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RESUMO

Novas redes Bayesianas para predição genômica de caracteres de desenvolvimento em
sorgo biomassa

O sorgo (Sorghum bicolor L. Moench spp.) é uma cultura bioenergética com várias
características atrativas para serem exploradas no melhoramento de plantas para aumentar
a eficiência de produção de bioenergia. A possibilidade de conectar informações genômi-
cas em caracteres quantitativos ao longo do tempo, e entre caracteres, destacam as Redes
Bayesianas como uma ferramenta probabilística poderosa para delinear novos modelos de
predição genômica. Neste estudo, um painel diverso de 869 linhagens de sorgo foi fenotipado
em quatro ambientes diferentes (2 locais em 2 anos) com medidas a cada duas semanas de 30
a 120 dias após o plantio (DAP), para altura de plantas e biomassa seca no fim da safra. Um
procedimento de Genotipagem por sequenciamento foi executado, resultando na chamada
de 100.435 marcadores baseados em Polimorfismos de Nucleotídeos Únicos (SNPs) bialéli-
cos. Neste estudo foram desenvolvidos e avaliados os modelos de predição genômica: Rede
Bayesiana (BN), Rede Bayesiana Pleiotrópica (PBN), e Rede Bayesiana Dinâmica (DBN).
Os pressupostos para BN, PBN, e DBN foram independência, dependência entre caracteres,
e dependência entre pontos no tempo, respectivamente. Para fins comparativos, formulações
de modelos multivariados GBLUP foram utilizados considerando dependência entre pontos
de tempo para altura de plantas (MTi-GBLUP), e ambos os pontos de tempo para a al-
tura de plantas e biomassa seca (MTr-GBLUP), modelando matriz de variância-covariância
não estruturada para efeitos genéticos e residuais. Índices de coincidência (IC) foram cal-
culados para entender o sucesso na seleção indireta de biomassa seca usando medidas de
altura de plantas, bem como um índice de coincidência baseado em linhagens (CIL), usando
as amostras das posteriores das redes Bayesianas para entender a plasticidade genética ao
longo do tempo. No esquema de validação cruzada 5-fold, as acurácias das predições vari-
aram de 0,48 (PBN) a 0,51 (MTr-GBLUP) para biomassa seca e de 0,47 (DBN-DAP120) a
0,74 (MTi-GBLUP-DAP60) para altura de plantas. A validação cruzada forward-chaining
mostrou um incremento substancial nas acurácias das predições ao usar o modelo DBN, com
r = 0,6 (treinando no intervalo 30:45 para prever 120 DAP) até 0,94 (treinando no intervalo
30:90 para prever 105 DAP) em comparação com o BN e PBN, e semelhante aos modelos
multivariados GBLUP. Os índices CI e CIL mostraram que o ranking de linhagens promisso-
ras mudou minimamente após 45 DAP para altura de plantas. Estes resultados sugerem que
45 DAP é um estágio de desenvolvimento ideal para impor a estrutura de seleção indireta
em dois níveis, onde a seleção indireta para a altura da planta no final da estação (caractere
alvo de primeiro nível) pode ser feita com base na sua classificação com 45 DAP (carac-
tere secundário), bem como para a biomassa seca (caractere alvo de segundo nível). Com o
avanço das tecnologias robóticas para a fenotipagem baseada em campo, o desenvolvimento
de novas abordagens, como a estrutura de seleção indireta em dois níveis, serão imperativas
para aumentar o ganho genético por unidade de tempo.

Palavras-chave: Bioenergia; Sorgo; Predição genômica; Redes Bayesianas
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ABSTRACT

Novel Bayesian networks for genomic prediction of developmental traits in biomass
sorghum

Sorghum (Sorghum bicolor L. Moench spp.) is a bioenergy crop with several ap-
pealing biological features to be explored in plant breeding for increasing efficiency in bioen-
ergy production. The possibility to connect the influence of quantitative trait loci over time
and between traits highlight the Bayesian networks as a powerful probabilistic framework
to design novel genomic prediction models. In this study, we phenotyped a diverse panel
of 869 sorghum lines in four different environments (2 locations in 2 years) with biweekly
measurements from 30 days after planting (DAP) to 120 DAP for plant height and dry
biomass at the end of the season. Genotyping-by-sequencing was performed, resulting in the
scoring of 100,435 biallelic SNP markers. We developed and evaluated several genomic pre-
diction models: Bayesian Network (BN), Pleiotropic Bayesian Network (PBN), and Dynamic
Bayesian Network (DBN). Assumptions for BN, PBN, and DBN were independence, depen-
dence between traits, and dependence between time points, respectively. For benchmarking,
we used multivariate GBLUP models that considered only time points for plant height (MTi-
GBLUP), and both time points for plant height and dry biomass (MTr-GBLUP) modeling
unstructured variance-covariance matrix for genetic effects and residuals. Coincidence in-
dices (CI) were computed for understanding the success in selecting for dry biomass using
plant height measurements, as well as a coincidence index based on lines (CIL) using the pos-
terior draws from the Bayesian networks to understand genetic plasticity over time. In the
5-fold cross-validation scheme, prediction accuracies ranged from 0.48 (PBN) to 0.51 (MTr-
GBLUP) for dry biomass and from 0.47 (DBN-DAP120) to 0.74 (MTi-GBLUP-DAP60) for
plant height. The forward-chaining cross-validation showed a substantial increment in pre-
diction accuracies when using the DBN model, with r = 0.6 (train on slice 30:45 to predict
120 DAP) to 0.94 (train on slice 30:90 to predict 105 DAP) compared to the BN and PBN,
and similar to multivariate GBLUP models. Both the CI and CIL indices showed that the
ranking of promising inbred lines changed minimally after 45 DAP for plant height. These
results suggest that 45 DAP is an optimal developmental stage for imposing the two-level
indirect selection framework, where indirect selection for plant height at the end of the sea-
son (first-level target trait) can be done based on its ranking with 45 DAP (secondary trait)
as well as for dry biomass (second-level target trait). With the advance of robotic technolo-
gies for field-based phenotyping, the development of novel approaches such as the two-level
indirect selection framework will be imperative to boost genetic gain per unit of time.

Keywords: Bioenergy; Sorghum; Genomic prediction; Bayesian networks
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1 INTRODUCTION

The increasing trends of demands for food, energy, and population growth highlight
the need to increase yield of crops with improvement of genetics and field management sys-
tems (Foley et al., 2011; Mace et al., 2013). Specially for production of bioenergy, sorghum
(Sorghum bicolor L. Moench spp.) has several attractive biological features to be explored in
breeding. The sorghum high biomass potential yield, strong resilience against biotic and abiotic
stress, and also ancestor of many relevant bioenergy crops like maize and sugarcane, indicate
this bioenergy crop as an outstanding resource to mitigate these challenges (Mullet et al.,
2014; Brenton et al., 2016).

Recently, the substantial drop on the cost in genotyping large number of individuals,
and the high cost of phenotyping plants in multiple trials attracted many public and private
breeding companies to adopt different kinds of predictive systems (Heslot et al., 2015). Among
different predictive approaches, genomic prediction (GP) allows predicting unobserved pheno-
types using information from Single Nucleotides Polymorphism (SNPs) over the genome (de
Los Campos et al., 2013). This approach is based on phenotyping and genotyping a popula-
tion of related individuals (training set), and prediction of another set of related individuals only
genotyped (test set) with trained model (Bernardo and Yu, 2007). For this purpose, plant
breeding programs collected data over multiple environments representative of the breeding zone
(Dias et al., 2018). Also, genotypic data is collected either using a form of reduced representa-
tion of the genome, or based on a microarray-based SNP genotyping technology (Elshire et al.,
2011). Among the utilities of GP, this approach allows breeding programs to reduce the amount
of financial resource spent on phenotyping within a trial, the amount of trials, and also allows
predict the best parental crosses before the growing season.

Over the last years, many statistical and machine learning models have been tailored to
use genomic information. Some examples are the linear mixed models (e.g. rrBLUP, GBLUP),
Bayesian models (e.g. BayesA, BayesB), kernel methods and neural networks (Meuwissen et al.,
2001; de Los Campos et al., 2013; Heslot et al., 2015). Despite the large number of models
developed so far, most of these tend to show similar predictive performance across different traits
and species (de Los Campos et al., 2013). Recently, the development of models exploiting
information over multiple traits and time points have been showing substantial improvement in
relation to others that assume independence (Ratcliffe et al., 2015; dos Santos et al., 2016;
Campbell et al., 2018). GP with multiple traits allows recovering information of markers linked
to genes displaying pleiotropic effects. Phenotypes measured over multiple time points allows
to recover the information of the trajectories of the genetic effects over time. One example of
model to recover genetic information between traits and time points by modelling their genetic
correlation is the Multivariate GBLUP model (Ratcliffe et al., 2015; dos Santos et al., 2016).
Novel GP models modelling the casuaility of these effects over multiple traits and time points
could improve even more the interpretation and quality of predictions from genomic prediction
models.

Bayesian paradigm is a modelling approach suitable to unify information from a exper-
iments into a likelihood probability function, from previous experiments into a prior probability
distribution, and merge both sources of information into a posterior probability function us-
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ing the Bayes theorem (Gelman et al., 2014; Goodfellow et al., 2016). Bayesian Networks
(BN) is a class of probabilistic graphical models for modelling structured relationships among
explanatory factors (Bishop, 2013). In genetics, BN can be used to connect information of
genetic factors affecting multiple traits and time points. In this study, we main goals were:
(i) perform a phenotypic analysis to eliminate non genetic experimental effects of plant height
time series and dry biomass data, (ii) propose a strategy based on principal component analy-
sis to mitigate computational burden of genomic prediction analysis, (iii) develop the Bayesian
Network, Pleiotropic Bayesian Network, Dynamic Bayesian Network, Multi Time GBLUP (con-
sidering all plant height repeated measures), and Multi Trait GBLUP (considering all plant
height repeated measures, and dry mass) to exploit information between traits and time points
for genomic prediction, (iv) predict observed and completely non observed plant height data
points across time points, and dry mass at the end of the season, (v) propose indexes based on
the results of the Bayesian analysis to identify opportunities for selection before the end of the
growing season, and (vi) propose a novel breeding indirect selection strategies to optimize the
genetic gain per unit of time of dry mass and plant height of sorghum biomass.
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2 LITERATURE REVIEW

2.1 Sorghum as a bioenergy crop

The rising levels of population growth, polluted gases and the reduction of non-renewable
energy resources have been suggesting a strong demand for food, fibers, grains, bioproducts and
bioenergy (Foley et al., 2011; Mace et al., 2013). Among the several possibilities to handle a
variety of challenges in the future, the genetic improvement of crops may directly or indirectly
help to deal with many of those demands. After partial degrees of domestication and breeding
through history, some crops display many different biological values for bioenergy production.
Some examples of bioenergy crops include the species switchgrass (Panicum virgatum), sugar-
cane (Saccharum spp.), Miscanthus ( Miscanthus spp.), napier grass (Pennisetum purpureum)
and sorghum (Sorghum bicolor L. Moench spp.) (Mullet et al., 2014).

