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RESUMO 

Inferindo padrões heteróticos e o efeito da incorporação de desvios de dominância na 

predição de híbridos: um exemplo em milho tropical sob condições de estresse de 

nitrogênio 

O melhoramento de híbridos explora a heterose, fenômeno melhor explorado 
quando há designação de grupos heteróticos (HG). A predição de híbridos incorpora 
informações de relacionamento nas análises estatístico-genéticas para aumentar a 
acurácia e melhorar a avaliação dos valores genéticos dos indivíduos. No entanto, tais 
matrizes de relacionamento geralmente negligenciam efeitos não aditivos. Além disso, 
um fator crítico em um programa de melhoramento híbrido é a previsão genômica ser 
realizada com base nos mesmos efeitos alélicos para dois grupos heteróticos. 
Finalmente, a deficiência de nitrogênio (N) é uma grande restrição para a produtividade 
do milho e pode confundir significativamente inferências de abordagens genéticas. 
Neste estudo, consideramos modelos que incluem efeito aditivo e a combinação de 
efeitos aditivo+dominância para estimar capacidades de combinação, determinar 
grupos heteróticos e o impacto da modelagem diferencial de efeitos de marcadores em 
grupos heteróticos em uma população de melhoramento de milho. Também 
investigamos o efeito do estresse N nesses parâmetros. Para isso, 906 híbridos simples 
obtidos de um dialelo de 49 linhagens de milho foram genotipados in silico usando 
34,571 SNP e avaliados em quatro ambientes no Estado de São Paulo, Brasil, cada um 
com dois regimes N: ideal (IN) e estresse (LN ). Três cenários de modelagem foram 
considerados: baseado em pedigree (𝐼), onde nenhuma informação de relacionamento 
genômico foi considerada; aditivo (𝐺!), onde uma matriz de incidência aditiva foi 
atribuída às linhagens; e aditivo+dominância (𝐺!"#), onde os efeitos aditivo e de 
dominância foram considerados para linhagens e híbridos, respectivamente. Os HG 
foram definidos com base na capacidade específica de combinação (SCA) em cada 
cenário. As capacidades preditivas (PA) foram obtidas usando uma abordagem de 
validação cruzada de 5-fold. Os resultados indicam que a incorporação de ambos 
efeitos aditivos e desvios de dominância permite discriminar melhor as estimativas de 
capacidades geral e específica de combinação. A SCA designou agrupamentos distintos 
de linhagens genitoras para cada cenário. Ocorreram diferenças mais consideráveis na 
composição heterótica entre os cenários 𝐺! e 𝐺!"#, embora ainda houvesse uma 
sobreposição relevante. As estimativas genéticas foram significativamente menores 
para o LN em comparação ao IN, e a distância genética entre os grupos foi maior para 
o IN. As presentes descobertas revelam que agrupar HG com base em SCA do cenário 
𝐺!"# é uma abordagem útil para seleção recorrente recíproca quando não há 
informações anteriores disponíveis sobre a estrutura genética da população. Também 
foi observado que o estresse de N dificulta a resolução na determinação de padrões 
heteróticos, o que compromete a exploração da heterose. Por fim, a incorporação da 
dominância fornece informações relevantes para a determinação de grupos 
heteróticos, e a modelagem diferencial dos efeitos dos marcadores para cada HG é 
crucial para um programa de melhoramento sustentável.  

Palavras-chave: Zea mays, Melhoramento, Capacidades de combinação, Estrutura de 
população, Grupos heteróticos 
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ABSTRACT 

Inferring heterotic patterns and the effect of incorporating dominance deviations for 

hybrid prediction: an example in tropical maize under nitrogen stress conditions 

Hybrid breeding exploits heterosis, a phenomenon that relies on the 
development of heterotic groups (HG). Hybrid prediction incorporates relationship 
information in genetic-statistical analyses to increase the accuracy and to improve the 
assessment of individuals’ genetic values. Such relationship matrices, however, often 
neglect non-additive effects. Moreover, a critical factor in a hybrid breeding program 
is the genomic prediction being performed based on the same allelic effects for two 
heterotic groups. Finally, nitrogen (N) deficiency is a major constraint for maize 
productivity and may significantly confound inferences from genetic approaches. In 
this study, we considered models including additive and the combination of 
additive+dominance effects for the estimation of combining abilities, the 
determination of heterotic groups, and the impact of the differential modeling of 
marker effects on heterotic groups in a maize breeding population. We also 
investigated the N stress effect on these parameters. For that, 906 single crosses 
obtained from a diallel scheme of 49 inbred maize lines were genotyped in silico using 
34,571 SNP and evaluated in four environments in State of São Paulo, Brazil, each 
with two N regimes: ideal (IN) and stress (LN). Three modeling scenarios were 
considered: pedigree-based (𝐼), where no genomic relationship information was 
considered; additive (𝐺!), where an additive incidence matrix was assigned to lines; and 
additive+dominance (𝐺!"#), where the additive and the dominance effects were 
considered for lines and hybrids, respectively. HG were defined based on the specific 
combining ability (SCA) in each scenario. Prediction abilities (PA) were obtained using 
a 5-fold cross-validation approach. Our results indicate that the incorporation of both 
additive effects and dominance deviations allows us to discriminate the estimates of 
general and specific combining abilities better. SCA assigned distinct clustering of 
parents for each scenario. More considerable differences in heterotic pool composition 
occurred between scenarios 𝐺! and 𝐺!"# , although there was still a meaningful 
overlap. Incorporating HG into the prediction analysis provided a significantly 
increased SCA of the single crosses, and a noteworthy increase in PA. The genetic 
estimates were lower for LN compared to IN (significant at the 0.01 level), and the 
genetic distance between groups was higher for IN. Our findings reveal that additive 
effects are well assessed by using pedigree data when the population lacks structure. 
In addition, clustering HG based on SCA from the 𝐺!"# scenario is a useful approach 
for reciprocal recurrent selection when no previous information is available about 
population genetic structure. We also observed that N stress hinders resolution in 
determining heterotic patterns, which compromises the exploration of heterosis. 
Ultimately, the incorporation of dominance provides relevant information for the 
determination of heterotic groups, and the differential modeling of marker effects for 
each HG is crucial to a sustainable breeding program. 

Keywords: Hybrid breeding, Heterotic groups, Dominance, Zea mays, Population 
structure, Combining abilities, Nitrogen stress 
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1. INTRODUCTION 

Hybrid breeding is based on the phenomenon called heterosis, which is the increased 

vigor and fitness of a crossbred genotype compared to corresponding parental inbred lines (Shull 

1909). A key factor for the maximum exploitation of heterosis throughout the cycles is the 

establishment of heterotic groups (Boeven et al. 2016), which correspond to a set of genotypes 

genetically distant from another set (Larnkey et al. 1998; Technow et al. 2012). 

The selection of a systematic method to developing progeny, called mating design, is a 

crucial step in hybrid breeding. Several types of mating design can be adopted to estimate additive 

and non-additive genetic variances, heritability, and breeding values (Falconer and Mackay 1996; 

Bernardo 2020). For hybrid breeding in special, the evaluation of all possible crosses is prohibitive 

in practice due to the high cost and the potentially enormous number of genotypes generated, 

especially in the early stages of a program. In this context, several genetic mating schemes have 

been proposed to identify elite parental lines and to evaluate hybrid performance in order to access 

heterosis. Among them, are the Griffing methods, Diallel, North Carolina Design II, and testcross 

(Hallauer et al. 2010). 

Diallel designs have been widely used to estimate the effects of general combining ability 

(GCA) and specific combining ability (SCA), as well as other genetic parameters (Beyene et al. 

2011; Fan et al. 2014). In maize, Griffing’s methods have become popular to estimate the effects 

of GCA and SCA (Griffing 1956), and they define diallel crosses in terms of genotypic values: the 

sum of GCA for the two gametes is the genetic value to the cross, while SCA represents the value 

of dominance deviation in the simplest case, ignoring epistasis deviation (Olfati et al. 2012). 

The reciprocal recurrent selection method (RRS) was first proposed by Comstock et al. 

(1949) and aims at the simultaneous improvement of two populations and their crossing, seeking 

the maximization of heterosis (Ordas et al. 2012). The genetic basis of heterosis is in the difference 

of allelic frequency between heterotic groups (Falconer and Mackay 1996), and heterotic grouping 

leads to a reduced SCA variance and a lower ratio of SCA to general combining ability GCA 

variance. Thus, early testing becomes more effective and superior hybrids can be identified and 

selected mainly based on their prediction from GCA effects. 

Given the frequent practical impossibility of a full assessment of hybrid performance by 

the complete factorial mating design, only a small fraction of the genotypes is actually carried out 

in the field. For this reason, genomic models can be useful to predict the performance of the 

untested hybrids (Meuwissen et al. 2001; Schrag et al. 2010; Fan et al. 2014). Recent studies have 
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shown that genomic models can output considerably accurate predictions of the agronomic 

performance of hybrids (Kadam et al. 2016; Lyra et al. 2017). The choice of the mating design and 

its composition impact on the prediction accuracy. For instance, Fristche-Neto et al. (2018) 

reported the superiority of factorial and full diallel designs over testcrosses regarding the prediction 

of untested hybrids in maize, which also resulted in a better mating allocation. 

Despite the essentiality of the principles of quantitative genetics for breeding studies and 

selection performance, some of their assumptions are rarely found in real life situations, which may 

lead to sensitive differences in estimations (Piepho et al. 2008). An example is considering parents 

in a breeding program as unrelated or uncorrelated. Thus, the incorporation of a kinship matrix 

based on the genealogy of the individuals has the potential to increase the prediction accuracy, the 

prediction of the genetic values, and the estimation of the components of variance (Holland et al. 

2003). 

In order to overcome the unrelated parent assumption, a pedigree matrix (A) that 

represents the expected additive genetic covariance between genotypes could be considered. 

However, this approach has some limitations, such as the non-capture of the realized kinship, and 

the non-detection of hidden co-ancestry and inbreeding. Additionally, this matrix ignores variation 

among family members (Hill and Weir 2011). Therefore, it overestimates either the individuals 

breeding values and the additive genetic variance (Gamal El-Dien et al. 2016). Conversely, through 

the use of molecular markers and genomic relationship matrices (G – Wright 1922; VanRaden 

2008), it is possible to capture the realized resemblance between individuals, regardless of their 

genealogy, providing accurate estimates of variance and breeding values (Gamal El-Dien et al. 

