c("A1", "A2", "A3", "A4", "B1.5", "B2.6", "B3.7",
"C.8", "D1.9", "D1.10", "D1.11", "D1.12", "D1.13",
"D2.14", "D2.15", "D2.16", "D2.17", "D2.18"),

n.types = rep(28,18),
miss.perc = 25, tol=10E-4)
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• Scenario (4) tol
cen4.tol <- runcomp(n.marker = 504,

mk.types = c("B3.7","D1.10", "D2.15"),
n.types = rep(168,3),
miss.perc = 25, tol=10E-4)

save.image("results.RData")

Results
Jointing information from all scenarios:
load("results.RData")

tot.size.cm <- 100
n.marker <- 504
int <- tot.size.cm/n.marker
pos <- seq(from=0, to=tot.size.cm, by=int)

tot.cen <- list(cen1, cen1.tol, cen2.tol, cen2, cen3, cen3.tol, cen4, cen4.tol)
names(tot.cen) <- c("cen1", "cen1.tol", "cen2", "cen2.tol",

"cen3", "cen3.tol", "cen4", "cen4.tol")

df_diff <- df_tot_size <- df_times <- df_sizes <- vector()
for(i in 1:length(tot.cen)){

# Diff
temp.df <- cbind(paste0("simu",1:length(tot.cen[[i]][[2]])),

sqrt(tot.cen[[i]][[1]]^2))
colnames(temp.df) <- c("simu", paste0("Overlap",

1:dim(tot.cen[[i]][[1]])[2]))
diff <- gather(data.frame(temp.df), key, value, -simu)
df_diff <- rbind(df_diff, data.frame(scen= names(tot.cen)[i], diff))

# tot.size
temp.df <- data.frame(tot.cen[[i]][c(2:3,8)]) # change here
temp.df <- cbind(simu = paste0("simu", 1:length(tot.cen[[i]][[2]])), temp.df)
colnames(temp.df) <- c("simu", "all", "parmap", "batchmap")
df_tot_size <- rbind(df_tot_size, data.frame(scen= names(tot.cen)[i],temp.df))

# time
temp.df <- data.frame(simu = paste0("simu", 1:length(tot.cen[[i]][[2]])),

int.time= tot.cen[[i]][[4]][,3],
par.time = tot.cen[[i]][[5]][,3],
batch.time = tot.cen[[i]][[9]][,3]) # change here

colnames(temp.df) <- c("simu", "all", "parallel", "batchmap")
df_times <- rbind(df_times, data.frame(scen= names(tot.cen)[i],temp.df))

# cMs

temp.int <- t(apply(tot.cen[[i]][[6]],1, function(x) sqrt((x-pos[-1])^2)))
temp.par <- t(apply(tot.cen[[i]][[7]],1, function(x) sqrt((x-pos[-1])^2)))
temp.batch <- t(apply(tot.cen[[i]][[10]],1, function(x) sqrt((x-pos[-1])^2)))
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colnames(temp.int) <- paste0("MK",1:dim(temp.int)[2])
colnames(temp.par) <- paste0("MK",1:dim(temp.par)[2])
colnames(temp.batch) <- paste0("MK",1:dim(temp.batch)[2])

temp.int <- data.frame(simu = paste0("simu", 1:length(tot.cen[[i]][[2]])),
temp.int)

temp.int <- gather(temp.int, key, value,-simu)
temp.par <- data.frame(simu = paste0("simu", 1:length(tot.cen[[i]][[2]])),

temp.par)
temp.par <- gather(temp.par, key, value,-simu)
temp.batch <- data.frame(simu = paste0("simu", 1:length(tot.cen[[i]][[2]])),

temp.batch)
temp.batch <- gather(temp.batch, key, value,-simu)

temp.df <- merge(temp.int, temp.par, by = c("simu", "key"))
temp.df <- merge(temp.df, temp.batch, by=c("simu", "key"))
colnames(temp.df) <- c("simu", "mk", "all", "parmap", "batchmap")
df_sizes <- rbind(df_sizes, data.frame(scen = names(tot.cen)[i],temp.df))