Among the mentioned crops, sorghum is a quintessential bioenergy crop. Sorghum
belongs to the family Poaceae and subfamily Panicoideae, as the majority of grasses useful
for bioenergy production (Calviño and Messing, 2011). In terms of evolution landmark,
some archeological evidences indicate Ethiopia and Sudan as the initial domestication center of
sorghum more then 8000 years ago (Mace et al., 2013). The migration of sorghum happened
especially in trade routes from Africa to Asia. Over this migration time, sorghum had run
through a selective bottleneck and natural selection process that differentiated its species into
four well known races named Durra, Caudatum, Guinea and Kefir. In the America continent,
the introduction of sorghum germplasm happened at the 19th century (Mullet et al., 2014).

Recently, after these domestication events, the sorghum breeding process has devel-
oped thought artificial selection multiple kinds of sorghum. Those were categorized based on
its biochemical content. The most important categories are known as sweet sorghum, grain
sorghum and photoperiod sensitive sorghum (Rooney et al., 2007). The oligosaccharides su-
crose, glucose, fructose and starch are the main composition of sweet sorghum. On the other
side, the grain sorghum is enriched specially with a higher proportion of starch deposited on the
grains. The photoperiod sensitive sorghum has higher proportion of cell walls and lignin content
(Mullet et al., 2014; Regassa and Wortmann, 2014). Considering the vast plasticity of
sorghum biomass composition, this crop can be considered as a critical and imperative resource
for breeding to balance novel needs of biomass content. The unification of these features with
its strong resilience against biotic and abiotic stress turn sorghum an outstanding model organ-
ism to extrapolate new findings to other syntenic bioenergy crops (Regassa and Wortmann,
2014).

In terms of genetics and physiology, sorghum is diploid (2n=20) and fixes carbon
through the C4 pathway (Vermerris, 2011; Lawrence and Walbot, 2007). The non-complex
genome and efficient photosynthetic system, also, ancestor of many relevant bioenergy crops like
maize and sugarcane, enforces sorghum as a important model organism. Sorghum has a pre-
dominantly self-pollinating reproduction system. The possibility to easily make artificial crosses
and natural self-fertilization can also been seen as attractive features for implementing well-
established breeding methods in industry. The natural intellectual protection of cultivars by
hybridization of inbred lines to obtain single-cross hybrids also favour the interest of companies
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to invest in sorghum breeding (Mullet et al., 2014).

2.2 Novel sequencing technologies

In last century, maize showed an incredible example of ∼4-fold yield increase by mu-
tual effort of improvements in genetics and field management systems (Hammer et al., 2009).
Recently, Mullet et al. (2014) speculated that the same achievements observed in maize are
equally possible for sorghum. The potential yield of sorghum ideotypes is ∼55-60 dry Mg ha−1

under optimal water regime and ∼15-25 dry Mg ha−1 in non-water supplied conditions (Mullet
et al., 2014). For leveraging the genetics of sorghum to achieve such biomass production, the
adoption of modern breeding tools are a stepping stone towards the path for fast and efficient
success of bioenergy breeding programs.

The whole-genome sequencing is a modern breeding tool to obtain information at the
nucleotide level over the genome. The first effective and widespread technology to reveal nu-
cleotides sequence as units of DNA (deoxyribonucleic acid) is known as Sanger sequencing. In
short, this procedure is based on the generation of DNA fragments with variable length, termi-
nated with a labeled nucleotide, which gives signals of the identity of the sequence using some
capillary gel electrophoresis system (Shendure and Ji, 2008). Despite its importance in the
past, Sanger sequencing have lost relevance especially due its low automation capacity because
of its difficulties for parallel sequencing (Shendure and Ji, 2008).

More recently, novel second-generation sequencing technologies have been proposed to
overcome the limitations of Sanger sequencing. Many of these are based on obtaining small DNA
fragments, tagged nucleotides and parallel sequencing on high-tech physical environments. Two
popular approaches widely used are the sequencing by synthesis on flowcells (Illumina technol-
ogy), and SMRT sequencing on zero-mode waveguides (PacBio technology) (Sims et al., 2014;
Goodwin et al., 2015). Some available platforms are the Solexa technology, SOLiD platform,
Polonator and others (Goodwin et al., 2015). Genomic data obtained by these platforms al-
lows detection of single-nucleotide polymorphism (SNP), small insertions and deletions (indels),
larger structural variants and copy number variants (CNVs) (Sims et al., 2014). Using Illumina
technology, Mace et al. (2013) could identity 4,946,038 SNPs, 1,982,971 indels, and 120,929
CNVs by sequencing the DNA of a panel composed by 44 sorghum lines.

Despite the power of second-generation technologies to reveal genomic information, the
sequencing process is still limited by the high financial cost to be applied routinely in plant
breeding (Peterson et al., 2012). Over the breeding course, several breeding populations are
generated dynamically over breeding cycles, which hampers its usage due its high operational
cost. In order to be able to extend this technology for large scale sequencing, the preparation
of libraries of fragmented DNAs with the reduced representation of the genome with restriction
enzymes, or some physical fragmentation technique, have been shown to be a robust, efficient,
and cheap approach for large-scale genotyping (Elshire et al., 2011). In general, the genotyping
methods vary in according to the library preparation steps, which usually influence costs and
applications. Some example includes the genotyping-by-sequencing (GBS) (Elshire et al.,
2011), Double Digest Restriction-site Associated DNA sequencing (RADseq) (Peterson et al.,
2012) and Diversity Array technology (DArT) (Jaccoud et al., 2001). In sorghum breeding,
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DNA polymorphisms found during genotyping can be used as molecular markers for applications
like artificial crosses designs, gene mapping and predictions (Baird et al., 2008; Morris et al.,
2013).

2.3 Genomic prediction

Among the challenges of breeding crops, the choice of crosses to obtain superior pro-
genies is critical for the success of breeders (Bernardo and Yu, 2007). The limited budget,
people, resources, and field facilities across multiple locations make this challenge even harder
during the breeding process (Heslot et al., 2015). As an example, only 100 lines are capable
of generating 4950 unique hybrids combinations. The empirical knowledge of germplasm from
breeders, and statistical analytical tools to identify the best parental combinations can help to
mitigate these challenges.

To help predict the performance of unobserved progenies, the genomic prediction (GP)
approach can leverage the information obtained by high density SNPs of evaluated and non-
evaluated plants in the field. This approach build predictors using as input the phenotypes
and SNPs of evaluated progenies (training set), and predict the related non-evaluated progenies
only using the SNPs (test set) (Heslot et al., 2015). The GP process usually is done by
either training a linear or nonlinear statistical model using phenotypes as response variables,
and genotypes as covariates. In plant breeding, the GP approach have been used extensively to
optimize resources by reducing the number of candidate cultivars tested, trials, and prediction
of promising crosses (Heslot et al., 2015). Specially in sorghum, GP have been boosting the
management of gene banks by making possible the prediction of unevaluated accessions (Yu
et al., 2016).

Some popular models for GP are linear mixed models, hierarchical Bayesian mod-
els with informative priors, kernel methods, and neural nets (de Los Campos et al., 2013;
Heslot et al., 2015; dos Santos et al., 2016a). In the linear mixed model framework the
parameters are modelled with the population mean considered as a fixed effect, and implement
either as a form of regression directly on markers with effects modelled as random and follow-
ing an isotropic Gaussian distribution (rrBLUP), or using markers to build a identity-by-state
realized kinship matrix assuming genetic effects as random effects and following a multivariate
Gaussian distribution (GBLUP). The hierarchical Bayesian models differ by the choice of the
informative priors, varying from isotropic Gaussians (e.g. BayesA, Bayesian Linear Regression),
mixture of isotropic Gaussians with known (e.g. BayesB) or unknown mixture parameters (e.g.
BayesCπ), to isotropic Laplace distributions (e.g. Bayesian Lasso) (de Los Campos et al.,
2013). The kernels methods are based on covariance or distance matrices constructed applying
some kernel function on markers codification (de Los Campos et al., 2013). Neural nets are
based on different representations of the input (markers) data on hidden layers composed by
several hierarchical nonlinear functions of unknown weights optimized via supervised learning
approaches (Goodfellow et al., 2016).

After several empirical and in silico studies comparing the performance of genomic
prediction models, few differences have been observed between models across different traits
and species. The multicollinearity between the columns of the design (marker) matrix, and the
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applied NP problem nature of these may justify few differences. Genetically, the multicollinearity
may be justified by the strong linkage disequilibrium of markers linked to a single or multiple
genes controlling the trait, bringing redundant information to be explored in this regression
process. Also, most of these models just use as target variable only one trait, and data collected
in the end of the growing season. To handle these situations, specially for multiple traits, some
extension of the multivariate linear mixed model have been proposed (Calus and Veerkamp,
2011; dos Santos et al., 2016b; Dias et al., 2018; Fernandes et al., 2018). So far, few studies
have proposed models to exploit information over time points covering different crop growth
stages.

As advantages, GP models for multiple traits can recover the information of pleiotropic
genes instead of restricting for genetic effects influencing only one main trait. Measures of
stages of plants during growth can leverage the information of the trajectory of genetic effects
over time. In rice, Campbell et al. (2018) have developed nonlinear random regression models
to predict the sum of pixels covering the plant on the image as a measure of shoot biomass. The
time effect was modelled with second-order Legendre polynomials. The plants were evaluated
daily during the initial growth stage (13 to 33 DAP) in the greenhouse. The nonlinear random
regression models improved prediction accuracy up to 11.6% compared to others that do not
share information across time points. Despite the importance of such approach to predict data
from plants at initial growth stages, the second-order polynomials works well specially when
the growth curve has an exponential shape, and may not generalize for data points in the
end of the season. In tree breeding, Ratcliffe et al. (2015) evaluated GP models to predict
height using the BCπ, rrBLUP, and generalized ridge regression models using repeated measures
covering six sparse measures over 3∼40 years. Few differences of prediction performance were
observed between models. Their evaluated models did not recover information over time. Novel
genetic models recovering information between traits, or time points, can be a opportunity to
improve substantially the effectiveness of genomic prediction models (dos Santos et al., 2016b;
Campbell et al., 2018).

2.4 Bayesian data analysis: example for genomic prediction

In statistics, the frequentist paradigm assumes that exists only one true value of a
parameter, it must be fixed and unknown, and estimated as a function of a data set - data
set treated as random (Bishop, 2013; Goodfellow et al., 2016). Another important field in
statistics is known as Bayesian paradigm. This line believes the point value of a parameter is
never know, and it should be treated as unknown and represented by a random variable learned
directly on the data set - data set treated as not random and observed. The Bayesian paradigm
learns the likely values of a unknown parameter using the probability theory rules (Gelman
et al., 2014; Goodfellow et al., 2016). In this framework, previous knowledge is mapped
on a prior probability function, the information from experiments into a likelihood probability
function, and the Bayes theorem is used to merge both into a posterior probability distribution
(Gelman et al., 2014),

p(θ|y) = p(y|θ)p(θ)
p(y)

(2.1)
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where p(y|θ) is the conditional likelihood probability function, p(θ) is the marginal prior prob-
ability of the parameter θ, p(y) is the marginal probability function of the data.