2016). 

Genomic selection (GS), initially proposed by Meuwissen et al. (2001), is a method of 

marker-based selection that uses a large number of markers spread throughout the genome to 

predict the genetic value of selection candidates base on the genomic estimated breeding value 

(GEBV) predicted from the markers (Ward et al. 2019). GS combines molecular and phenotypic 

data in a training population to obtain estimates of GEBV of individuals in a testing population 

that has been genotyped but not phenotyped (Crossa et al. 2017). Since the production and testing 

of a substantial fraction of field hybrids are impractical, hybrid performance prediction is highly 

relevant for maize breeding (Technow et al. 2014). 

Previous studies have shown that the use of molecular-based relationship matrices 

improves orthogonality and predictability of additive and non-additive effects (Vitezica et al. 2013; 

Olímpio Das Graças Dias et al. 2018). Nevertheless, most genetic analyses focus only on the 
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estimation of additive or total genetic effects, not considering dominance. The latter is crucial when 

it comes to hybrids performance due to its measurable effect on heterosis. As such, it is important 

to consider the dominant relationship among individuals to achieve more realistic combining 

abilities. Some studies have reported the positive impact of incorporating dominance deviations in 

the genetic models to achieve higher predictive abilities (Lyra et al. 2017; Alves et al. 2019). 

Conducting GS requires estimation of the marker’s effect, treated predominantly in 

practice as additive. Approaches including dominance (Technow et al. 2012), epistatic, and 

genotype-by-environment effects are being developed (Rice and Lipka 2019). Nevertheless, GS 

does not adjust consistently to the RRS method, since it considers only a vector of additive and 

dominant effects for the entire population and their respective groups. Based on quantitative 

genetics, what is expected in this case is that both groups are selected by the same allele effects, 

which would lead to a reduction in the genetic distance between them along the cycles, with 

consequent impairment of heterosis expression. 

Response indices or selection indices are important tools in plant breeding because they 

allow to simultaneously summarize the performance of plants under different conditions or traits 

into a single value (Wu et al. 2011). The evaluation and selection of genotypes through this 

approach is highly advantageous for situations in which contrasting scenarios need to be evaluated, 

such as in nutritional stress breeding programs. For maize, nitrogen (N) deficiency represents a 

major constraint, negatively affecting plant development and yield. In this context, selection based 

on indices aids to improve the overall genotype performance based on several quantitative traits 

simultaneously (Lyra et al. 2017; Morosini et al. 2017). 

In this context, the understand of the incorporation of genomic relationship matrices for 

the prediction of genetic values and its components in a diallel analyses context is of great interest. 

By comparing the methods regarding the testers elected and the heterotic group composition, the 

differential modeling of the marker effects for each heterotic group emerges as a potential 

verification approach, since it is in accordance with the principle of RSS. In addition, understading 

how the nitrogen stress affects the heterotic composition is crucial for the optimization of 

population clustering towards genetic gains. For that, we considered three scenarios: inbred lines 

parents as unrelated (𝐼); inclusion of the genomic additive relationship matrix for parents (𝐺!); and 

inclusion of additive genomic information for parents and the genomic dominance relationship 

matrix for hybrids (𝐺!"#), for addressing these aspects. 
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2. MATERIALS AND METHODS 

2.1. Phenotypic dataset 

We used 906 maize single-crosses from a diallel mating design between 49 tropical inbred 

lines contrasting for N-use efficiency (Mendonca et al. 2016; Morosini et al. 2017). Field trials were 

carried out in Anhembi (22°50′51′′S, 48°01′06′′W, 466 m) and Piracicaba (22°42′23′′S, 47°38′14′′W, 

535 m), in the Satate of São Paulo, Brazil, during the second growing season (January to May) of 

2016 and 2017. In both sites, hybrids were evaluated under two N levels: low (LN) with 30 kg N 

ha−1, and ideal (IN) with 100 kg N ha−1. Each combination of season-location was considered an 

environment, totalizing four (1-Anhembi 2016, 1-Anhembi 2017, 3- Piracicaba 2016, and 4-

Piracicaba 2017). 

The experimental scheme was laid out as augmented blocks (unreplicated trial) consisting 

of 47 and 50 blocks (2016 and 2017, respectively), each with 16 unique hybrids and two checks. 

Plots of 7 m spaced at 0.50 m were used under conventional fertilization and weed and pest control. 

The traits evaluated included grain yield (GY, Mg ha−1), plant height (PH, m), and ear height (EH, 

m). Plots were manually harvested, all ears in the plot were shelled and total GY was assessed. GY 

was corrected to 13% moisture. EH and PH were measured from the soil surface to the insertion 

of the main ear and to the flag leaf collar, respectively, both on five representative plants within 

each plot.  

 

2.2. Genotypic dataset 

The 49 tropical inbred lines were genotyped using the AffymetrixÒ AxiomÒ Maize 

Genotyping Array of 616,201 SNPs (Unterseer et al. 2014). Genotypic data was quality controlled 

by first removing all non-mapped SNPs, loci with at least one heterozygous, and the SNPs with call 

rate lower than 0.9. The remaining missing data were imputed based on the algorithms from Beagle 

4.0 (Browning and Browning 2016) using the codeGeno function from Synbreed R package (Wimmer 

et al. 2012), restricting the imputation to homozygous genotypes. These high-quality polymorphic 

SNPs were used to build the genomic matrix for the 906 hybrids, deduced by combining the 

genotypes of the parental lines. Next, SNPs with minor allele frequency (MAF) < 0.05 were 

removed from the hybrid’s genomic matrix. Finally, we performed a linkage disequilibrium (LD) 

pruning on the genotype matrix of hybrids, removing markers with pairwise linkage disequilibrium 

(r2) greater than 0.9. This step was carried out using the snpg- dsLDpruning function of the 
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SNPRelate R package (Zheng et al. 2012). After these procedures, 34,571 high-quality SNPs were 

retained for further genomic analyses. 

 

2.3. Phenotypic analyses 

Phenotypes were first adjusted using a mixed model to obtain the best linear unbiased 

estimators (BLUEs) for the hybrids in each N condition within each environment, by using the 

lmer4 package in R to fit the following model: 

𝒚 = 𝑋𝒃 + 𝑍𝒖 + 𝜺 

where 𝒚 is a vector of phenotypic values of hybrids; 𝒃 is the fixed effect of checks and 

hybrids; 𝒖 is the random effect of the block within site, where 𝒖~𝑁(0, 𝐼𝜎$%); and 𝜺 is the vector 

of errors, where 𝜺~𝑁(0, 𝐼𝜎&%). 𝑋 and 𝑍 are the respective incidence matrices. 

Based on the adjusted data for IN and LN, the index Harmonic Mean (HM - Jafari et al., 

2009, Morosini et al. 2017, Mendonça et al. 2016) was calculated in each replication using the 

following equation: 

𝐻𝑀'( =
2 5𝐺𝑌(*+)!" 	× 	𝐺𝑌(-+)!"9
𝐺𝑌(*+)!" + 𝐺𝑌(-+)!"

 

where 𝐻𝑀 is the harmonic mean of hybrid 𝑖 in the environment 𝑗; 𝐺𝑌(*+)!" is the adjusted 

mean of grain yield in the IN condition of hybrid 𝑖 in the environment 𝑗; and 𝐺𝑌(-+)!" is the 

adjusted mean of grain yield in the LN condition of hybrid 𝑖 in the environment 𝑗. 

Next, we estimated the Pearson’s correlation coefficients between the four traits (GY, 

HM, EH, and PH). Also, for GY, EH, and PH, the significance of nitrogen level effect by each 

trait was assessed considering the following model in ASReml-R package (Gilmour et al. 2009): 

𝒚 = 𝑋𝒃 + 𝐿𝒏 + 𝑉𝒔 + 𝐻𝒈 + 𝐼𝒈𝒔 + 𝜺 

where 𝒚 is the vector of the adjusted phenotypic values of hybrids; 𝒃 is the vector of 

general mean; 𝒏 is the fixed effect of nitrogen stress; 𝒔 the random effect of environment, where 

𝒔~𝑁(0, 𝜎.%𝑰); 𝒈 the random effect of hybrids, where 𝒈~𝑁(0, 𝜎/%𝑰); and 𝒈𝒔 is the random effect 

of genotype × environment interaction, where 𝒈𝒔~𝑁(0, 𝜎/.% 𝑰); and 𝜺 is the vector of errors, where 

𝜺~𝑁(0, 𝜎&%𝑰). 𝑋, 𝐿, 𝑉, 𝐻, and 𝐼 are the respective incidence matrices. Random effects were 

predicted as the best linear unbiased predictors (BLUPs), and their associated variance components 
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were obtained using the Maximum Restricted Likelihood (REML) method. Their significance was 

estimated by the likelihood-ratio test (LRT) at 5%, using the asremlPlus R package (Brien 2019). 

The Wald test implemented in ASReml-R tested the fixed effects. 

 

2.4. Diallel analyses 

The estimation of GCA and SCA was performed by fitting the Griffing’s model II – 

method 4 (Griffing, 1956) for each trait in each N level, according to the equation: 

𝒚 = 𝑋𝜷 + 𝑍!𝒂 + 𝑍#𝒅 + 𝜺 

where	𝒚 is a vector of hybrid adjusted data for the traits, 𝜷 is the vector of general mean 

summed to environment effect, considered as fixed; 𝒂 is the vector of random effects of GCA, 

where 𝒂	~𝑁(0, 𝜎012% 𝑮𝒂) and 𝜎012%  is the associated variance component; 𝒅 is the vector of 

random effects of SCA, where 𝒅	~𝑁(0, 𝜎412% 𝑮𝒅) and 𝜎412%  is the associated variance component; 

and 𝜺 is the vector of errors, where 𝜺	~𝑁(0, 𝜎&%𝑰). 𝑋, 𝑍! and 𝑍# are the incidence matrices for 𝜷, 

𝒂 and 𝒅, respectively. 