}

Time
Comparison between time spent for each approach: BatchMap, parmap, and OneMap without parallelization
(map function).
# rename columns
colnames(df_times)[3:5] <- c("without parallel", "parmap", "BatchMap")

df_times %>% gather(key, value, -simu, -scen) %>%
ggplot(aes(x=scen, y=value/3600, color=key)) +
geom_point() +
xlab("scenarios") +
ylab("Time (hours)") +
scale_color_discrete(name="method")
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Total sizes
Comparison between total map size built by each approach: BatchMap, parmap, and OneMap without
parallelization (map function). Remember here that the simulated size was 100 cM (red line).
# rename columns
colnames(df_tot_size)[3:5] <- c("without parallel", "parmap", "BatchMap")

df_tot_size %>% gather(key, value, -scen, -simu) %>%
ggplot(aes(x=scen, y=value, color=key)) +
geom_point() +
geom_hline(yintercept=100, color = "red") +
theme(axis.text.x = element_text(angle = 70, hjust = 1)) +
xlab("scenarios") +
ylab("Difference between total size (cM)") +
scale_color_discrete(name="method") +
expand_limits(x = 0, y = 0)
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Intervals difference
Size differences in the intervals between the markers of the generated map and the simulated map.

PS: the best result would be if all the points are close to the x axis (difference 0)
# rename columns
colnames(df_sizes)[4:6] <- c("without parallel", "parmap", "BatchMap")

df_sizes %>% gather(key, value, -scen, -simu, -mk) %>%
ggplot(aes(x=scen, y=value, color=key)) +
geom_point() +
scale_color_discrete(name="method") +
xlab("scenarios") +
ylab("Difference between estimated and simulated maps (cM)")
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Evaluation of overlap markers in parmap
Measure the difference of recombination fraction between overlap markers, in other words, the markers which
are at the end of the last group and at the beginning of the next group.
df_diff %>% ggplot(aes(x = scen, y = as.numeric(value))) +

geom_point() +
theme(axis.text.x = element_text(angle = 70, hjust = 1)) +
xlab("scenarios") +
ylab("Differences between rfs")
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Conclusion
Both new approaches (parmap and BatchMap) implemented in OneMap are efficient in reducing the time
spent to run the HMM and estimate the genetic distances. Parmap has the capacity to reduce even more the
time spent because it can use more than four cores to do the parallelization, but smaller is the marker batches
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higher the chance of occurring errors in estimation. In general, parmap make more mistakes than BatchMap,
therefore, if the priority is quality instead of fast analysis, BatchMap is ideal. BatchMap approach produces
maps similar to approach without parallelization and seems to be even more stable (lower variation) between
the simulations.
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Attachment C - Adaptations to build maps with F2

populations and dominant markers
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Attachment D - Maps resolution

We can use the OneMap 3.0 simulation functions to exemplify the effect of population size in the map
resolution of outcrossing species. In AT28 we simulated a linkage group with 100 centimorgans (cM) of
total size containing 35 D1.10, 35 D2.15, and 30 B3.7 markers sampled and spaced by 1 cM. Based on
this chromosome we generated different progenies with sizes 30, 50, 100, 200, 400, 800, and 1600. We
repeated the simulation twenty times for each population size. Each dataset was used to build maps
with markers positioned by the known correct order. We also did not include missing genotypes or
errors. Therefore, all differences between real and estimated maps observed are a consequence of the
population size and the accuracy of the OneMap algorithm.
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Figure AT28. Results of simulations with OneMap 3.0 functions to exemplify the effect of population size in the map
resolution. The chromosome on the left represents the simulated data, with 35 D1.10, 35 D2.15, and 30 B3.7 markers
sampled and spaced by 1 centimorgan. Based on this map, progenies with sizes 30, 50, 100, 200, 400, 800, and 1600 are
simulated twenty times each. The generated genotypes are evaluated in OneMap to build the maps showed in this figure.
A: The linkage group on the left represents the simulated data. The following linkage groups were estimated for datasets
with population sizes of 30, 50, 100, 200, 400, 800, and 1600. B: It shows, for each one of the defined population sizes,
the number of recombination breakpoints in the real and estimated linkage groups; the time that OneMap parallelized map
function spent to perform the linkage map building; the percentage of wrongly estimated haplotypes; the map total size;
and the number of markers with same genotypes for all markers (redundant markers). The simulations were performed
twenty times for each population size, the boxplots describe the distribution of the repetitions values.