In GP, we are interested in learning the effects (β) of a set {xi1, xi2, . . . , xij , . . . , xik} of
k SNPs on the phenotype (yi) of the ith line from a population of n lines with mean µ ∈ R, allelic
dosage xij ∈ {2, 1, 0}, SNP effect β ∈ Rk, and phenotype y ∈ Rn, where Rk and Rn denotes real
space with k and n dimensions, respectively.

The first step in Bayesian data analysis requires specify a likelihood probability func-
tion reflecting a probabilistic mechanism that generates the data given the parameters. This
probability distribution will concatenate the information from the phenotypic data obtained by
a plant breeding trial. In the case of quantitative traits, a widely accepted likelihood probability
function is the normal distribution (Mackay et al., 2009; Barton et al., 2017),

yi | xi, µ, β, σ ∼ N (yi |µ+ xiβ, σ) (2.2)

where σ ∈ R+ represent the scale parameter controlling the uncertainty around the expected
value ŷi = µ+ xiβ.

The next step is to specify the prior probability functions reflecting our current beliefs
about the unknowns parameters. In the example case, for µ and βj , the normal probability
function may be a wise prior choice in the light of Fisher the infinitesimal model, which states
that genes have small and linear cumulative contribution on the phenotype (Fisher, 1918;
Mackay et al., 2009; Barton et al., 2017). In this perspective, the conditional probability
prior distributions for these two parameters are given by (Feller, 1968),

µ | 0, sµ ∼ N (µ | 0, sµ) (2.3)

βj | 0, sβ ∼ N (βj | 0, sβ) (2.4)

where the probability point of mass a priori is centered around zero, and the sµ ∈ R+ and
sβ ∈ R+ represents scale hyperparameters describing the uncertainty regarding the likely values
of the parameter around zero. In non hierarchical Bayesian models, we can simply create a
uninformative prior with high entropy by setting the scale hyperparameters to a known high
positive value depending on the scale of the phenotype (Goodfellow et al., 2016). However,
this approach may have the disadvantage of subjectiness when choosing the high scalar value
(Bishop, 2013). Also, this approach may cause posterior mean discalibration, that is, the
situation where bias may be introduced in the model if the likely values assumed a priori is too
much different from the one expected by the true mechanism that generates the data (Gelman
et al., 2014).

As outlined above, the scale parameter σ represent our uncertainty about the pheno-
typic values yi. Due to this parameter restricted to positive real numbers, it may be modeled
by a half Cauchy prior probability function to avoid the presence of unexpected large predicted
values after the learning process (Feller, 1968; Gelman et al., 2008, 2014),

σ | 0, sσ ∼ Cauchy+(σ | 0, sσ) (2.5)
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where the probability point of mass a priori is centered around zero, and the sσ ∈ R+ represents
a scale hyperparameter describing the uncertainty regarding the likely values of the parameter
around zero. Similar to the normal prior distribution case, an uninformative half Cauchy prior
can be constructed by assuming the value of sσ as a known high scalar value. However, a
strategy to eliminate the subjectiveness in defining those scale hyperparameters can be obtained
by using a hierarchical structure instead of a non hierarchical formulation. In this approach,
hyperpriors are added to the hyperparameters - prior distribution of the hyperparameters, which
the information from the data can be used to learn their most likely values in a full probabilistic
model only controlled by a global known hyperparameter. In the hierarchical formulation, the
hyperparameters are treated as unknown parameters instead of known subjective parameters
set by the user. In this hierarchical Bayesian model formulation, we can define the hyperpriors
for the scale hyperparameters using half Cauchy priors (Gelman et al., 2008, 2014),

sµ | 0, ϕ ∼ Cauchy+(sµ | 0, ϕ) (2.6)

sβ | 0, ϕ ∼ Cauchy+(sβ | 0, ϕ) (2.7)

sσ | 0, ϕ ∼ Cauchy+(sσ | 0, ϕ) (2.8)

where the hyperpriors are centered around zero and have a scale global hyperparameter ϕ for
creating a parameter sharing mechanism to recover information between hyperpriors. One strat-
egy to handle this global hyperparameter is to set to a known but not large value to build a
weakly informative prior (Gelman, 2006; Gelman et al., 2008, 2014). One choice may be a
measure of the size of the vector of the phenotypes, for instance, we may define ϕ to build a
weakly informative prior by using the L∞ norm (Goodfellow et al., 2016) of the phenotypic
vector times a constant of order 10,

ϕ = ||y||∞ × 10 = maxi|yi| × 10 (2.9)

where max represent the maximum value in the vector.
This known hyperparameter will create hyperpriors that will have weakly information

without introducing dramatically discalibration at the posterior means, and eliminate the sub-
jectiveness in determining known values of hyperparameters in the priors (Gelman et al., 2008,
2014). The main advantage of using the global hyperparameter as a function of the L∞ norm
of the data is that the hyperprior will most of the time be invariant to the scale, if the dataset
represent most values of the true distribution that generates the data.

After defining the likelihood, priors, and hyperpriors distribution, the next step in
Bayesian data analysis is specify the joint distribution of all model unknowns, which can be
obtained by the product of the conditional probability distributions by the chain rule (Bishop,
2013),
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p(y, µ, β, σ, sµ, sβ, sσ |X,ϕ) =
n∏

i=1

N (yi |µ+ xiβ, σ)N (µ | 0, sµ)N (β | 0, sβ)

Cauchy+(σ | 0, sσ)Cauchy+(sµ | 0, ϕ)

Cauchy+(sβ | 0, ϕ)Cauchy+(sσ | 0, ϕ) (2.10)

To merge the prior information with the information of the experiments, we can do
ancestral sampling on the joint distribution using some Markov Chain Monte Carlo (MCMC)
method (Goodfellow et al., 2016). One important point is that the joint distribution has the
same functional form as the unnormalized joint posterior distribution, that is, the numerator of
the Bayes Theorem expression - we can ignore the denominator of the Bayes theorem to obtain
the solutions because they are not a function of the parameters, but only function of the data
(marginal distribution of the data or normalization constant to the probabilities sum to one)
(Murphy, 2013; Bishop, 2007).

In most of the current Bayesian GP models, usually it is needed to have the conditional
posterior distribution of each parameter conditioned on all other parameters for performing
the MCMC engine, which requires both likelihood and prior distributions with mathematically
tractable probability functions. This Bayesian approach is known as conjugate analysis. After
obtaining the analytical conditional posterior distributions, the parameters can be integrated
using a MCMC integration algorithm known as Gibbs sampler (de Los Campos et al., 2013).
However, one of the disadvantages of this approach is that the priors usually are required to be
chosen subjectively to be able to conduct the conjugate analysis, and it may result in posterior
distributions displaying discalibration at the posterior mean with unlikely high values (Gelman
et al., 2008, 2014).

As mentioned before, a solution to avoid discalibration of the posterior mean for the
scale components can be accomplished with half Cauchy priors (Gelman et al., 2008). However,
the Gibbs sampler algorithm can not be implemented because the conditional posteriors can
not be obtained algebraically as required by the conjugate analysis. A convenient solution
for this non-conjugate problem is to use a general approach based on the Hamiltonian Monte
Carlo (HMC) algorithm, which on the analytical posterior distributions are not required for
sampling (Gelman et al., 2014; Hoffman and Gelman, 2014). The HMC algorithm uses
the dynamics of the samples and the gradient of the posterior distribution estimated with the
backpropagation algorithm with computational graphs, to learn directions of the parameter
space with the most likely values of the parameters controlling the joint distribution. The No-
U-Turn Sampler (NUTS) algorithm is a form of HMC method with parameters automatically
tuned. This algorithm usually shows the same performance (or even better) then the Gibbs
sampler. Also, it does not show random walk behavior, usually it does not concentre the
samples around the modes, and conjugate priors are not required (Hoffman and Gelman,
2014; Goodfellow et al., 2016). The NUTS algorithm is available in many high level languages
like python (PyMC3, pystan) and R (rstan) (Team, 2018; Stan Development Team, 2018;
Carpenter et al., 2017). These open source probabilistic programming platforms can be easily
used for developing novel GP models for research and production.
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Once the training process is over and posterior samples are available, predictions can
be obtained by obtaining an estimate of the posterior mean of the parameters by averaging over
the MCMC samples. Predictions of the phenotypes in the test set are obtained by,

ŷ
[test]
i = µ̂+ x

[test]
i β̂ (2.11)

where ŷ
[test]
i is the phenotype of the ith in the test set and x

[test]
i is its marker vector, µ̂ the

posterior mean estimate of the population mean, and β̂ is the posterior mean effects of the
markers.

2.5 Bayesian networks

As mentioned before, Bayesian theory is a powerful modelling approach to unify prior
information with the ones obtained by experiments to update some state of knowledge(Gelman
et al., 2014). A Bayesian model can be understood by factoring a joint distribution of random
variables into a product of conditional probability distributions by the application of the chain
rule,

p(x1, x2, x3, x4) = p(x4|x3, x2, x1)p(x3|x1, x2)p(x2|x1)p(x1) (2.12)

On the other hand, non-structured models like the ones shown on equation (1), with
fully flexible joint distribution, can become an intractable problem as the number of unknown
variables increases. To mitigate this problem, a better strategy may be obtained by using some
structured representation, based on the knowledge about relationships between the unknown
variables (Bishop, 2013). For example,

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3)p(x4|x2, x3) (2.13)

With structured representations, a powerful way to understand the relationship among
known and unknown factors can be achieved by a graphical representation called probabilis-
tic graphical models (Bishop, 2013). The most widely used probabilistic graphical models
are known as directed graphical models or Bayesian networks, undirected graphical models or
Markov random fields, chain models and factor graphs (Hamelryck, 2012). Among these
structured representations, Bayesian networks (BN) have several interesting properties to de-
velop new statistical genetic models to help better improve crops. Some advantages of BNs
includes: (i) generalization of any statistical or machine learning model that can be represented
by a directed acyclic graph, (ii) model can be tailored to a specific problem without changing the
inference algorithm (numerical optimization or integration), (iii) the structured representation
of the network naturally shows the nature of the problem, (iv) missing data are handled natu-
rally, and (v) a priori knowledge can be included in the model (Moreau et al., 2003; Bishop,
2013).

In short, the Bayesian network is defined as a graphical representation of a structured
joint distribution factored into a set of conditional probability distributions, where nodes repre-
sent variables - known variables by shaded nodes, and unknown variables by unshaded nodes,
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Figure 2.1: Factorization of a joint probability distribution in a set of conditional distributions
using Bayesian networks as graphical syntax notation.

and arrows the dependence between them. An example of BN structure of the right-hand side
of the equation (2) can be seen at the Figure (2.1).

In the Figure (2.1), the node x1 has an independent relationship with the nodes x2, x3
and x4, as a result, there is no arrows from them to the node x1. The node x2 has a dependent
relationship with x1, since there is a direct arrow linking the node x1 to the node x2. The node
x3 is independent to the others, similar to what was observed with the node x1. Finally, the
node x4 has a dependent relationship with nodes x2 and x3, once both nodes are connected with
arrows to the node x4.