Three scenarios for the incorporation of genetic information were considered: 

1. Parents non-genetically related (𝐼): the variance-covariance matrices among parents 

and hybrids are identities, where 𝒂~𝑁(0, 𝜎012% 𝑰) e 𝒅~𝑁(0, 𝜎.6!% 𝑰). In this case, 𝑮𝒂 =

𝑰𝟒𝟗 and 𝑮𝒅 = 𝑰𝟗𝟎𝟔; 

2. Genomic additive model (𝐺!): the variance-covariance matrix for the parent lines accounts 

for the additive genomic relationship matrix, following the equation: 

𝐀𝒈 =
𝑾𝑨𝑾𝑨′

2 ∑ 𝑝'(1 − 𝑝')=
'

 

where 𝑊2 is the matrix of markers incidence of the individuals, corrected for their 

averages in each locus (2𝑝'); 𝑝' is the frequency of one allele of the locus 𝑖. In this scenario, 𝑮𝒂 =

𝐀𝒈 and 𝑮𝒅 = 𝑰𝟗𝟎𝟔. 

3. Genomic additive + dominance model (𝐺!"#): both parent lines and hybrids are attributed 

to genomic relationship matrices. The dominance componente is calculated as: 

𝑫𝒈 =
𝑾𝑫𝑾𝑫′

∑ {(2𝑝'(1 − 𝑝')}%=
'
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where 𝑊? is the dominance deviation matrix, and 𝑝' is the frequency of one allele of the 

locus 𝑖. Therefore, in this case, 𝑮𝒂 = 𝐀𝒈 and 𝑮𝒅 = 𝑫𝒈. 

The incidence matrices 𝑾𝑨 and 𝑾𝑫	were designed following Vitezica et al. (2017), 

considering two alleles for a given marker locus: 

𝑾𝑨 = Q
−R−𝑝2#2$ − 2𝑝2$2$S
−R1 − 𝑝2#2$ − 2𝑝2$2$S
−R2 − 𝑝2#2$ − 2𝑝2$2$S

 for genotypes T
𝐴@𝐴@
𝐴@𝐴%
𝐴%𝐴%

 

𝑾𝑫 =

⎩
⎪
⎨

⎪
⎧−

%A%#%$A%$%$
A%#%#"A%$%$BCA%#%#BA%$%$D

$

EA%#%#A%$%$
A%#%#"A%$%$BCA%#%#BA%$%$D

$

− %A%#%#A%#%$
A%#%#"A%$%$BCA%#%#BA%$%$D

$

 for genotypes T
𝐴@𝐴@
𝐴@𝐴%
𝐴%𝐴%

 

In order to build the 𝑾𝑨 matrix, we used a genotypic incidence (𝑺𝑨) matrix coded as 2 

for homozygote 𝐴@𝐴@, 1 for heterozygote 𝐴@𝐴% and 0 for homozygote 𝐴%𝐴%. For 𝑾𝑫, the 

genotypic incidence matrix (𝑺𝑫) was coded as 0 for both homozygotes and 1 to the heterozygote. 

The heatmaps of the additive and dominance kernels from the hybrid’s genomic matrix were 

obtained using the superheat R package (Barter and Yu 2017) (Figure 1). 

 
Figure 1.  Heatmap of the genomic relationship matrix from 906 maize single crosses. (a) Additive genomic best 
linear unbiased prediction (GBLUP) matrix, (b) dominance GBLUP matrix. 

 

Variance components, broad-sense genomic heritability (𝐻%), and narrow-sense genomic 

heritability (ℎ%) were obtained for GY, EH, and PH under IN and LN, and for HM, as follows: 

H% =
𝜎F% + 𝜎G%

𝜎F% + 𝜎G% + 𝜎H%
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h% =
𝜎F%

𝜎F% + 𝜎G% + 𝜎H%
 

where 𝜎F% is the additive genetic variance,	𝜎G% is the dominance genetic variance, and 𝜎H% 

is the residual variance. For scenario 𝐼, in which the coefficient of inbreeding (𝐹) is assumed to be 

zero, 𝜎F% = 4𝜎IJK%  and 𝜎G% = 4𝜎LJK% , In all scenarios 𝐼, 𝐺!, and 𝐺!"# , the ponderation of GCA and 

SCA effects regarding the coefficient of inbreeding (𝐹) is performed by their respective genomic 

relationship matrix, so the additive and dominance variance components are directly obtained as 

𝜎F% = 𝜎IJK%  and 𝜎G% = 𝜎LJK% , where 𝜎IJK%  and 𝜎LJK% are the GCA and SCA variances, respectively. 

GCA and SCA estimates were obtained individually for each cross, each environment, 

and each nitrogen level – except for the HM index, which comprises both levels simultaneously. 

The associated variance components were obtained using the Maximum Restricted Likelihood 

(REML) method. The significance of the random effects was assessed by the likelihood ratio test 

(LRT), at 5% probability. Diallel analyses were performed using the ASReml-R package (Butler et 

al. 2009). 

 

2.5. Model comparisons 

In order to assess the reliability of each scenario to identify the best parent lines and then 

aid to discriminate heterotic groups and testers, we compared the rank of lines and hybrids in each 

scenario using Spearman’s correlation. Since the main trait of interest is the GY and because we 

are seeking to evaluate the index usefulness, only GY and HM were considered for the 

comparisons. In this case, BLUPs for GY were obtained from an individual analysis for IN 

condition, that is, not considering N stress. 

The genomic estimated breeding values (GEBV) of the lines were obtained directly from 

the GCA estimates from the diallel analysis in each scenario. For the hybrids, we constructed in 

silico the genomic estimated value (GEV) using the estimates of GCA and SCA according to the 

following strategy: 

𝐺𝐸𝑉M. = 𝐺𝐶𝐴M@. + 𝐺𝐶𝐴M%. + 𝑆𝐶𝐴M@.	O	M%. 

where 𝐺𝐸𝑉M. is the genomic estimated value of hybrid ℎ in scenario 𝑠, 𝐺𝐶𝐴M@. is the 

general combining ability of hybrid ℎ’s parent 1 in scenario 𝑠, 𝐺𝐶𝐴M%. is the general combining 

ability of hybrid ℎ’s parent 2 in scenario 𝑠, and 𝑆𝐶𝐴M@.	O	M%. is the specific combining ability from 

the cross yielding hybrid ℎ in scenario 𝑠. 
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Next, we selected the best hybrids according to their GEV in each scenario considering 

the intensity of selection of 10%. Finally, we identified the most frequent lines that appeared as 

parents oh these best hybrids. 

 

2.6. Heterotic grouping and testers 

The determination of heterotic groups was performed based on the estimates of SCA for 

GY not considering N stress. From them, we calculated a Euclidean distance matrix for the 49 

maize lines and performed a hierarchical agglomerative clustering by Ward’s method (Ward 1963), 

which produces groups that minimize within-group dispersion at each binary fusion based on a 

classical sum-of-squares criterion. 

Finally, according to the intersection between the hybrids identified as the 10% best for 

GEV in the three scenarios, the lines yielding higher GCA estimates, and the groups clustered by 

SCA scores, we evaluated the proportion of coincidence among scenarios and identified the 

potential testers for the best fit. For that, we considered the intersection of the lines with higher 

GCA and the most frequent ones as the parents of the best hybrids (according to their GEV). 

 

2.7. Effect of nitrogen stress on heterotic composition 

We investigated the effect of N deficiency on the determination of heterotic patterns. 

Only the 𝐺!"# scenario was considered, where both additive and dominance genetic components 

are present. The clustering was performed based on the SCA estimates. 

Based on composition of the pools, we calculated the potential mean SCA for IN and LN 

considering the crosses intra groups (lines within each group) and intergroups (groups crossed to 

each other). Finally, we compared the estimates to the mean SCA obtained when no heterotic 

groups were designated. 

 

2.8. Genomic prediction for scenarios 

We used the additive genomic best linear unbiased prediction (GBLUP) model to perform 

genomic prediction. Predictive ability (r) was calculated as the Pearson correlation between adjusted 

values and genomic estimated breeding values in 50 replications from independent validation 
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scenarios (Albrecht et al., 2014), randomly sampling 75% of the genotypes to form a training set, 

while the remaining 25% were used as a validation set. All prediction analyses were performed 

using the Bayesian Generalized Linear Regression (BGLR) R package (Perez and de los Campos, 

2014). 
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3. RESULTS 

3.1. Phenotypic analysis 

There was significant effect of N level on the performance of all traits across 

environments. Average performance for GY, EH, and PH under LN across all hybrids was 5.09 

Mg ha-1, 1.02 m, and 1.96 m, respectively. For IN, significantly higher mean values were observed 

for these traits (GY 5.66 Mg ha-1, EH 1.06 m, and PH2.05 m). Considering the four environments, 

GY and HM outperformed in Anhembi in season 2017 (2AN), where the mean values were 6.96 

Mg ha-1 and 6.80, respectively (Figure 2). The traits PH and EH followed the same performance 

trend across environments, with higher mean values in Piracicaba in 2016. 

 

 

Figure 2.  Boxplot of phenotypic traits. Adjusted mean values for grain yield (GY, Mg ha-1), harmonic mean 
(HM, Mg ha-1), plant height (PH, m), and ear height (EH, m) for 906 maize hybrids in four environments: 
Anhembi 2016 (1AN), Piracicaba 2016 (1PI), Anhembi 2017 (2AN), and Piracicaba 2017 (2PI). 

 

The Pearson’s coefficients were significant between all pairs of traits within and across 

the N conditions from a moderate positive correlation of 0.17 between GY in LN and EH in IN 

to a strong positive correlation of 0.90 for HM and GY in LN (Table 1). Interestingly, the index 

HM was more related to the GY in low nitrogen (0.90) than in the ideal N condition. 
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Nitrogen levels on the pre-adjusted data had a significant effect for GY, EH, and PH, 

indicating the differential impact of the N stress on performance (Table 2). Both hybrids and 

environments (season × local) were also significantly different for all traits. Genotype × 

environment interaction was significant for GY and PH, suggesting differential performance of 

hybrids between sites for these traits within each N level. 