In a BN representation, arrows dictates if nodes are parent or child of others. For
instance, if there is an arrow expressing a conditional relationship of the node x2 with the node
x1, we can say that x1 is a parent of the node x2, and that x2 is a child of the node x1. In BNs,
no loop structure of arrows must connect a specific subset of nodes in the net. The factorization
of a joint probability distribution into a set of conditional distributions can also be given by,

p(x) =

J∏
xj

p(xj |paj) (2.14)

where paj represents the parents of the node xj , and x = {x1, ..., xJ}
This key property of BNs is known as Markov condition, and it states that a variable

(child) is only dependent on the information of its parents in the net. In terms of inferential
algorithms, this can simplify substantially computations with multiple variables, once only local
inferences can be performed with a reduced set of variables, and each modularity may be run in
parallel with multiple processors (Su et al., 2013; Bishop, 2013).

The joint distribution of the parameters controlling the Bayesian hierarchical regression
model for genomic prediction described in the section 2.4 can also be shown by a probabilistic
graphical model (Figure 2.2). The Markov condition and the Bayesian network visualization
are enough to reconstruct the joint distribution shown on equation 2.10. The elaboration of
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Figure 2.2: Hierarchical Bayesian linear regression model joint distribution network represen-
tation. yi: phenotype of the ith line, xij : allelic dosage for the ith line in the jth locus, n: number
of lines, k: number of markers, µ: population mean, βj : effect of the jth marker, σ: residual
standard deviation, sµ: scale hyperparameter of the population mean, sβ: scale hyperparameter
of the marker effects, sσ: scale hyperparameter of the standard deviation, ϕ: global known
hyperparameter.

more complex Bayesian network architectures connecting phenotypes collected over multiple
time points and traits can be derived using as building blocks the probabilistic structure shown
on Figure (2.2).

Specially with high-dimensional molecular marker data, the possibility to speed up
computations using the Markov condition property turn BNs approach extremely useful for
the development of computational efficient procedures in different genetic applications. The
possibility to use any probability distribution to model unknown variables, and also the high
versatility of the directed acyclic graph structure for mapping the relationship between nodes
make BN a powerful approach to solve many challenges in genetics science. For instance, there
are applications of BNs in genome assemblies (Loman et al., 2015), genotyping (Serang et al.,
2012; Garcia et al., 2013), gene interactions (Han et al., 2012), gene-environment interactions
(Su et al., 2013), gene expression patterns (Neapolitan et al., 2013), and many others.

In genetics, one of the great challenges is understanding the genetics of polyploids,
specially to discover the genotypic state of a given loci using data derived from second-generation
sequencing technologies. One powerful application of BNs was performed by elucidating the
genotypic states of loci with variables degrees of polyploidy (Serang et al., 2012; Garcia
et al., 2013). In this study, the BN had as variables (nodes): (i) the level of ploidy (P ), (ii)
the genotypic distribution of the population (G) that depends on the level P , (iii) the number
of individuals (C) assigned for a given G, and (iv) the distribution of allelic frequencies (T )
depending on P . This BN uses a generative process by sampling hierarchically from the BN,
and identify the optimal joint genotypic configuration by maximizing the joint probability of the
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observed data (D). The implementation of this BN is available on the software SuperMASSA
(Serang et al., 2012; Garcia et al., 2013). Nowadays, the routinely genotyping of polyploids
is possible due this great advance with probabilistic graphical models (Garcia et al., 2013).

The flexibility to use categorical and continuous distributions in the same modelling
framework allows BNs to aggregate different powerful machine learning algorithms as building
blocks for the development of novel GP models. The unification of the advantages from different
models and avoidance of disadvantages could be used to reshape novel GP models with BNs. The
understanding of the uncertainty, possibility to compute indexes conditioned on the observed
data, and also probabilities for inference motivates even more BNs. The employment of this
approach to exploit the information from pleiotropic genes influencing multiple traits, and also
to leverage the signals from trajectories of genetic influences triggered by the effects of genes over
time could substantially improve genomic prediction models for predicting and understanding
complex multiple traits over different growth stages.
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3 NOVEL BAYESIAN NETWORKS FOR GENOMIC PREDICTION OF
DEVELOPMENTAL TRAITS IN BIOMASS SORGHUM

Keywords: Bioenergy; Sorghum; Genomic Prediction; Bayesian Networks, Indirect Selection,
Probabilistic Programming.

3.1 Abstract

The ability to connect information between traits over time allow Bayesian networks
to offer a powerful probabilistic framework to construct genomic prediction models. In this
study, we phenotyped a diversity panel of 869 biomass sorghum lines, which had been geno-
typed with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to
120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environ-
ments. We developed and evaluated five genomic prediction models: Bayesian network (BN),
Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP
(MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In 5-fold cross-validation, pre-
diction accuracies ranged from 0.48 (PBN) to 0.51 (MTr-GBLUP) for DBY and from 0.47 (DBN,
DAP120) to 0.74 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further im-
proved prediction accuracies (36.4-52.4%) of the DBN, MTi-GBLUP and MTr-GBLUP models
for PH (training slice: 30-45 DAP). Coincidence indices (target: biomass, secondary: PH) and
a coincidence index based on lines (PH time series) showed that the ranking of lines by PH
changed minimally after 45 DAP. These results suggest a two-level indirect selection method for
PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted
earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the ad-
vance of high-throughput phenotyping technologies, statistical approaches such as our proposed
two-level indirect selection framework could be valuable for enhancing genetic gain per unit of
time when selecting on developmental traits.

3.2 Introduction

The development of renewable energy resources from biomass crops is a key step to-
wards the establishment of a sustainable agroecosystem (Foley et al., 2011; Mace et al., 2013).
Among the plant species amenable to bioenergy production, sorghum [Sorghum bicolor (L.)
Moench] is a prominent candidate for genetic improvement because it is diploid (2n=2x=20),
fixes carbon through the C4 pathway, predominantly autogamous, and resilient against biotic
and abiotic stresses (Vermerris, 2011; Lawrence and Walbot, 2007). Although substan-
tially more economic investments have been made in crops such as maize, which resulted in
improvements of up to 4-fold in grain yield in the last century, proportional gains in yield might
be achievable in biomass sorghum (Mullet et al., 2014). Currently, sorghum has an average
biomass yield of 12-15 dry Mg ha−1 under rainfed conditions, with a predicted potential yield
of 55-60 dry Mg ha−1 for ideotypes (Mullet et al., 2014). Additionally, because of its biol-
ogy sorghum has the potential to become a model organism to understand the genetic basis of
growth traits related to biomass production (Brenton et al., 2016).
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Genomic prediction (GP) is a statistical approach that predicts the unobserved phe-
notypes of individuals using genomic information (Meuwissen et al., 2001). Because of its
potential to enrich for promising selection candidates, GP is increasingly becoming an impor-
tant component of plant breeding and genetic resources conservation programs. In sorghum,
Yu et al. (2016) showed that GP can optimize the management and evaluation of accessions
from gene banks through the prediction of different traits. Briefly, the GP procedure involves
two steps: (i) phenotyping and genotyping a reference population (training set) to train sta-
tistical models, and (ii) genotyping of unevaluated individuals (test set) for predicting their
unobserved phenotypes with the trained models (Heslot et al., 2015). To support this pro-
cedure, plant breeding programs collect phenotypes from training set individuals evaluated in
multi-environment trials. In parallel, high density single-nucleotide polymorphism (SNP) mark-
ers are scored on individuals in the training and test sets with skim sequencing or SNP arrays
(Elshire et al., 2011; Davey et al., 2011; Buckler et al., 2016).

Mixed linear models, hierarchical Bayesian models with informative priors, kernel meth-
ods, and neural nets are modeling approaches used for GP, but minimal differences in predictive
performance are typically seen across these approaches (de Los Campos et al., 2013; Heslot
et al., 2015; dos Santos et al., 2016a). This outcome may be explained by the high density of
covariates (SNP markers) compared to the population size used for training the models. This
scenario is known as the large p and small n problem (p >> n) (Gianola et al., 2009). In
statistical models, this may lead to the problem of multicollinearity, i.e., multiple covariates
with redundant information. As it relates to GP models, markers in complete or near complete
linkage disequilibrium provide redundant information and will not contribute to enhancing sta-
tistical power (Gianola, 2013). Dimensionality reduction techniques, such as the artificial bins
approach, may help circumvent the challenge of multicollinearity with minimal information loss,
as well as mitigate the computational cost often associated with GP (Xu, 2013).

The vast majority of GP studies conducted in crop species have only tested models for
predicting individual traits. However, recent studies have shown the advantages of combining
multiple correlated traits in a GP model (Calus and Veerkamp, 2011; Jia and Jannink,
2012; Fernandes et al., 2018), allowing genetic correlations among secondary traits to be
leveraged for improving predictions of a target trait (dos Santos et al., 2016b; Okeke et al.,
2017). Most of these efforts used multi-trait GBLUP - a type of multivariate mixed linear
model that incorporates a genomic relationship matrix (Gianola et al., 2015). Despite the
advances obtained so far, the use of genetic models that exploit information between traits
using other parametrizations beyond those reliant on genetic correlations under multivariate
normal distribution assumptions have yet to be addressed. Indeed, novel genetic models with
parametrizations to partition genetic effects influencing only a single trait from those acting
on multiple traits (i.e., pleiotropy) may help to better understand the genetic architecture of
correlated traits.

There have been significant advances in field-based high-throughput phenotyping (HTP)
technologies for the rapid measurement of plant traits over the growing season (Bao et al., 2019;
Pauli et al., 2016). Measuring phenotypes at multiple time points over the life cycle of a plant
can better describe the progression of growth and development (Muraya et al., 2017). Hav-
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ing collected phenotypic information on a time axis may help to identify key environmental
stress events during the growing season, which might be masked if phenotypic data are only
obtained at harvest (Campbell et al., 2018). Furthermore, the underlying genetic signals of
these phenotypic responses are additional sources of information to more powerfully predict and
dissect the genetic architecture of developmental plant traits (Muraya et al., 2017; Campbell
et al., 2018). Statistical models that exploit temporal genetic trends are especially needed for
longitudinal (repeated measure) data collected by field-based HTP systems. Such models could
be used to reduce generation time and prioritize which breeding populations to evaluate.

Among the models available for analyzing traits in a time series, probabilistic graph-
ical models (PGMs) offer a versatile, efficient, and intuitive approach for drawing inferences
(Murphy, 2013; Bishop, 2013). Popular PGMs include directed graphical models or Bayesian
networks (BNs), undirected graphical models or Markov random fields, chain models, and fac-
tor graphs (Hamelryck, 2012). In particular, BNs provide the flexibility to model repeated
measure and correlated trait data, as would be important for the study of developmental traits.
A BN is defined as a structured graphical representation of joint distributions factored into a
set of conditional probability distributions, where shaded and unshaded nodes represent known
and unknown variables, respectively, and arrows showing dependence between them (Bishop,
2013). The Markov condition is a key property of the BN, ensuring that a variable (child) is
only dependent on the information of its parents in the network (Su et al., 2013; Bishop, 2013).
Through their ability to connect joint probability distributions, BNs enable the aggregation of
advantages from multiple machine learning approaches under a directed acyclic graph structure.
Notably, BNs have been diversely applied in genetic and genomic studies (Loman et al., 2015;
Serang et al., 2012; Garcia et al., 2013; Han et al., 2012; Su et al., 2013; Neapolitan
et al., 2013), but to our knowledge have never been used for modelling trends of genetic effects
considering repeated measures and correlated traits.

There are several features of BNs that enable them to recover information from corre-
lated data types such as multiple correlated traits scored at a single time point or the repeated
measurement of a single trait across multiple time points (Bae et al., 2016). Several different
GP models could be unified for leveraging pleiotropy or temporal genetic effects in a single BN
to improve prediction accuracies. This is because these genetic effects can be modeled with a
BN through connections between likelihood functions. Also, BNs offer the possibility to use
general Markov chain Monte Carlo (MCMC) methods to obtain solutions for complex time se-
ries and multiple trait models that otherwise would have been mathematically intractable to
derive analytically. Furthermore, the posterior samples of genomic estimated breeding values
(GEBVs) may be used to create indices for understanding the uncertainty of selecting promising
lines either earlier in the season or through indirect selection based on the ranking of the lines
at other measurement time points or with correlated traits.

With sorghum as a model biomass crop, we developed PGMs for the GP of develop-
mental traits in a sorghum diversity panel of nearly 900 lines. Herein, we aimed to (i) develop
PGMs for the GP of plant height (PH) and dry biomass yield (DBY) traits by connecting genetic
effects across multiple developmental time points and traits, and (ii) describe growth dynamics
based on the change of the ranking of lines across multiple time points and correlated traits to
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design novel breeding strategies to genetically improve biomass sorghum.

3.3 Materials and Methods

3.3.1 Plant material, field experiments and phenotypic data

In this study, we evaluated a biomass sorghum diversity panel consisting of 869 lines
(Valluru et al., 2018). The diversity panel was grown at three field locations only a few
km from the main campus of the University of Illinois Urbana-Champaign in 2016 (Fisher and
Energy Farms) and 2017 (Maxwell and Energy Farms). Each of the four environments had
one complete replication of the field experiment that contained 960 four-row plots laid out in
an 40-row by 24-column arrangement. The experimental field design consisted of 16 incomplete
blocks, and each block was augmented with a common set of six lines (four shared between years):
Pacesetter, PI276801, PI148089, PI524948, NSL50748, and PI148084 in 2016 and Pacesetter,
PI276801, PI148089, PI524948, PI525882, and PI660560 in 2017. Plots were 3 m in length, with
a 1.5 m alley at the end of each plot. Plots had a spacing between rows of 0.76 m. The plant
population had a targeted density of 270,368 plants ha−1. Experiments were planted in late
May and harvested in early October. PH was measured in centimeters (cm) from the soil line
to the topmost leaf whorl. A single plant was measured in each plot on a biweekly basis from
30 to 120 days after planting (DAP). Plots were harvested for above ground biomass using a
four-row Kemper head attached to a John Deere 5830 tractor. Wet weight of total biomass (lbs)
and biomass moisture (%) in the center two rows of each 4-row plot were measured using a plot
sampler that had a near infrared sensor (model 130S, RCI engineering). DBY in dry metric
tons per hectare was calculated as follows: dry metric tons ha−1 = total plot wet weight (kg) ×
(1-plot moisture) / (plot area in square meter/10,000).

3.3.2 Phenotypic data analysis

Phenotypic measurements for DBY (dry metric tons per ha−1; one measurement at
harvest) and PH (cm; one measurement on each of seven plant developmental stages) were
analyzed individually with the following mixed linear model:

y = 1nµ+X1g +Z1b+Z2e+Z3ge+ ϵ (3.1)

where y (n× 1) represents the phenotypic vector with n entries, 1n a unit vector, µ a scalar to
map the population mean, X1 (n× q) the design matrix of the q fixed genetic effects (number
of lines), Z1 (n × l) the design matrix of the l random block within environment effects, Z2

(n×s) the design matrix of the s random environment (location x year combination) effects, Z3

(n×m) the design matrix of the m random genotype-by-environment effects; and g, b, e, and
ge are column vectors mapping the design matrices effects, respectively, and ϵ (n×1) the vector
of errors. The model random effects b, e, ge, and ϵ were assumed to follow a MVN(0, Ilσ

2
b ),

MVN(0, Isσ2
e), MVN(0, Imσ2

ge), and MVN(0, Inσ
2
ϵ ), respectively.

Heritability on an line-mean basis was estimated for each phenotype. Variance compo-
nent estimates were obtained by refitting model (1) with all terms as random effects in ASReml-R
version 3.0 (Butler et al., 2009). The variance component estimates from each model for a
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BN DBNPBN

Figure 3.1: Bayesian network (BN), pleiotropic Bayesian network (PBN), and dynamic
Bayesian network (DBN) probabilistic graphical models. k: number of time points; nt: number
of lines within a time point; p: number of artificial bins; ŷit, ŷit[Tr1], ŷit[Tr2]: Adjusted means
for the ith line evaluated in the tth time point, which can be for trait 1 (Tr1) or trait 2 (Tr2); µt,
µ
[Tr1]
t , µ[Tr2]

t : population means; xi: row vector with artificial bins; αt−1, αt, α[Tr1]
t , α[Tr2]

t : col-
umn vector with artificial bins effects; η

[Tr1]
j , η[Tr2]

j : pleiotropic jth bin effect; zj : standardized
pleiotropic jth bin effect; µ

[Tr1]
ζ , µ

[Tr2]
ζ : pleiotropic means hyperparameters; η(t−1)t: bin ef-

fects between the current and previous time point; σ[Tr1]
ζ , σ[Tr2]

ζ : pleiotropic standard deviations
hyperparameters; σt, σ[Tr1]

t , σ[Tr2]
t : standard deviations.

phenotype were used to estimate heritability on a line-mean basis as the ratio of genetic variance
to phenotypic variance following (Holland et al., 2003; Hung et al., 2012). Standard errors of
the heritability estimates were calculated with the delta method (Lynch et al., 1998; Holland
et al., 2003) in the nadiv R package (Wolak, 2012). The Pearson’s correlation coefficient (r)
was used to assess the degree of relationship between adjusted means for each pair of traits.

3.3.3 Genotypic data

We genotyped the sorghum diversity panel using the genotyping-by-sequencing (GBS)
procedure (Elshire et al., 2011) based on the PstI-HF/HinP1I and PstI-HF/BfaI restriction
enzymes. A total of 367 million sequence reads were generated (100 bp length) on a HiSeq 4000
sequencer. Sequence reads were aligned to the Sorghum bicolor genome v3.1 (www.phytozome.
jgi.doe.gov) using Bowtie2 (Langmead and Salzberg, 2012). The TASSEL 3 GBS pipeline
(Glaubitz et al., 2014) was then used to call variants. Only biallelic SNPs were retained.
Additionally, lines with >80% missing data (sample call rate) and SNPs with >60% missing
data (SNP call rate) were removed. Also, SNPs with a minor allele frequency less than 5%
were discarded. Missing genotypes of SNP markers were imputed using Beagle 4.1 (Browning
and Browning, 2016) with default parameters and an Ne of 150,000. In total, 100,435 SNP
markers were scored and converted to dosage format (0,1,2). Of the 869 total lines, 839 had
both phenotypic and genotypic data; therefore, the GP analyses focused on only these 839 lines.
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3.3.4 Artificial bins

Due to the high dimensionality of the SNP marker matrix (100,435 loci), we developed
a strategy similar to that proposed by Xu (2013) for obtaining artificial bins. In our approach,
after centering (subtracting) the marker scores 2 (MM), 1 (Mm), and 0 (mm) by 2p, instead of
averaging the columns from equally sized slices of the marker matrix, we conducted a principal
component analysis (PCA) to calculate the first PC of each artificial bin. The procedure was
based on the following steps: (i) subdivision of the centered marker matrix into 1000 column-
slices, with each slice comprising ∼100 columns; (ii) singular value decomposition of each matrix
column slice into singular vectors and values; and (iii) construction of each artificial bin as the
first PC coordinates of its respective matrix column slice, given by u1λ1, where u1 is the first
left singular vector of the matrix slice and λ1 its first singular value. This procedure resulted in
1,000 artificial bins. This number of artificial bins was selected as a balance between model run
time and predictive performance for the computationally intensive Bayesian models. In theory,
the first PC (artificial bin) will retain as much information as possible from the matrix slice in
one dimension in a least-square reconstruction error sense (Goodfellow et al., 2016).

3.3.5 Probabilistic graphical models

We developed three different Bayesian models for genomic prediction of the PH and
DBY traits (Figure 3.1). The first model, Bayesian network (BN), neither recovered information
between traits nor time points. The BN has the following conditional normal likelihood form:

ŷit | all ∼ N (µt + xi αt, σt)

where ŷit is the adjusted mean related to the ith line evaluated in the tth time point (or DAP),
µt the unknown population mean in the tth time point, xi the known row vector (1× p) of the
p artificial bins of the ith line, αt the column vector (p × 1) of the unknown p artificial bins
effects within in the tth time point and σt the unknown residual standard deviation mapping
the uncertainty around the expected value in the tth time point.

The BN has an unnormalized joint posterior distribution (hyperpriors omitted from
Figure 3.1 for simplicity),

p(Bayesian network|y, ϕ ) ∝
k∏

t=1

nt∏
i=1

N (ŷit|µt + xiαt, σt) N (µt|0, s{µt}) N (αt|0, s{αt})

Cauchy+(σt|0, s{σt}) Cauchy+(s{µt}|0, π{µt}) Cauchy+(s{αt}|0, π{αt})

Cauchy+(s{σt}|0, π{σt}) Cauchy+(π{µt}|0, ϕ) Cauchy+(π{αt}|0, ϕ)

Cauchy+(π{σt}|0, ϕ)

where k is the total number of time points, nt is the total number of lines in the tth time point,
N (θ|µ{θ}, σ{θ}) and Cauchy+(θ|µ{θ}, σ{θ}) denotes the normal probability density function, and
Cauchy probability density function truncated to the real positive space (R+) of the random vari-
able θ (general notation), respectively, parametrized by the mean (µθ), standard deviation (σθ).
The joint distribution was parameterized as second (s{θ}) and third (π{θ}) level scale hyperpa-
rameters. The known global hyperparameter was defined by ϕ = ||y||∞× 10 = arg max(y)× 10,
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resulting in weakly informative second-level hyperpriors that eliminated the subjectiveness to
define hyperparameters when choosing first-level prior hyperparameters (Gelman et al., 2014).
This same approach was used for the next set of described models.