 

Table 1. Pearson’s correlation coefficients between the traits for grain yield (GY), ear height (EH), plant height 
(PH), and harmonic mean index (HM) for 906 maize hybrids evaluated in four environments and two nitrogen 
treatments 

 GY.IN GY.LN PH.IN PH.LN EH.IN EH.LN HM 
GY.IN - 0.60** 0.48** 0.38** 0.42** 0.30** 0.87** 
GY.LN  - 0.19** 0.29** 0.17** 0.21** 0.90** 
PH.IN   - 0.79** 0.85** 0.67** 0.35** 
PH.LN    - 0.69** 0.82** 0.36** 
EH.IN     - 0.77** 0.31** 
EH.LN      - 0.28** 

HM       - 
Significant at **𝑃 = 0.01 
IN: ideal nitrogen; LN: low nitrogen 

 

Even though the GXE was significant, rank (Spearman) correlation of genotypes between 

environments was significant, indicating that the interaction is due to scale and change in rank of 

genotypes within environments. For that reason, analyses were conducted across the four 

environments within each N level.  

Table 2. Joint analysis of 906 tropical maize hybrids evaluated in ideal and low nitrogen levels across four 
environments for grain yield (GY), ear height (EH), and plant height (PH) 

Variation source GY EH PH 
Fixed    

N level 300.06** 313.12** 1217.56** 
Random     

Hybrid 1360.40** 3419.30** 3265.31** 
Env 1931.96** 3085.34** 3389.15** 
Hybrid/Env 56.23** 0.10 NS 23.64* 

Significant at *𝑃 = 0.05 ; **𝑃 = 0.01 by LRT (random effects) and Wald (fixed effects); NS non-significant 
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3.2. Diallel analyses 

Aiming to determine the potential utility of dominance information to specify the best 

mechanism to establish heterotic patterns, the scenarios 𝐼, 𝐺!, and 𝐺!"# were considered. For all 

thrre, GCA and SCA components were significant for GY, PH, and EH in both N conditions and 

for HM (Table 3). The overall estimates were higher in ideal N than in low N for all traits, regardless 

of the scenario (Table S1, Figure 3, Figure 4). For example, in 𝐺! for IN, scores of 𝜎012%  were 0.42, 

7.7×10-3, and 5.4×10-3 for GY, PG, and EH, respectively, whereas in LN these values were 0.28, 

5.9×10-3, and 4.6×10-3. 

 

Table 3. Likelihood ratio test (LRT) of random effects estimated via REML/BLUP of 906 maize hybrids 
evaluated across four environments under two nitrogen treatments for grain yield (GY), ear height (EH), plant 
height (PH), and harmonic mean index (HM) in the genetic scenarios 𝐼, 𝐺!, and 𝐺!"# 

Scenario Effect GY  EH  PH HM Ideal N Low N  Ideal N Low N  Ideal N Low N 

𝐼 
GCA 668.08** 434.62**  2336.48** 1803.42**  1695.68** 1134.06** 708.80** 
SCA 191.58** 131.49**  229.44** 121.30**  563.32** 279.71** 203.90**  

𝐺! 
GCA 692.57** 446.39**  2413.59** 1863.13**  1783.21** 1207.55** 703.50** 
SCA 167.25** 118.35**  173.42** 81.07**  482.57** 214.07** 206.82** 

𝐺!"# 
GCA 692.57** 446.33**  2413.59** 1863.13**  1783.21** 1207.55** 703.50** 
SCA 222.14** 117.23**  173.12** 65.12**  448.13** 215.58** 243.71** 

Significant at *𝑃 = 0.05 ; **𝑃 = 0.01; NS non-significant 
GCA: general combining ability, SCA: specific combining ability 

 

 The additive effect was preponderant compared to the dominance for PH and EH. For 

instance, a 3.63-fold higher value was observed for the additive component EH in LN in scenario 

𝐺!"# (Figure 3a) compared to the dominance. Consequently, the broad and narrow-sense 

heritability estimates were higher for these traits. In 𝐺!"# IN for instance, estimates of 𝐻% were 

0.32, 0.58, and 0.50 for GY, PH, and EH, respectively, whereas ℎ% output 0.18, 0.37, and 0.37 

(Table 2, Figure 4a). Conversely, HM exhibited narrow-sense heritability values of 0.15 in scenario 

𝐼, 0.16 in 𝐺!, and 0.20 in 𝐺!"# , which are very close to the mean ones observed for GY (Figure 

3b). 

The incorporation of genomic information to account for the relationship among 

individuals enabled more realistic genomic variance estimates. From scenario	𝐼 to 𝐺!, there was an 

increment of additive genetic variance for all traits excepted EH, and so from 𝐺! to 𝐺!"# (Figure 

3). The lowest estimates of dominance effect were obtained in scenario 𝐺!"# , following the order 
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𝐺!"# < 𝐼 ≤ 𝐺!. That is, a more significant relative contribution of additive effect was observed 

from 𝐼 to 𝐺! and from 𝐺! to 𝐺!"# which led to an increase in narrow-sense heritability estimates 

along the scenarios, except for EH (Figure 4). 

 

 

Figure 3.  Genomic variance components from 906 maize hybrids. Traits a) grain yield (GY), plant height (PH), 
and ear height (EH) in ideal and low N condition, and b) harmonic mean (HM) evaluated in three genetic 
scenarios. 

 

 

Figure 4.  Narrow-sense and broad-sense heritability estimates in 906 maize hybrids. Traits a) grain yield (GY), 
plant height (PH), and ear height (EH) in ideal and low N condition, and b) harmonic mean (HM) evaluated in 
three genetic scenarios. 
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The distribution of the BLUP scores for GCA and SCA effects varied slightly among 

scenarios and between N condition within traits. Through the Pearson’s correlation coefficients, it 

is possible to observe that the main differences come from the contrast of traits rather than across 

scenarios or N levels within each trait, especially for GCA. For instance, considering the SCA 

effects, while 0.51 was the lowest correlation within GY between 𝐺! and 𝐺!"# , the minimum 

coefficient contrasting GY and PH was 0.32. 

 

3.3. Model comparisons 

The ranking of lines based on their GEBVs (Table S2) in scenario 𝐼 was statistically 

positively correlated with the ranking in scenario 𝐺! for GY (0.991) and HM (0.985 - Figure 5a,b). 

The same pattern was observed contrasting the rank from 𝐺! to 𝐺!"# , which Spearman’s 

correlation coefficient was 0.996 for GY and 0.986 for HM (Figure 5c,d).  

 

Figure 5.  Spearman’s correlation coefficients of general combining abilities (GCA) of 49 maize parent lines 
between scenarios 𝐼-𝐺! and 𝐺!-𝐺!"# for Grain Yield (GY – a, c) and the index Harmonic Mean (HM – b, d). 

 

Seven of the best parental lines (L002, L016, L018, L032, L045, L056, and L058) appeared 

consistently across traits and scenarios (Figure 6). Lines L032 and L056 were the top-ranked 

genotypes across all scenarios. 
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The computed GEV was highly correlated between scenarios for both GY and HM. For 

instance, the lowest Spearman’s correlation coefficient was 0.958 between 𝐺! and 𝐺!"# for HM. 

Nevertheless, we observed an interesting change of ranking when focusing on the hybrids with the 

lowest GEV estimates, mainly from 𝐺! to 𝐺!"# . 

The group of hybrids selected as the best 10% (91 genoypes out of 906) according to the 

GEV had mean scores for GY of 1.760, 1.757, and 1.801 in 𝐼, 𝐺!, and 𝐺!"# , respectively (Table 

4). They performed 397-fold higher in 𝐼, 499-fold higher in 𝐺!, and 36-fold higher in 𝐺!"# for GY 

comparing these estimates to the mean GEV of the whole panel of 906 hybrids. In total, the 

combination of the 91 best-ranked genotypes for each of the three scenario raised 103 hybrids as 

the best (Figure 7a). From them, 79 hybrids were common to all the three models, which indicates 

a reliable performance regardless of the scenario (Table S3). The lines that appeared more 

frequently as parents of the selected genotypes were L056, L032, and L002. Respectivelly, L056 

and L032 are progenitor of 27, 22, and 17 hybrids for scenarios 𝐼, 𝐺!, and 𝐺!"# , while L002 is 

progenitor of 29, 21, and 19 hybrids (Table S4). 

 

 

Figure 6.  Ranking of 49 maize lines based on the genomic estimated breeding value (GEBV). Traits a) Grain 
yield (GY) and b) harmonic mean (HM) considered in three genetic scenarios. 
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Table 4. Statistics on the 10% (91) best hybrids from a population of 906 single crosses evaluated across four 
environments under two nitrogen treatments according to the genetic estimated value (GEV) scores for grain 
yield (GY) and a harmonic mean (HM) in the genetic scenarios 𝐼, 𝐺!, and 𝐺!"# 

Trait Model Mean Var CV (%) 

GY 
𝐼 1.760 0.200 11.4 
𝐺! 1.757 0.202 11.5 
𝐺!"# 1.810 0.177 9.78 

HM 
𝐼 1.581 0.130 8.20 
𝐺! 1.581 0.130 8.20 
𝐺!"# 1.592 0.144 9.06 

 

The same trend was observed for HM. The mean GEV scores considering the 10% best 

hybrids for the index were 1.581, 1.581, and 1.591 respectively for 𝐼, 𝐺!, and 𝐺!"# , respectively 

(Table 4). Contrasting these values to the mean GEV of the whole panel, the selected single-crosses 

were 516-fold, 665-fold, and 35-fold superior for 𝐼, 𝐺!, and 𝐺!"# , respectively. A total of 106 

hybrids were identified among the 10% best for the three scenarios, being 77 common to all of 

them (Figure 7b). As we noted for GY, the lines present in the best crosses were L056, L032, and 

L002 (Table S5). 

 

 

Figure 7.  The coincidence of the selected hybrids in each genetic scenario (𝐼, 𝐺!, and 𝐺!"#). Traits a) grain 
yield (GY) and b) harmonic mean index (HM). 
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3.4. Heterotic groups  

The SCA estimates of GY in scenario 𝐼 strongly correlated with the estimates in 𝐺!. On 

the other hand, the ranking correlation based on SCA between 𝐺! and 𝐺!"# was 0.83, the lowest 

observed, although this coefficient is still very high. Accordingly, we observed different patterns 

of best crosses from 𝐺! to 𝐺!"# . 

We identified two heterotic groups, G1 and G2, in each scenario (Fig. 8). G1 was 

composed of 30, 30, and 28 inbred lines in 𝐼, 𝐺! and 𝐺!"# , respectively, and G2 contained 19, 19, 

and 21 individuals (Figure 8). Twenty-five lines were in common in G1 between 𝐼 and 𝐺! and 16 

between 𝐺! and 𝐺!"# , indicating a considerable overlap in the composition according to these 

scenarios. Contrasting 𝐺! to 𝐺!"# , 18 and 7 genotypes were in common for G1 and G2, 

respectively. 

 

 

Figure 8.  Dendrograms of 49 maize tropical lines for the genetic scenarios 𝐼, 𝐺!, and 𝐺!"# indicating the two 
heterotic groups designed (blue and orange circles) in each of them 

 

In scenario 𝐺!"# , the mean GEV from the hybrids of crosses produced between G1 and 

G2 was significantly superior to estimates in 𝐼 and 𝐺!. By combining information about the best 

lines identified by GCA, GEV, and their distribution on the suggested heterotic groups within the 

additive+dominance modeling scenario, we identified potential testers to be considered in this 

panel. 

 

3.5. Nitrogen effect on heterotic pools 

The composition of heterotic groups changed considerably between IN and LN (43% 

and 73% of coincidence for groups 1 and 2, respectively), and the proportion of lines in each 
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cluster remained similar (Figure 9). For IN, the best lines concerning GCA were designated to 

different groups, while for LN they were clustered in the same set.  

We could observe that the progenitors of the best hybrid according to the GEV are 

clustered in different heterotic groups for both N conditions (Figure 9). On the other hand, parents 

of the lowest-GEV hybrid are assigned to the same heterotic group. This is an interesting evidence 

on how the accurate allocation of genotypes into heterotic pools plays an important role for 

exploring the potential genetic value towards heterosis.  

Based on the pool’s composition, the potential mean SCA considering crosses inter 

groups was 0.170 for LN and 0.173 for IN. When no heteoric group was assigned, the mean SCA 

accounting for all possible crosses was 0.039 for LN and 0.052 for IN. Interesngly, by considering 

the heterotic groups assigned in LN to calculate the mean SCA for inter groups crossing in IN, the 

output decreases drastically from 0.173 to 0.90, which indicates the impactant underestimation of 

genetic effects that stressful conditions may cause. 

 

 

Figure 9.  Dendograms of 49 tropical maize lines constructed in the genetic scenario 𝐺!"# for two nitrogen 
treatments, low (LN) and optmimal supply, with indication of the two heterotic groups assigned (G1 and G2). 
Genotypes colored in blue box are the parents of the best hybrid according to their GEV; genotypes colored in 
red box are the parents of the worst hybrid according to their GEV. 
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3.6. Genomic prediction 

Based on the assessment of the models described and assessed above, we selected the 

third one (additive+dominance) as the best for discriminating heterotic groups and exploring the 

genetic effects. Next, we considered three scenarios within a reciprocal recurrent selection (RRS) 

method context: additive using a single population (A), additive+dominance using a single 

population (A+D), and additive+dominance using a North Carolina II (NC) factorial design.  

The heterotic groups used in the NC scenario were assigned based on the specific 

combining ability (SCA) estimates from the A+D model. The A model provided smaller prediction 

ability compared to A+D, which corroborates the importance of modeling the contribution of 

non-additive effects towards heterosis. NC provided a significantly increased SCA of the single 

crosses compared to A+D, which corroborates the importance of the genetic mating design 

towards the exploration of heterosis. The assignment of heterotic groups is determinant for 

exploring non-additive effects from a statistical standpoint, which allows to assess more accurate 

genetic values from both lines and hybrids. We also observed a noteworthy increase in PA (6%) 

from A+D model to NC. 
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4. DISCUSSION 

4.1. Phenotypic data and diallel analysis 

Phenotypic values varied significantly between low and ideal N conditions for all traits 

(Table 2), with reduced performance in the stress condition. These results are in accordance with 

previous findings (Betrán et al. 2003; Ning et al. 2018; LI et al. 2019). Nitrogen is a crucial nutrient 

required by plants for critical functions including protein synthesis, nucleic acids composition, 

photosynthesis, and carbohydrate production. Therefore, the amount of N assimilated and 

distributed has a large impact on plant metabolism and root-shoot growth (Bänziger et al. 2002; 

Morosini et al. 2017; Perchlik and Tegeder 2018).  

As reported in the literature, EH and PH are highly positively correlated (Peiffer et al. 

2014; Bennetzen et al. 2018), corroborating the Pearson’s coefficients of 0.85 in IN and 0.82 in LN 

we found in this study (Table 1). The index HM is mathematically connected to GY (𝐻𝑀 =
%(0P&'(∗0P)'()
0P&'("0P)'(

=	 (0P&'(∗0P)'()
	0P(RRRRRR ), which explains the high correlation among them. We could also 

observe that the correlation between GY and EH descreased substantially in LN compared to IN, 

yielding a correlation of 0.21 (half of the coefficient obtained in IN). The same trend was found 

analyzing GY and PH. 

In all three scenarios 𝐼, 𝐺!, and 𝐺!"# , GY presented substantial variation of additive 

effect from LN to IN and small variation of dominance effect between stressed and non-stressed 

conditions (Figure 3). On the other hand, PH and EH had a significant difference for the 

dominance variance between LN to IN, but not for the additive effect. These observations 

reinforce that the more complex the trait is, the greater the influence of environmental oscillations 

on genetic estimates tend to be, which are driven by N treatment in this case (Bennetzen et al. 

2018; Bernardo 2020). It has been documented that GY presents lower heritability under abiotic 

stress conditions (Venuprasad et al. 2007; Bankole et al. 2017) and since it has a higher level of 

complexity compared to PH and EH, the impact of N stress on the additive component was higher 

than in the dominance one for this trait. 

The estimates of narrow-sense genomic heritability increased from scenario 𝐼 to 𝐺! and 

𝐺! to 𝐺!"# for all traits except EH (Figure 4, Table S1). Overall, the addition of only additive 

information in the model did not have a relevant impact on genetic estimates compared to a 

scenario that did not consider any genomic relationship among parents . On the other hand, when 

combined with a dominance matrix in scenario 𝐺!"# , there was a significant reduction of the 
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dominance variance compared to 𝐺!. Therefore, by including only the additive information, we 

cannot separate the additive and dominance genetic components entirely because it accounts for 

part of the dominance effect itself. That is, the dominance is lumped into the additive component 

when not included. Consequently, there is higher efficiency in capitalizing dominance variance by 

adding the dominance genomic relationship information into the model. In addition, it provides 

better discriminations of the residual. These results suggest that the incorporation of both additive 

and dominance effects increases the power for assessing the true breeding value of hybrids. It is 

important to highlight that the model proposed assumed no epistasis and since we have phenotypic 

information only for the hybrids, the additive component may be overestimated by the additive-

by-additive interaction. 

HM performed similarly to GY in IN. By its mathematical composition, this index 

identifies stress tolerant individuals as it favors genotypes that perform well in both conditions 

(stressed and non-stressed). The HM score can be useful for plant breeders as a tool for early 

selection and as an alternative to genome wide prediction. Since unfavorable conditions can affect 

genomic heritability and reduce estimation accuracy, performing predictions using phenotypic 

values that account for both conditions is an effective method of eliminating the effects of error 

on prediction and maximizing the amount of genetic information (Crossa et al. 2010; Ziyomo and 

Bernardo 2013; Wang et al. 2017). 

 

4.2. Model comparison 

The significant positive correlation coefficients for the ranking of lines indicate the order 

of parental maize lines barely changed among genetic scenarios for GY and HM (Figure 6). 

Furthermore, the same lines are reported as the best for both traits. The breeding value (BV) of an 

individual is the heritable portion of its genotypic value and it is due to additive effects (Bernardo 

2020). The maintenance of the same lines as the best between scenario 𝐼 and 𝐺! suggest the 

pedigree deduced intrinsically in the diallel analysis was sufficient to capture their relationship. 

Therefore, the inclusion of the additive incidence matrix added little information regarding BV. 

This suggests that the population described here does not present a clear structure since the first-

order relationship captured by the diallel scheme was sufficient to discriminate the additive effect. 

The incorporation of dominance deviations into the model (from 𝐺! to 𝐺!"#) did not provide 

changes in the ranking of lines since the GCA is due to the additive genetic component. These 
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findings strongly corroborate the importance of the additive effects as drivers for selecting inbred 

lines used in hybrids combinations and indicate the consistency of the analyses for GY and HM. 

Interestingly, both GY and HM identified the same lines as the best according to GCA. 

Previous studies have reported the usefulness of HM as a discriminator of tolerant genotypes (Jafari 

et al. 2009; Mendonça et al. 2017; Zhao et al. 2019). Considering that GY and HM are highly 

correlated (0.99), a potential explanation for their similar ranking is that the majority of the 

genotypes present stability type 2, that is, they are responsive to the N increment response and 

their response is parallel to the mean response of all genotypes in the panel (Lin et al. 1986; Fasahat 

et al. 2015) (Figure 6). Furthermore, once HM discriminates the most tolerant and high yielding 

genotypes simultaneously, it is possible to infer the lines identified as the best are also the most 

tolerant ones for N stress. This evidence is in accordance with the origin of this panel, which was 

constructed through divergent selection regarding N use efficiency (Lanes et al. 2014; Morosini et 

al. 2017). 

The ranking of hybrids by their GEV was highly similar within traits (comparing the 

scenarios) and between traits. However, we noticed an interesting change in the positions when 

focusing on the worst genotypes. This is a crucial feature to define the strategy of a breeding 

program. For instance, if the goal is to select the best hybrids, then the same individuals would be 

assigned regardless of the model. However, if the aim is to eliminate the worst genotypes, it must 

be done according to the specific genetic scenario adopted, otherwise the final results may be 

compromised. The strategy must also consider the genetic diversity the breeder wants to maintain 

in the population that remains after selection in each scenario. 

The GEVs were higher when we incorporated the dominance information in the model 

(data not shown), and the increment in this parameter comparing the mean GEV value of the 10% 

selected individuals to the mean GEV of the total population (906 hybrids) was lower for 𝐺!"# . 

For scenarios 𝐼 and 𝐺!, the mean GEV scores were lower than in 𝐺!"# because we are assuming 

the hybrids are independent of each other from a genomic perspective since the only information 

on relatedness that can be captured is from the intrinsic pedigree deducted from the diallel analysis. 