The second Bayesian model, pleiotropic Bayesian network (PBN), exploited informa-
tion between PH and DBY (Figure 3.1). This model has two conditionally dependent normal
likelihood functions that characterized the observed adjusted means distribution for each trait
as follows:

ŷit
[Tr1] | all ∼ N (µ

[Tr1]
t + xi (α

[Tr1]
t + η[Tr1]), σ

[Tr1]
t )

ŷit
[Tr2] | all ∼ N (µ

[Tr2]
t + xi (α

[Tr2]
t + η[Tr2]), σ

[Tr2]
t )

where all variables are the same from the previous model, except the column vectors η[Tr1]

(p × 1) and η[Tr2] (p × 1), that represent the pleiotropic effects of known bins with continuous
space corrected by the transformation of an unknown pleiotropic standardized random variable
zj for the jth bin,

η
[Tr1]
j = µ

[Tr1]
ζ + σ

[Tr1]
ζ zj

η
[Tr2]
j = µ

[Tr2]
ζ + σ

[Tr2]
ζ zj

with µ
[Tr1]
ζ , σ[Tr1]

ζ , µ[Tr2]
ζ , and σ

[Tr2]
ζ being unknown random variables. The PBN model has an

unnormalized joint posterior density function (Figure 3.1),

p(Pleiotropic Bayesian network|y, ϕ ) ∝
k∏

t=1

nt∏
i=1

N (ŷit
[Tr1]|µ[Tr1]

t + xi(α
[Tr1]
t + η[Tr1]), σ

[Tr1]
t )

N (µ
[Tr1]
t |0, s{µ

[Tr1]
t }) N (α

[Tr1]
t |0, s{α

[Tr1]
t }) N (σ

[Tr1]
t |0, s{σ

[Tr1]
t })

Cauchy+(s{µ
[Tr1]
t }|0, π{µ[Tr1]

t }) Cauchy+(s{α
[Tr1]
t }|0, π{α[Tr1]

t })

Cauchy+(s{σ
[Tr1]
t }|0, π{σ[Tr1]

t }) Cauchy+(π{µ[Tr1]
t }|0, ϕ)

Cauchy+(π{α[Tr1]
t }|0, ϕ) Cauchy+(π{σ[Tr1]

t }|0, ϕ)

N (z|0, 1) N (µ
[Tr1]
ζ |0, s{µ

[Tr1]
ζ }) N (σ

[Tr1]
ζ |0, s{σ

[Tr1]
ζ })

N (µ
[Tr2]
ζ |0, s{µ

[Tr2]
ζ }) N (σ

[Tr2]
ζ |0, s{σ

[Tr2]
ζ })

N (ŷit
[Tr2]|µ[Tr2]

t + xi(α
[Tr2]
t + η[Tr2]), σ

[Tr2]
t )

N (µ
[Tr2]
t |0, s{µ

[Tr2]
t }) N (α

[Tr2]
t |0, s{α

[Tr2]
t }) N (σ

[Tr2]
t |0, s{σ

[Tr2]
t })

Cauchy+(s{µ
[Tr2]
t }|0, π{µ[Tr2]

t }) Cauchy+(s{α
[Tr2]
t }|0, π{α[Tr2]

t })

Cauchy+(s{σ
[Tr2]
t }|0, π{σ[Tr2]

t }) Cauchy+(π{µ[Tr2]
t }|0, ϕ)

Cauchy+(π{α[Tr2]
t }|0, ϕ) Cauchy+(π{σ[Tr2]

t }|0, ϕ)

The third Bayesian model, dynamic Bayesian network (DBN), recovered information
from PH measurements across multiple time points (Figure 3.1). This network architecture has
a specific conditionally, dependent normal likelihood function for each time point as follows:

ŷit | all ∼ N (µt + xi αt, σt)

αt = αt−1 + η(t−1)t
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where the column vector αt (p× 1) is the known artificial bins effects at time t, that are a linear
combination of the αt−1 (p×1) known artificial bins effects displayed in the previous time point
(t−1) plus the unknown η(t−1)t (p×1) random noise mapping the bin effect between the current
and previous time points, such that genetic information is propagated over time. The artificial
bins effects were treated as unknown random variables only at the first time point. The DBN
model has an unnormalized joint posterior distribution (Figure 3.1),

p(Dynamic Bayesian network|y, ϕ ) ∝
k∏

t=1

nt∏
i=1

N (ŷit|µt + xiαt, σt) N (µt|0, s{µt}) N (α0|0, s{α0})

N (η(t−1)t|0, s{η(t−1)t}) Cauchy+(σt|0, s{σt}) Cauchy+(s{µt}|0, π{µt})

Cauchy+(s{α0}|0, π{α0}) Cauchy+(s{η(t−1)t}|0, π{η(t−1)t})

Cauchy+(s{σt}|0, π{σt}) Cauchy+(π{µt}|0, ϕ) Cauchy+(π{α0}|0, ϕ)

Cauchy+(π{η(t−1)t}|0, ϕ) Cauchy+(π{σt}|0, ϕ)

The joint distributions of the BN, PBN, and DBN models were integrated using the No-
U-Term sampler algorithm available in the probabilistic programming language Stan (Hoffman
and Gelman, 2014). We used the implementation available in the Python package pystan
2.17.1.0 (Team, 2018). Stan compiles the probabilistic programming code in C++ and has a
user interface within the Python environment. The probabilistic programming language saved
time during customization of the C++ code, allowed rapid implementation during model design
and training, and facilitated the manipulation of posterior draws after fitting the model in
Python (Carpenter et al., 2017). We set up the No-U-Term sampler to iterate 400 times and
used as warm up 50% of the samples from four Markov chains. The number of iterations (400)
was selected in consideration of runtime and predictive performance.

3.3.6 Multivariate GBLUP model

For comparison to the three Bayesian models, we also evaluated two different formu-
lations of the multivariate GBLUP model (Henderson and Quaas, 1976; dos Santos et al.,
2016b; Fernandes et al., 2018) that recovered information between traits and/or time points.
In the first formulation, only PH measurements over time were used (MTi-GBLUP). In the
second, PH measurements over time and DBY (MTr-GBLUP) were jointly analyzed. Both
formulations share the same linear model as follows:

ŷit = βt + git + eit

where ŷit corresponds to the adjusted mean related to the ith line evaluated for the tth time
point or trait, βt is the fixed population mean effect for the tth time point and/or trait, git is
the genomic estimated breeding value (GEBV) of the ith line evaluated for the tth time point
and/or trait, and eit is the residual.

Considering the structure of multivariate GBLUP models with stacked trait and/or
time subvectors like g = [g1, g2, . . . , gk]

T and e = [e1, e2, . . . , ek]
T , in which k is the number

of traits and/or time points, we assume that g ∼ MVN(0,G ⊗A) and e ∼ MVN(0, Int ⊗R),
where A (nt × nt) is the additive relationship matrix (VanRaden, 2008) between nt lines, G
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(k × k) and R (k × k) are unstructured variance-covariance matrices for genetic and residual
effects, respectively. The A matrix was constructed using the 100,435 SNP markers with the
A.mat function in the R package rrBLUP 4.6 (Endelman, 2011). Spectral decomposition
was performed to transform the A matrix into positive definite. The procedure is based on the
singular value decomposition of the A matrix, substitution of the negative values by a decreasing
small constant (10−4), and reconstruction of the A matrix. Additional details on the spectral
decomposition procedure are available in Caliński et al. (2005); dos Santos et al. (2016b).
The MTi-GBLUP and MTr-GBLUP models were fitted using the R package EMMREML 3.1
(Akdemir and Godfrey, 2018).

3.3.7 Cross-validation schemes

Two different cross-validation (CV) schemes were used to evaluate the predictive accu-
racy of the GP models. The first scheme used was stratified 5-fold CV for each individual trait
(i.e., DBY or PH measured at a single time point). This procedure was based on stratifying the
phenotypic and genotypic data of the lines into five non-overlapping folds, training the model
with four folds (training set), and predicting the phenotypes of lines in the fold not included for
training (test set) with only their genotypes as predictors in the trained model. This procedure
was repeated until phenotypes from all five folds were predicted. Forward-chaining CV was used
as a second scheme. In this scheme, data were split into time point subsets. The initial training
set of five total was based on data from the first two time points (30 and 45 DAP), with the
remaining time points (60, 75, 90, 105, and 120 DAP) comprising the test set. This procedure
was repeated four more times to build new training sets until all time points except the last
one (120 DAP) were included in the training set. The forward-chaining CV scheme was used to
assess the accuracy of GP models to predict and identify the best set of lines for PH (tallest)
prior to harvest.

The correlation (Pearson’s r) of adjusted means with predicted values was used to
estimate predictive accuracy in both CV schemes. In the forward-chaining CV scheme, the
predicted values were always obtained with the artificial bins effects from the previous time
point used for training the DBN model. For the MTi-GBLUP and MTr-GBLUP models, the
predicted values from the previous time point used for training were used as predicted values.
For the BN and PBN models, which do not share information across time, the effects of artificial
bins for each time point were used to compute the predicted values.

3.3.8 Coincidence index

For the five GP models, coincidence indices (CIs) were constructed to evaluate the
capacity for selecting the top 20% best performing lines for DBY when considering the rank of
the PH adjusted mean values at each time point. The posterior values of the CI were calculated
as the rate of successes between the top 20% best lines for PH at each time point and DBY.
The CI was computed by assigning a ‘1’ to lines in the top 20% best lines for PH and DBY, or
‘0’ otherwise, then dividing the total number of successes (sum of ‘1’s) by the total number of
lines at each posterior sample.
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Figure 3.2: Correlation among adjusted means, heritabilities, and distribution of adjusted
means for all traits.

3.3.9 Coincidence index based on lines

For the DBN model, we constructed a coincidence index based on lines (CIL) that
used posterior samples from the adjusted mean values of PH across the seven measurement time
points. This CIL was used to determine how early selection could be performed within-season
to optimally reduce the length of the breeding cycle. Calculation of the CIL was based on the
following steps: (i) identify the top 20% best lines for each posterior sample of the PH adjusted
mean values at each time point; (ii) create for each posterior sample a one-hot vector encoding,
assigning a ‘1’ to the best lines in the top 20% in the evaluated time point and at the end of the
season (120 DAP), or ‘0’ otherwise; and (iii) compute the division of total successes by the total
number of posterior samples that each line appeared in the top 20% for the predicted (evaluated
time points) and observed adjusted mean values (end of season).
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3.4 Results

3.4.1 Phenotypic variation

We used a mixed linear model that accounted for the influence of environment and
genotype-by-environment interaction to generate adjusted means for end-of-season DBY and
PH measured at seven developmental time points over the growing season. Both DBY and
the multiple PH measures had moderately high estimates of heritability on a line-mean basis
(h2 > 0.48) across the four environments (Figure 3.2). The distribution of adjusted mean
values for DBY was slightly skewed towards the left tail, with values centered on 23.55 tons
ha−1 (std=5.79). In comparison, the adjusted mean values for PH showed an expected growth
pattern across the seven time points, with the population mean for PH changing from 25.6
(std=3.7) at 30 DAP to 350.7 cm (std=48.0) at 120 DAP. Indicative of an autoregressive trend
of correlation over time, the weakest correlation was observed between PH measures collected
at 30 and 120 DAP (r=0.40), while 90 and 105 DAP were the two most strongly correlated time
points (r=0.96). Correlations between DBY and PH varied from 0.10 to 0.31 across time points,
suggesting an opportunity for recovering information across time points and/or between traits
to improve the predictive accuracy of GP models.

3.4.2 Predictive accuracies from stratified 5-fold CV

Table 3.1: Prediction accuracies obtained from the 5-fold cross-validation scheme
by training the Bayesian network (BN), pleiotropic Bayesian network (PBN), dy-
namic Bayesian network (DBN), multi time GBLUP (MTi-GBLUP) and multi trait
GBLUP (MTr-GBLUP) models with dry biomass yield (DBY) collected at harvest
and plant height (PH) measured across different days after planting (DAP). The
standard deviations of the prediction accuracies obtained by the Bayesian models
are represented within parenthesis.

Trait Accuracy of the Genomic Prediction Models
BN PBN DBN MTi-GBLUP MTr-

GBLUP
DBY 0.49 (0.021) 0.48 (0.009) - - 0.51
PH-30 0.53 (0.021) 0.52 (0.020) 0.47 (0.021) 0.56 0.57
PH-45 0.59 (0.018) 0.59 (0.017) 0.57 (0.016) 0.62 0.62
PH-60 0.72 (0.013) 0.72 (0.014) 0.51 (0.016) 0.74 0.74
PH-75 0.70 (0.015) 0.69 (0.015) 0.53 (0.013) 0.72 0.72
PH-90 0.67 (0.016) 0.67 (0.016) 0.51 (0.013) 0.70 0.70
PH-105 0.67 (0.016) 0.66 (0.017) 0.52 (0.013) 0.70 0.69
PH-120 0.61 (0.019) 0.60 (0.019) 0.47 (0.015) 0.65 0.65

We evaluated the accuracy of the BN, PBN, DBN, MTr-GBLUP, and MTi-GBLUP
models for predicting DBY and PH measured throughout the growing season with a stratified 5-
fold CV scheme. Prediction accuracies (0.48-0.51) of DBY were nearly identical for the BN, PBN,
and MTr-GBLUP models (Table 3.1). When predicting PH at each of the seven developmental
stages with the BN, PBN, MTi-GBLUP and MTr-GBLUP models, we found that accuracies
gradually increased from 30 to 60 DAP, peaked at 60 DAP, and incrementally decreased from 60
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to 120 DAP. Of these four models, MTi-GBLUP (0.56-0.74) and MTr-GBLUP (0.57-0.74) had
prediction accuracies comparable to each other and slightly higher than those of BN (0.53-0.72)
and PBN (0.52-0.72). Comparatively, the DBN model showed a randomly fluctuating trend
of relatively slightly lower prediction accuracies for PH at all seven time points. The minor
variation in predictive accuracy, especially after 45 DAP, suggests that early season prediction
could be possible for PH.

3.4.3 Predictive accuracies from forward-chaining cross-validation

We performed a forward-chaining CV procedure to evaluate the accuracy of the five
models to predict PH at unobserved time points. In general, the models showed high accuracy
to predict the phenotypic values of the lines observed at the last time point (120 DAP) even
when trained only with data from both 30 and 45 DAP (Figure 3.3). The BN and PBN models
had similar prediction accuracies across all scenarios, ranging from 0.42 (BN, training: 45 DAP;
predicting: 120 DAP) to 0.86 (PBN, training: 60 DAP; predicting: 75 DAP). In contrast, the
DBN, MTi-GBLUP, and MTr-GBLUP models had substantially higher predictive accuracies
compared to the BN and PBN models. The DBN model showed predictive accuracies varying
from 0.6 (training slice: 30-45 DAP, predicting: 120 DAP) to 0.95 (training slice: 30-60 DAP;
predicting: 75 DAP). The MTi-GBLUP prediction accuracies ranged from 0.63 (training slice:
30-45 DAP; predicting: 120 DAP) to 0.94 (training slice: 30-90 DAP; predicting: 105 DAP),
and comparably, the MTr-GBLUP varied from 0.64 (training slice: 30-45 DAP; predicting: 120
DAP) to 0.94 (training slice: 30-90 DAP; predicting: 105 DAP). These results did not suggest
any advantage for modelling dependence between PH and DBY in the PBN and MTi-GBLUP
models; however, the results did suggest that the dependence between time points accounted for
in the DBN, MTi-GBLUP and MTr-GBLUP models improved the prediction accuracy of PH.

3.4.4 Coincidence indexes

The high predictive performance of the DBN, MTri-GBLUP, and MTr-GBLUP models,
which exploited multiple PH measurements over initial growth stages, incentivized us to investi-
gate how the rank of the lines varied across the different time points. To that end, we evaluated
how PH measures over time (secondary traits) could be informative for performing indirect se-
lection of DBY (target trait) through the calculation of coincidence indices (CIs). The posterior
distribution of the CIs showed an overlapping pattern over time for the three Bayesian models
(Figure 3.4), with most of them ranging from 0.18 to 0.34. This implied that the ranking of
the lines for PH did not change significantly from early to late growth stages. Additionally, the
MTi-GBLUP CI (target: DBY; secondary: PH) ranged from 0.25 (training slice: 30-105 DAP)
to 0.27 (training slice: 30-45 DAP), and MTr-GBLUP varied from 0.26 (training slice: 30-105
DAP) to 0.28 (training slice: 30-45 DAP). These results suggest that the initial growth stage
ranging from 30 to 45 DAP could be an optimal stage of development for the early selection
of PH and indirect selection of DBY based on the ordering of the PH adjusted means over the
growing season.

To gain more insight and empirical evidence to support the hypothesis of early selection
for PH with measures from 30 and 45 DAP, we developed a coincidence index based on lines
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Figure 3.3: Prediction accuracies obtained by the forward-chaining cross-validation to eval-
uate genomic prediction models exploiting single (Bayesian Network and Pleiotropic Bayesian
Network) or multiple time points (Dynamic Bayesian Network, Multi Time GBLUP, and Multi
Trait GBLUP). The horizontal axis represents the slice (:) of the time interval used for training
the models with multiple time points and the vertical axis the testing data. The ’*’ symbol tags
the days after planting (DAP) time point used to obtain the adjusted means.

(CIL) using the posterior values from the DBN model that achieved optimal performance among
the Bayesian models tested in the forward-chaining CV. The CIL allows us to better understand
phenotypic plasticity through assessing how the expected rank of the lines at the end of the
season agrees with their ranking at earlier growth stages. The closer that the CIL is to one,
the more likely the line is expected to be at the top 20% for PH at the end of the season. We
plotted lines with CIL > 0.5, fixed their ordering (training slice: 30-45 DAP), and displayed
the CILs from other time slices in the same order (Figure 3.5). The CILs showed the expected
trend of increasing the chance of lines to be in the top 20% after 45 DAP, which indicated that
the ranking of the top lines had not majorly changed over time.

3.5 Discussion

Biomass sorghum is a promising bioenergy feedstock because of its extensive genetic
diversity, high biomass yield potential, and strong tolerance to environmental stress. Sorghum
is evolutionarily related to key bioenergy grasses, including maize, sugarcane, switchgrass, and
Miscanthus spp., making it a potentially important diploid model to inform the genetic im-
provement of these other bioenergy crops (Morris et al., 2013; Brenton et al., 2016). Despite
sorghum’s appealing features as both a crop and model species, few studies have focused on
genetically modelling its growth patterns and leveraging this information for breeding optimiza-
tion. In this study, we investigated a diverse panel of 839 sorghum lines genotyped with 100,435
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Figure 3.4: Coincidence index for selecting the top 20% for dry biomass yield using as reference
the adjusted mean values obtained by training the Bayesian network (BN), pleiotropic Bayesian
network (PBN), and dynamic Bayesian network (DBN) models with plant height data across
the seven developmental time points. The ’*’ symbol denotes the time point estimates used to
obtain the adjusted means as expected values for indirect selection. For the DBN model that
leveraged multiple time points, the symbol * denotes the last time point used for training with
the earlier time points also considered in the model.

SNP markers that was evaluated for a PH time series and DBY in four environments. With
these collected data, we evaluated several GP models for exploiting genetic information over
time and/or between correlated traits to improve prediction accuracies compared to models
that assumed independence. Our implemented Bayesian models allowed us to estimate the level
of uncertainty in determining optimal time points when developing breeding strategies for early
selection of PH within season, as well as the indirect selection of DBY in combination with the
repeated measures of PH as secondary traits.

To conduct GP of DBY and PH, we used both PGM and multivariate mixed linear
model approaches to better model growth dynamics (Bishop, 2013; Henderson and Quaas,
1976; dos Santos et al., 2016b). Due to the high computational cost of the PGM approach, we
modified the artificial bins method of Xu (2013) to reduce the dimensionality of the SNP marker
matrix through a PCA. This modified approach reduced the number of parameters needed to
train the different PGM architectures by a 100-fold. Also, this procedure in other scenarios
has the flexibility for predictions even when the number of loci pooled is different between
the training and testing sets. Indicative of minimal information loss, there were negligible
differences in prediction accuracies achieved by the MTi-GBLUP and MTr-GBLUP models that
used the 100,000 SNP markers to compute the relationship matrix compared to those of the
BN and PBN models reliant on the 1,000 artificial bins. Also, the artificial bins approach did



43

A: Days after planting 30:45* B: Days after planting 30:60* C: Days after planting 30:75*

D: Days after planting 30:90* E: Days after planting 30:105*

0.5 0.6 0.7 0.8 0.9 1.0

Top 20% posterior coincidence index based on lines

NSL54635
NSL54818
NSL51358
NSL55719

NSL365693
NSL55670
NSL67918
NSL55842

NSL365697
NSL52176
NSL55706
NSL54542
NSL50971
NSL51958
NSL55693
NSL54877
NSL54233
NSL50797
NSL50745
NSL51825
NSL55744
NSL55713
NSL51693
NSL55714
NSL54662
NSL50752
NSL52286
NSL54212
NSL54490
NSL55665
NSL50374
NSL55700
NSL55723
NSL54588
NSL55048

NSL365799
NSL50989
NSL50414
NSL50630
NSL51016
NSL54977
NSL52251

NSL365720
NSL55476
NSL55712
NSL54894
NSL56134
NSL52295
NSL50733

NSL360526
NSL55685

NSL365683
NSL360555
NSL54612
NSL51234
NSL55843
PI660631
NSL54962
NSL50740
NSL55730
NSL55743
NSL54878
NSL50587
PI660632
NSL50650
NSL50603
NSL55460
NSL51978
NSL52261
NSL55043
NSL51200
PI660603
NSL55734
NSL50401
NSL50409
PI660620

NSL365759
NSL55711
PI660601
PI660630
NSL51780
PI660606
NSL50620
PI660605
NSL67920

NSL365751
NSL365766
PI660602
PI660600
NSL50721
NSL55745
NSL52313
NSL55694
NSL55678
NSL52327
NSL55643
PI660595
PI660599
PI660598
NSL51691
PI660571
NSL54147
NSL51039
NSL50595
PI660588
NSL50451
NSL51876
PI660580
NSL50827
NSL51030
PI660597
NSL52006
NSL50601
NSL51962
PI660556
PI660566
NSL50350
PI651141
PI651187
PI651131
PI651168
PI646242
PI651113
PI651103
PI651178
PI647716
PI651116
PI647743
PI647745
PI647747
PI651106
PI651102
PI651167
PI651124
PI591377
PI609612
PI585540
PI585956
PI585951
PI585961
PI586022
PI647733
PI586792
PI585966