Thus, the mean SCA in scenarios 𝐼 and 𝐺! tends to zero. On the other hand, considering the 

dominance matrix incidence for the hybrids in the model, the effects are no longer independent, 

which reflects directly in the SCA estimates. Since we did not model the scenarios 𝐼 and 𝐺! with 

dominance effects, the SCA estimates tend to be spurious in them, because the only source for 

effect discrimination is the genetic additive information. By that, we are not considering the 

mendelian sampling. In scenario 𝐺!"# , the dominance incidence matrix allows us to assess 
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variation within crosses from the same parents due to SCA, therefore it is more accurate than the 

models without dominance. 

The mean GEV of the 10% best hybrids were similar between scenarios within each trait, 

which corroborates the solid performance guided by the additive effects captured in the pedigree 

deduced in scenario 𝐼. The lines identified as the most frequent parents of the best hybrids based 

on GEV for GY and HM had substantial overlap. This result indicates the best parents are 

persistently identified throughout the scenarios and also report for tolerance to N stress, as 

previously mentioned. Among the best hybrids for GY and GEV, are L019xL056, L019xL032, 

L002xL056, L002xL013, L002xL045, and L001xL056. 

 

4.3. Heterotic patterns 

By using SCA estimates to identify structure in the panel, we clustered based on the 

difference, and potentially complementarity, of alleles between groups. Therefore, the genetic 

distance between them is maximized. The composition of heterotic groups changed slightly from 

scenarios 𝐼 to 𝐺!, and more substantially from 𝐺! to 𝐺!"# . Naturally, the determination of 

heterotic groups occurs as a function of the variance: since no significant increment was observed 

for the SCA from scenario 𝐼 to 𝐺!, both scenarios yielded similar heterotic patterns. The short 

initial branches of the phylograms indicated that the population is not divergent enough. Therefore, 

the best strategy in a first stage of allocation and selection of hybrids relies on SCA. 

A well-established, long-term maize breeding program present distinct and genetically 

distant heterotic patterns and defined testers, which tend to provide a higher exploration of 

heterosis and maintenance of genetic variability through cycles of reciprocal recurrent selection. In 

this case, selection of hybrids based on GEV would be advantageous because the genetic distance 

between groups is high and SCA accounts for a greater proportion of the total genetic value. On 

the other hand, in initial maize breeding programs were heterotic groups are not well defined, SCA 

tends to represent just a small and constant portion of GEV, which mainly diverges from one 

individual to another due to the additive effects (GCAs of both parents). Therefore, the selection 

and the assignment of hybrids to heterotic groups should occur based on the SCA estimates 

towards genetic variability within the population and genetic distance between groups. 

There were three potential clusters for scenarios 𝐼 and 𝐺!, and four in 𝐺!"# . Nevertheless, 

we considered the determination of two heterotic groups in all scenarios. First, our panel is 

relatively small (49 lines) and does not present any clear structure, therefore a smaller number of 
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heterotic groups will be a more practical approach. Second, it is important to have heterotic groups 

with a similar number of individuals, especially in the initial stages and with limited number of 

paretnal lines. This strategy allows the breeder to deal with a greater populational size and to avoid 

severe bottlenecks potentially induced by genetic drift. 

We observed a considerable overlap among compositions of heterotic groups resulted 

from modeling scenario 𝐼-𝐺! and 𝐺!"# . Nevertheless, the dominance component in the last 

scenario allowed to reach higher heterosis, since the mean GEV from the hybrids of crosses 

produced between G1 and G2 was superior to estimates in 𝐼 and 𝐺!. Finally, the coincidence of 

best lines according to the parameters GCA, GEV, and SCA indicated the lines L056, L032, and 

L008 would be good testers.  

N stress affected significantly the designation of heterotic groups (Figure 9). Since the 

environmental effects tend to be higher in stressful conditions, the genetic effects can be 

underestimated. We found a important decrease in the potential SCA when the clustering was 

performed based on LN data, which indicates that breeding trials conducted and evaluated in 

stressful conditions may lead to missleading results, negatively affecting mid-term and long-term 

steps in a breeding program. Therefore, the N stress condition seems to compromise the 

exploration of heterosis, the main goal in hybrid breeding, and must be appropriately addressed 

for studies involving N use efficiency. 
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5. CONCLUSION 

In our study, we applied three modeling scenarios considering combinations of additive 

and dominance effects into a diallel analysis of a tropical maize population of 906 maize hybrids 

from 49 inbred lines to understand how the genetic relationship information impacts on the 

estimation of combining abilities, the assginment of heterotic groups, and genome wide prediction. 

The effect of nitrogen stress on pool clustering was also assessed. We generated the in-silico score 

GEV to compare 𝐼, 𝐺! and 𝐺!"# . From the SCA estimates, heterotic groups were assigned 

according to each scenario. Our results indicate that the incorporation of both additive effects and 

dominance deviations allows to discriminate better the GCA and SCA estimates. In addition, a 

population with poor structure benefits only marginally from the inclusion of additive genetic 

kernels in a diallel context, since the information provided by the crosses themselves is sufficient 

to estimate the effects. Heterotic patterns defined using SCA values estimated with dominance 

deviations provided a greater expression of heterosis compared to the groups defined using only 

pedigree/additive information, since the genetic distance between groups is increased. N stress 

hinders resolution in determining heterotic patterns, with consequent impact on heterosis 

assessment and exploration. In addition, we observed that a smaller set of crosses genetically well 

targeted by heterotic groups is as efficient as using all inter- and intra-crosses in terms of prediction 

ability. Finally, the differential modeling of marker effects for each heterotic group is crucial to a 

sustainable RRS breeding program. 
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SUPPLEMENTARY MATERIAL 

Table S1.  Variance components of 906 maize hybrids evaluated across four environments under two nitrogen 
treatments for grain yield (GY), ear height (EH), plant height (PH), and harmonic mean index (HM) in the genetic 
scenarios 𝐼, 𝐺!, and 𝐺!"# 

Scenario Trait N level 𝜎012%  𝜎412%  𝜎412% /𝜎012%  𝜎H% ℎ% 𝐻% 

𝐼 

GY Ideal 0.3694 0.5353 1.45 1.7063 0.14 0.35 
Low 0.2539 0.4626 1.82 1.9101 0.09 0.27 

EH Ideal 0.0064 0.0022 0.34 0.0071 0.41 0.55 
Low 0.0054 0.0018 0.33 0.0092 0.33 0.44 

PH Ideal 0.0070 0.0058 0.82 0.0088 0.32 0.59 
Low 0.0055 0.0049 0.88 0.0138 0.23 0.43 

HM - 0.2981 0.4741 1.59 1.2693 0.15 0.38 

𝐺! 

GY Ideal 0.4188 0.5396 1.29 1.7071 0.16 0.36 
Low 0.2782 0.4723 1.70 1.9093 0.10 0.28 

EH Ideal 0.0054 0.0022 0.41 0.0071 0.37 0.52 
Low 0.0046 0.0018 0.38 0.0092 0.30 0.41 

PH Ideal 0.0077 0.0058 0.75 0.0088 0.35 0.61 
Low 0.0059 0.0049 0.83 0.0138 0.24 0.44 

HM - 0.3394 0.4809 1.42 1.2696 0.16 0.39 

𝐺!"# 

GY Ideal 0.4721 0.3644 0.77 1.7689 0.18 0.32 
Low 0.3260 0.3213 0.99 1.9941 0.12 0.25 

EH Ideal 0.0055 0.0018 0.33 0.0073 0.37 0.50 
Low 0.0048 0.0013 0.28 0.0095 0.30 0.39 

PH Ideal 0.0085 0.0046 0.54 0.0096 0.37 0.58 
Low 0.0062 0.0036 0.57 0.0146 0.26 0.40 

HM - 0.4109 0.3225 0.78 1.3368 0.20 0.35 
Additive (𝜎$%&' ), dominance (𝜎(%&' ), error (𝜎)') variance, strict-sense heritability (ℎ'), and broad-sense heritability (𝐻') 
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Table S2.  Estimates of general combining ability (GCA) of 49 maize parent lines assessed via heir progeny of 
906 hybrids, which were evaluated in four environments for grain yield (GY) and the index harmonic mean (HM) 
in the genetic scenarios 𝐼, 𝐺!, and 𝐺!"# 

Line GY HM 
𝐼 𝐺! 𝐺!"# 𝐼 𝐺! 𝐺!"# 

L001 0.5390 0.5717 0.6560 0.4641 0.4940 0.5903 
L002 1.1254 1.1286 1.1880 0.7673 0.7684 0.8029 
L003 -0.3957 -0.3910 -0.4082 -0.2581 -0.2517 -0.2708 
L005 -0.8063 -0.8024 -0.8855 -0.5916 -0.5840 -0.6492 
L006 -0.1399 -0.1186 -0.1346 -0.3079 -0.2860 -0.3195 
L007 0.6603 0.6447 0.5852 0.4876 0.5022 0.4318 
L007B 0.3046 0.3691 0.2828 0.4259 0.4480 0.3871 
L008 0.4735 0.4707 0.4838 0.4332 0.4317 0.4344 
L010 0.1840 0.1821 0.1830 0.2230 0.2234 0.2424 
L011 -0.1517 -0.1360 -0.1660 -0.1636 -0.1485 -0.1689 
L012 0.0476 0.0320 0.0860 -0.0645 -0.0807 -0.0425 
L013 0.2940 0.3092 0.2475 0.4700 0.4889 0.4511 
L014 -0.2547 -0.3070 -0.3416 -0.2187 -0.2697 -0.3108 
L014B -0.4115 -0.4228 -0.3980 -0.3158 -0.3270 -0.2735 
L014C -0.7497 -0.7487 -0.8028 -0.6924 -0.6810 -0.7549 
L015 -0.4530 -0.4635 -0.4872 -0.5006 -0.5126 -0.5438 
L016 0.6283 0.6451 0.6832 0.5368 0.5492 0.5726 
L017 -0.0808 -0.1028 -0.0880 -0.1287 -0.1495 -0.1182 
L018 0.6429 0.6659 0.7001 0.7517 0.7772 0.7999 
L019 0.6667 0.6845 0.7285 0.2898 0.3100 0.3446 
L022 -0.0394 -0.0433 0.0929 -0.0682 -0.0836 0.0547 
L023 -0.5204 -0.5226 -0.5207 -0.4555 -0.4624 -0.4647 
L024 0.3070 0.3184 0.3269 0.2606 0.2697 0.2798 
L025 -1.4152 -1.4306 -1.4628 -1.3029 -1.3210 -1.3710 
L026 -1.0487 -1.1418 -1.1344 -0.9880 -1.0762 -1.0794 
L027 0.0532 0.0433 0.0385 0.3268 0.3099 0.3464 
L028 -0.2709 -0.2155 -0.2551 -0.2026 -0.1280 -0.1996 
L029 0.4158 0.4100 0.4225 0.4010 0.3978 0.4328 
L031 0.2450 0.2679 0.3353 0.2564 0.2769 0.3537 
L032 1.2721 1.2728 1.3066 1.0979 1.1032 1.1342 
L033 -0.3973 -0.1935 -0.2357 -0.4372 -0.1978 -0.2749 
L034 -0.0246 -0.0871 -0.1262 -0.2182 -0.2467 -0.2924 
L035 -0.2852 -0.1981 -0.2774 -0.3255 -0.2894 -0.3555 
L037 -0.1529 -0.1404 -0.1608 -0.2334 -0.2246 -0.2347 
L038 -0.5262 -0.5605 -0.5455 -0.3326 -0.3775 -0.3546 
L039 0.1566 -0.0681 -0.0133 0.2094 -0.0549 0.0074 
L041 -0.1713 -0.1755 -0.1738 -0.3181 -0.3214 -0.3183 
L042 -0.7609 -0.7628 -0.8109 -0.7108 -0.6930 -0.7637 
L043 -0.2838 -0.3048 -0.3518 -0.2579 -0.2791 -0.3231 
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L044 0.0329 0.0460 0.0904 0.1257 0.1429 0.1896 
L045 0.5743 0.5586 0.5963 0.6475 0.6341 0.6792 
L046 -0.0740 -0.0537 -0.0896 -0.0235 -0.0034 -0.0465 
L047 -0.8990 -0.8751 -0.9093 -0.7118 -0.6898 -0.7419 
L048 -0.3622 -0.2381 -0.2975 -0.2642 -0.1501 -0.2137 
L049 0.5409 0.3654 0.4472 0.5612 0.4039 0.4946 
L054 -0.4826 -0.4985 -0.4524 -0.3665 -0.3817 -0.3081 
L055 0.0172 0.0199 0.0304 -0.0721 -0.0698 -0.0692 
L056 1.4340 1.4402 1.4263 1.2727 1.2772 1.2746 
L058 0.5429 0.5568 0.5915 0.5223 0.5326 0.5593 
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Table S3.  The best 91 maize hybrids according to the genomic estimated value (GEV) scores for grain yield 
(GY) in the genetic scenarios 𝐼, 𝐺!, and 𝐺!"# 

GY 
𝑰 𝑮𝒂 𝑮𝒂"𝒅 

Hybrid GEV Hybrid GEV Hybrid GEV 
L019xL056 3.20 L019xL056 3.22 L019xL056 2.96 
L019xL032 3.16 L019xL032 3.18 L049xL056 2.94 
L002xL056 2.80 L002xL056 2.81 L032xL056 2.89 
L002xL013 2.66 L002xL013 2.68 L019xL032 2.83 
L032xL056 2.61 L032xL056 2.61 L002xL056 2.78 
L002xL045 2.52 L002xL045 2.52 L002xL013 2.71 
L001xL056 2.40 L001xL056 2.42 L002xL045 2.60 
L001xL002 2.36 L001xL002 2.37 L001xL002 2.48 
L049xL056 2.35 L033xL056 2.34 L016xL032 2.46 
L002xL007 2.32 L002xL007 2.32 L001xL056 2.45 
L016xL056 2.30 L016xL056 2.31 L047xL056 2.39 
L002xL019 2.30 L002xL019 2.31 L002xL019 2.39 
L044xL056 2.29 L044xL056 2.31 L002xL018 2.36 
L016xL032 2.27 L016xL018 2.29 L002xL007 2.27 
L016xL018 2.26 L016xL032 2.28 L029xL032 2.20 
L029xL032 2.26 L029xL032 2.26 L032xL058 2.15 
L033xL056 2.25 L049xL056 2.25 L010xL056 2.15 
L013xL056 2.22 L013xL056 2.24 L016xL056 2.13 
L002xL018 2.13 L002xL018 2.15 L039xL056 2.09 
L032xL058 2.13 L032xL058 2.14 L045xL056 2.09 
L010xL056 2.13 L010xL056 2.13 L016xL018 2.05 
L029xL056 2.12 L029xL056 2.13 L029xL056 2.04 
L015xL056 2.09 L015xL056 2.09 L014xL056 2.01 
L014xL056 2.09 L014xL056 2.07 L044xL056 2.00 
L002xL049 2.05 L018xL056 1.98 L016xL045 2.00 
L056xL049 1.98 L002xL049 1.95 L018xL056 1.99 
L018xL056 1.97 L019xL045 1.89 L056xL049 1.96 
L019xL045 1.89 L056xL049 1.87 L013xL056 1.95 
L008xL032 1.86 L008xL032 1.86 L002xL031 1.90 
L039xL049 1.85 L037xL056 1.85 L002xL044 1.89 
L032xL045 1.84 L002xL031 1.84 L007xL032 1.89 
L037xL056 1.84 L032xL045 1.83 L007xL017 1.87 
L045xL056 1.83 L045xL056 1.83 L033xL056 1.87 
L002xL031 1.82 L007xL032 1.79 L039xL019 1.87 
L007xL032 1.80 L007xL056 1.77 L008xL032 1.85 
L007xL056 1.78 L016xL045 1.77 L012xL032 1.84 
L016xL045 1.77 L007xL017 1.74 L019xL045 1.84 
L007xL017 1.75 L002xL044 1.73 L008xL056 1.84 
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L017xL032 1.72 L017xL032 1.71 L015xL056 1.83 
L002xL044 1.72 L010xL058 1.69 L008xL045 1.78 
L012xL032 1.69 L012xL032 1.68 L017xL032 1.77 
L010xL058 1.68 L019xL031 1.67 L002xL029 1.72 
L002xL029 1.66 L039xL049 1.67 L018xL019 1.71 
L019xL031 1.65 L032xL055 1.66 L002xL010 1.70 
L032xL055 1.65 L002xL029 1.65 L037xL056 1.70 
L008xL056 1.64 L008xL056 1.64 L010xL058 1.65 
L032xL039 1.61 L032xL007B 1.62 L002xL008 1.65 
L039xL056 1.61 L016xL058 1.62 L048xL056 1.65 
L034xL045 1.60 L002xL016 1.60 L056xL014B 1.64 
L016xL058 1.60 L002xL010 1.59 L024xL032 1.62 

L032xL007B 1.59 L034xL045 1.57 L032xL045 1.62 
L002xL016 1.59 L008xL045 1.56 L032xL039 1.61 
L002xL010 1.59 L002xL014 1.55 L002xL046 1.60 
L002xL014 1.57 L024xL032 1.55 L008xL058 1.59 
L008xL045 1.57 L011xL032 1.54 L032xL055 1.59 
L024xL032 1.55 L032xL039 1.52 L007xL056 1.59 
L011xL032 1.52 L008xL058 1.51 L002xL016 1.57 
L008xL058 1.51 L039xL056 1.51 L019xL031 1.56 
L002xL012 1.48 L018xL019 1.49 L027xL056 1.55 
L032xL037 1.48 L032xL037 1.49 L003xL056 1.54 
L032xL034 1.48 L002xL012 1.48 L008xL019 1.54 
L002xL008 1.47 L002xL008 1.47 L017xL007B 1.53 
L018xL019 1.46 L032xL034 1.45 L002xL049 1.52 
L018xL032 1.42 L016xL019 1.44 L032xL007B 1.52 
L016xL019 1.42 L001xL046 1.44 L007xL049 1.52 
L001xL046 1.41 L018xL032 1.43 L032xL037 1.52 
L013xL016 1.39 L013xL016 1.41 L017xL056 1.52 
L007xL008 1.39 L032xL046 1.39 L034xL045 1.50 
L032xL046 1.38 L048xL056 1.38 L002xL055 1.50 
L039xL019 1.38 L016xL017 1.38 L016xL058 1.48 
L016xL017 1.38 L007xL008 1.38 L002xL012 1.48 
L008xL024 1.36 L008xL024 1.37 L007xL039 1.47 

L056xL014C 1.34 L056xL014C 1.35 L011xL032 1.46 
L055xL056 1.34 L055xL056 1.34 L032xL049 1.45 
L032xL043 1.34 L018xL046 1.34 L032xL046 1.45 
L008xL044 1.33 L008xL044 1.34 L007xL008 1.44 
L048xL056 1.33 L008xL007B 1.34 L018xL032 1.42 
L008xL019 1.33 L008xL019 1.34 L032xL034 1.42 
L034xL056 1.32 L032xL043 1.33 L008xL044 1.41 
L018xL046 1.32 L010xL016 1.32 L018xL049 1.40 
L010xL016 1.31 L045xL046 1.30 L032xL033 1.39 
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L045xL046 1.30 L047xL056 1.30 L056xL014C 1.39 
L008xL007B 1.30 L003xL056 1.29 L002xL011 1.36 
L003xL056 1.28 L002xL046 1.28 L016xL019 1.35 
L047xL056 1.28 L032xL033 1.28 L008xL007B 1.35 
L002xL046 1.27 L034xL056 1.27 L013xL016 1.35 
L018xL049 1.26 L039xL019 1.26 L055xL056 1.34 
L014xL032 1.25 L032xL041 1.25 L002xL014 1.34 
L032xL041 1.25 L027xL056 1.24 L035xL045 1.34 
L007xL041 1.24 L007xL033 1.24 L001xL046 1.32 
L027xL056 1.24 L007xL041 1.24 L056xL007B 1.32 
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Table S4.  Maize lines progenitors of the 10% best hybrids based on their genomic estimated value (GEV) for 
grain yield (GY) and harmonic mean index (HM) in the genetic scenarios 𝐼, 𝐺!, and 𝐺!"# . Green color indicates 
the most frequent lines, Yellow represents the lines not present in all scenarios for GY, and Blue represents 
exclusive lines within HM  

 
GY HM 

𝐼 𝐺! 𝐺!"# 𝐼 𝐺! 𝐺!"# 
Lines Freq Lines Freq Lines Freq Lines Freq Lines Freq Lines Freq 

1 L056 27 L056 27 L056 29 L056 26 L056 26 L056 29 
2 L032 22 L032 22 L032 21 L032 22 L032 22 L032 20 
3 L002 17 L002 17 L002 19 L002 14 L002 14 L002 12 
4 L008 10 L008 10 L008 9 L018 9 L018 9 L018 10 
5 L016 10 L016 10 L019 9 L008 8 L045 9 L045 10 
6 L019 9 L019 9 L016 8 L016 8 L008 8 L008 9 
7 L045 8 L045 8 L045 8 L045 8 L016 8 L016 9 
8 L018 7 L007 7 L007 7 L007 6 L007 6 L019 8 
9 L007 6 L018 6 L018 6 L019 6 L058 6 L007 6 
10 L046 5 L046 5 L049 6 L029 6 L019 5 L049 6 
11 L049 5 L010 4 L007B 4 L058 6 L029 5 L007B 5 
12 L010 4 L039 4 L017 4 L039 5 L031 5 L017 5 
13 L039 4 L049 4 L039 4 L049 5 L049 5 L044 5 
14 L058 4 L058 4 L058 4 L010 4 L010 4 L058 5 
15 L001 3 L001 3 L001 3 L013 4 L013 4 L010 4 
16 L013 3 L013 3 L010 3 L014 4 L014 4 L013 4 
17 L014 3 L017 3 L013 3 L044 4 L024 4 L029 4 
18 L017 3 L029 3 L029 3 L001 3 L044 4 L031 4 
19 L029 3 L033 3 L044 3 L007B 3 L007B 3 L014 3 
20 L034 3 L034 3 L046 3 L017 3 L017 3 L039 3 
21 L044 3 L044 3 L055 3 L024 3 L027 3 L001 2 
22 L007B 2 L007B 2 L011 2 L031 3 L046 3 L012 2 
23 L012 2 L012 2 L012 2 L046 3 L055 3 L024 2 
24 L024 2 L014 2 L014 2 L055 3 L001 2 L027 2 
25 L031 2 L024 2 L031 2 L012 2 L012 2 L037 2 
26 L037 2 L031 2 L033 2 L027 2 L037 2 L046 2 
27 L041 2 L037 2 L034 2 L037 2 L039 2 L055 2 
28 L055 2 L041 2 L037 2 L003 1 L048 2 L003 1 
29 L003 1 L055 2 L003 1 L014B 1 L003 1 L014B 1 
30 L011 1 L003 1 L014B 1 L014C 1 L014B 1 L014C 1 
31 L014C 1 L011 1 L014C 1 L015 1 L014C 1 L015 1 
32 L015 1 L014C 1 L015 1 L033 1 L015 1 L041 1 
33 L027 1 L015 1 L024 1 L034 1 L033 1 L047 1 
34 L033 1 L027 1 L027 1 L038 1 L034 1 L048 1 
35 L043 1 L043 1 L035 1 L041 1 L038 1 - - 
36 L047 1 L047 1 L047 1 L047 1 L041 1 - - 
37 L048 1 L048 1 L048 1 L048 1 L047 1 - - 
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Table S5.  The best 91 maize hybrids according to the genomic estimated value (GEV) scores for the index 
Harmonic mean (HM) in the genetic scenarios 𝐼, 𝐺!, and 𝐺!"# 

HM 
𝑰 𝑮𝒂 𝑮𝒂"𝒅 

Hybrid GEV Hybrid GEV Hybrid GEV 
L019xL032 2.66 L019xL032 2.67 L049xL056 3.00 
L001xL056 2.49 L001xL056 2.50 L032xL056 2.61 
L016xL032 2.48 L016xL032 2.49 L016xL032 2.54 
L032xL056 2.46 L032xL056 2.46 L001xL056 2.49 
L049xL056 2.35 L010xL056 2.33 L019xL032 2.34 
L010xL056 2.33 L002xL045 2.29 L010xL056 2.28 
L002xL045 2.29 L049xL056 2.27 L047xL056 2.24 
L002xL007 2.22 L002xL007 2.24 L002xL045 2.22 
L002xL018 2.09 L002xL018 2.11 L002xL007 2.15 
L008xL056 2.07 L008xL056 2.08 L002xL018 2.14 
L045xL056 2.01 L045xL056 2.01 L056xL049 2.05 
L019xL056 1.97 L019xL056 1.98 L008xL056 2.05 
L056xL049 1.95 L013xL056 1.90 L045xL056 2.05 
L002xL049 1.89 L016xL058 1.90 L027xL056 1.98 
L019xL045 1.89 L019xL045 1.89 L019xL056 1.94 
L013xL056 1.89 L033xL056 1.87 L029xL056 1.94 
L016xL058 1.88 L056xL049 1.86 L002xL013 1.93 
L007xL017 1.84 L016xL018 1.86 L048xL056 1.85 
L027xL056 1.84 L013xL016 1.85 L003xL056 1.82 
L016xL018 1.83 L007xL017 1.85 L008xL045 1.81 
L013xL016 1.83 L027xL056 1.84 L002xL019 1.79 
L015xL056 1.80 L002xL049 1.81 L056xL014B 1.78 
L033xL056 1.77 L015xL056 1.80 L016xL018 1.77 
L016xL056 1.76 L016xL056 1.77 L019xL045 1.75 
L039xL049 1.76 L002xL013 1.74 L016xL058 1.74 
L032xL039 1.76 L029xL056 1.73 L002xL049 1.71 
L029xL056 1.73 L037xL056 1.72 L012xL032 1.71 
L002xL013 1.72 L002xL019 1.72 L001xL002 1.71 
L008xL045 1.72 L008xL045 1.71 L013xL016 1.70 
L037xL056 1.72 L048xL056 1.68 L007xL017 1.65 
L002xL019 1.71 L032xL039 1.66 L016xL056 1.65 
L018xL027 1.64 L018xL027 1.65 L013xL056 1.64 
L048xL056 1.63 L001xL002 1.63 L002xL056 1.61 
L012xL032 1.62 L008xL007B 1.63 L017xL032 1.61 
L003xL056 1.61 L003xL056 1.62 L014xL056 1.61 
L001xL002 1.61 L012xL032 1.61 L015xL056 1.60 

L008xL007B 1.61 L008xL058 1.61 L024xL032 1.59 
L008xL058 1.60 L039xL049 1.60 L008xL032 1.58 
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L017xL032 1.59 L010xL058 1.59 L002xL031 1.57 
L010xL058 1.58 L044xL056 1.59 L008xL058 1.57 
L044xL056 1.58 L017xL032 1.58 L010xL058 1.57 
L002xL056 1.58 L002xL056 1.57 L018xL027 1.57 
L002xL031 1.56 L002xL031 1.57 L044xL056 1.54 
L008xL032 1.56 L008xL032 1.56 L029xL032 1.54 
L024xL032 1.53 L024xL032 1.54 L017xL007B 1.53 
L014xL032 1.50 L007xL056 1.51 L037xL056 1.52 
L007xL056 1.50 L032xL037 1.50 L018xL056 1.49 
L032xL037 1.49 L014xL032 1.49 L032xL058 1.49 

L056xL014B 1.49 L056xL014B 1.49 L039xL019 1.48 
L032xL055 1.47 L007xL032 1.48 L032xL037 1.46 
L018xL049 1.47 L032xL055 1.48 L008xL007B 1.46 
L007xL032 1.47 L014xL056 1.44 L007xL032 1.46 
L014xL056 1.46 L018xL056 1.43 L032xL055 1.44 
L018xL056 1.42 L010xL016 1.42 L018xL032 1.43 
L010xL016 1.41 L045xL046 1.41 L002xL010 1.43 
L045xL046 1.40 L018xL049 1.40 L018xL049 1.42 
L002xL012 1.39 L002xL012 1.38 L002xL044 1.42 
L032xL034 1.37 L008xL044 1.38 L008xL044 1.41 
L008xL044 1.37 L032xL034 1.37 L031xL045 1.41 
L018xL032 1.35 L018xL032 1.36 L013xL045 1.37 
L032xL045 1.35 L044xL058 1.36 L014xL032 1.37 
L044xL058 1.35 L056xL014C 1.34 L017xL056 1.37 
L029xL032 1.33 L032xL045 1.34 L032xL046 1.36 

L056xL014C 1.33 L029xL032 1.33 L032xL045 1.36 
L032xL058 1.32 L032xL058 1.32 L056xL014C 1.35 
L013xL045 1.32 L013xL045 1.32 L029xL045 1.35 
L016xL017 1.31 L047xL056 1.31 L016xL045 1.31 
L032xL038 1.30 L016xL017 1.31 L039xL056 1.30 
L055xL056 1.29 L055xL056 1.29 L055xL056 1.29 
L047xL056 1.29 L002xL044 1.29 L056xL007B 1.29 
L002xL044 1.28 L032xL038 1.29 L008xL019 1.28 
L032xL046 1.28 L032xL046 1.29 L007xL056 1.26 
L008xL019 1.27 L008xL019 1.29 L016xL017 1.26 
L032xL041 1.26 L018xL046 1.28 L002xL012 1.26 
L002xL010 1.26 L032xL041 1.27 L010xL016 1.25 
L018xL046 1.26 L002xL010 1.26 L031xL032 1.25 
L007xL031 1.24 L007xL031 1.26 L014xL018 1.24 
L002xL014 1.24 L002xL014 1.22 L018xL019 1.24 
L029xL045 1.22 L032xL007B 1.22 L032xL007B 1.24 
L014xL018 1.22 L014xL018 1.21 L044xL058 1.22 

L032xL007B 1.21 L007xL058 1.21 L007xL031 1.20 
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L007xL058 1.20 L029xL045 1.21 L018xL024 1.20 
L016xL029 1.19 L018xL024 1.20 L019xL044 1.19 
L039xL019 1.19 L016xL029 1.19 L007xL008 1.19 
L018xL024 1.18 L031xL032 1.19 L032xL041 1.17 
L031xL032 1.18 L029xL007B 1.15 L016xL029 1.16 

L029xL007B 1.14 L027xL048 1.11 L008xL049 1.15 
L029xL039 1.13 L024xL031 1.10 L046xL056 1.14 
L001xL039 1.09 L024xL055 1.10 L032xL039 1.13 
L024xL055 1.09 L031xL045 1.09 L049xL007B 1.12 
L002xL008 1.09 L002xL008 1.08 L018xL045 1.12 

 