S
o
rg

h
u
m

 l
in

e
s

0.5 0.6 0.7 0.8 0.9 1.0

Top 20% posterior coincidence index based on lines

NSL54635
NSL54818
NSL51358
NSL55719

NSL365693
NSL55670
NSL67918
NSL55842

NSL365697
NSL52176
NSL55706
NSL54542
NSL50971
NSL51958
NSL55693
NSL54877
NSL54233
NSL50797
NSL50745
NSL51825
NSL55744
NSL55713
NSL51693
NSL55714
NSL54662
NSL50752
NSL52286
NSL54212
NSL54490
NSL55665
NSL50374
NSL55700
NSL55723
NSL54588
NSL55048

NSL365799
NSL50989
NSL50414
NSL50630
NSL51016
NSL54977
NSL52251

NSL365720
NSL55476
NSL55712
NSL54894
NSL56134
NSL52295
NSL50733

NSL360526
NSL55685

NSL365683
NSL360555
NSL54612
NSL51234
NSL55843
PI660631
NSL54962
NSL50740
NSL55730
NSL55743
NSL54878
NSL50587
PI660632
NSL50650
NSL50603
NSL55460
NSL51978
NSL52261
NSL55043
NSL51200
PI660603
NSL55734
NSL50401
NSL50409
PI660620

NSL365759
NSL55711
PI660601
PI660630
NSL51780
PI660606
NSL50620
PI660605
NSL67920

NSL365751
NSL365766
PI660602
PI660600
NSL50721
NSL55745
NSL52313
NSL55694
NSL55678
NSL52327
NSL55643
PI660595
PI660599
PI660598
NSL51691
PI660571
NSL54147
NSL51039
NSL50595
PI660588
NSL50451
NSL51876
PI660580
NSL50827
NSL51030
PI660597
NSL52006
NSL50601
NSL51962
PI660556
PI660566
NSL50350
PI651141
PI651187
PI651131
PI651168
PI646242
PI651113
PI651103
PI651178
PI647716
PI651116
PI647743
PI647745
PI647747
PI651106
PI651102
PI651167
PI651124
PI591377
PI609612
PI585540
PI585956
PI585951
PI585961
PI586022
PI647733
PI586792
PI585966

S
o
rg

h
u
m

 l
in

e
s

0.5 0.6 0.7 0.8 0.9 1.0

Top 20% posterior coincidence index based on lines

NSL54635
NSL54818
NSL51358
NSL55719

NSL365693
NSL55670
NSL67918
NSL55842

NSL365697
NSL52176
NSL55706
NSL54542
NSL50971
NSL51958
NSL55693
NSL54877
NSL54233
NSL50797
NSL50745
NSL51825
NSL55744
NSL55713
NSL51693
NSL55714
NSL54662
NSL50752
NSL52286
NSL54212
NSL54490
NSL55665
NSL50374
NSL55700
NSL55723
NSL54588
NSL55048

NSL365799
NSL50989
NSL50414
NSL50630
NSL51016
NSL54977
NSL52251

NSL365720
NSL55476
NSL55712
NSL54894
NSL56134
NSL52295
NSL50733

NSL360526
NSL55685

NSL365683
NSL360555
NSL54612
NSL51234
NSL55843
PI660631
NSL54962
NSL50740
NSL55730
NSL55743
NSL54878
NSL50587
PI660632
NSL50650
NSL50603
NSL55460
NSL51978
NSL52261
NSL55043
NSL51200
PI660603
NSL55734
NSL50401
NSL50409
PI660620

NSL365759
NSL55711
PI660601
PI660630
NSL51780
PI660606
NSL50620
PI660605
NSL67920

NSL365751
NSL365766
PI660602
PI660600
NSL50721
NSL55745
NSL52313
NSL55694
NSL55678
NSL52327
NSL55643
PI660595
PI660599
PI660598
NSL51691
PI660571
NSL54147
NSL51039
NSL50595
PI660588
NSL50451
NSL51876
PI660580
NSL50827
NSL51030
PI660597
NSL52006
NSL50601
NSL51962
PI660556
PI660566
NSL50350
PI651141
PI651187
PI651131
PI651168
PI646242
PI651113
PI651103
PI651178
PI647716
PI651116
PI647743
PI647745
PI647747
PI651106
PI651102
PI651167
PI651124
PI591377
PI609612
PI585540
PI585956
PI585951
PI585961
PI586022
PI647733
PI586792
PI585966

S
o
rg

h
u
m

 l
in

e
s

0.5 0.6 0.7 0.8 0.9 1.0

Top 20% posterior coincidence index based on lines

NSL54635
NSL54818
NSL51358
NSL55719

NSL365693
NSL55670
NSL67918
NSL55842

NSL365697
NSL52176
NSL55706
NSL54542
NSL50971
NSL51958
NSL55693
NSL54877
NSL54233
NSL50797
NSL50745
NSL51825
NSL55744
NSL55713
NSL51693
NSL55714
NSL54662
NSL50752
NSL52286
NSL54212
NSL54490
NSL55665
NSL50374
NSL55700
NSL55723
NSL54588
NSL55048

NSL365799
NSL50989
NSL50414
NSL50630
NSL51016
NSL54977
NSL52251

NSL365720
NSL55476
NSL55712
NSL54894
NSL56134
NSL52295
NSL50733

NSL360526
NSL55685

NSL365683
NSL360555
NSL54612
NSL51234
NSL55843
PI660631
NSL54962
NSL50740
NSL55730
NSL55743
NSL54878
NSL50587
PI660632
NSL50650
NSL50603
NSL55460
NSL51978
NSL52261
NSL55043
NSL51200
PI660603
NSL55734
NSL50401
NSL50409
PI660620

NSL365759
NSL55711
PI660601
PI660630
NSL51780
PI660606
NSL50620
PI660605
NSL67920

NSL365751
NSL365766
PI660602
PI660600
NSL50721
NSL55745
NSL52313
NSL55694
NSL55678
NSL52327
NSL55643
PI660595
PI660599
PI660598
NSL51691
PI660571
NSL54147
NSL51039
NSL50595
PI660588
NSL50451
NSL51876
PI660580
NSL50827
NSL51030
PI660597
NSL52006
NSL50601
NSL51962
PI660556
PI660566
NSL50350
PI651141
PI651187
PI651131
PI651168
PI646242
PI651113
PI651103
PI651178
PI647716
PI651116
PI647743
PI647745
PI647747
PI651106
PI651102
PI651167
PI651124
PI591377
PI609612
PI585540
PI585956
PI585951
PI585961
PI586022
PI647733
PI586792
PI585966

S
o
rg

h
u
m

 l
in

e
s

0.5 0.6 0.7 0.8 0.9 1.0

Top 20% posterior coincidence index based on lines

NSL54635
NSL54818
NSL51358
NSL55719

NSL365693
NSL55670
NSL67918
NSL55842

NSL365697
NSL52176
NSL55706
NSL54542
NSL50971
NSL51958
NSL55693
NSL54877
NSL54233
NSL50797
NSL50745
NSL51825
NSL55744
NSL55713
NSL51693
NSL55714
NSL54662
NSL50752
NSL52286
NSL54212
NSL54490
NSL55665
NSL50374
NSL55700
NSL55723
NSL54588
NSL55048

NSL365799
NSL50989
NSL50414
NSL50630
NSL51016
NSL54977
NSL52251

NSL365720
NSL55476
NSL55712
NSL54894
NSL56134
NSL52295
NSL50733

NSL360526
NSL55685

NSL365683
NSL360555
NSL54612
NSL51234
NSL55843
PI660631
NSL54962
NSL50740
NSL55730
NSL55743
NSL54878
NSL50587
PI660632
NSL50650
NSL50603
NSL55460
NSL51978
NSL52261
NSL55043
NSL51200
PI660603
NSL55734
NSL50401
NSL50409
PI660620

NSL365759
NSL55711
PI660601
PI660630
NSL51780
PI660606
NSL50620
PI660605
NSL67920

NSL365751
NSL365766
PI660602
PI660600
NSL50721
NSL55745
NSL52313
NSL55694
NSL55678
NSL52327
NSL55643
PI660595
PI660599
PI660598
NSL51691
PI660571
NSL54147
NSL51039
NSL50595
PI660588
NSL50451
NSL51876
PI660580
NSL50827
NSL51030
PI660597
NSL52006
NSL50601
NSL51962
PI660556
PI660566
NSL50350
PI651141
PI651187
PI651131
PI651168
PI646242
PI651113
PI651103
PI651178
PI647716
PI651116
PI647743
PI647745
PI647747
PI651106
PI651102
PI651167
PI651124
PI591377
PI609612
PI585540
PI585956
PI585951
PI585961
PI586022
PI647733
PI586792
PI585966

S
o
rg

h
u
m

 l
in

e
s

Figure 3.5: Top 20% posterior coincidence index based on lines (CIL) from the results of the
dynamic Bayesian network. The rank order of the lines in subplot A was fixed for subplots B, C,
D and E to understand phenotypic plasticity over time. Only lines with CIL>0.5 were plotted.
The ’*’ symbol tags the days after planting (DAP) time point used to obtain the adjusted means.

not compromise the results from the DBN model, as indicated by the similarity of its obtained
prediction accuracies with those from the multivariate GBLUP models in the forward-chaining
CV scheme.

We initiated a model-based machine learning approach for GP analysis by first defining
the baseline of PGMs (Bishop, 2013). Several studies have shown a similar level of predictive
performance between PGMs that assume either a common or specific normal prior for each
marker effect (de Los Campos et al., 2013; Heslot et al., 2015; Ferrão et al., 2018). There-
fore, we parsimoniously used a common normal prior for the effects of all artificial bins, resulting
in a BN model that had less unknown parameters but a slower MCMC process to obtain pos-
terior draws. The BN model can be considered a non-conjugate form of the Bayesian linear
regression model (de Los Campos et al., 2013) that automatically learns the hyperparame-
ters of priors from the data. This model also has Cauchy priors truncated to the R+ on the
scale components, which avoids sampling implausible standard deviation values (Gelman et al.,
2014). Although the main disadvantage of the BN model formulation is that its architecture
cannot recover information between traits or time points, the BN model can be useful analyzing
highly unbalanced data as is frequently observed for large-scale field trials in the plant breeding
industry.

To improve the performance of the BN model, we novelly developed the PBN model
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by connecting two representations of the BN model with hidden variables (nodes in the graph
representing artificial bins effects influencing both traits), allowing a conditional relationship be-
tween the likelihood functions of PH and DBY to be established. Despite our efforts to estimate
pleiotropic effects with the PBN model, the interpretation of the effects as pleiotropic should be
carefully interpreted, especially due to the challenge of differentiating between pleiotropy and
tight linkage. Gianola et al. (2015) theorized that the linkage disequilbrium (LD) between
markers and quantitative trait loci (QTL), LD between QTL controlling different traits, or LD
between markers linked to QTL controlling different traits can make it difficult to partition
pleiotropic effects in GP models. The presence of such complex LD structure could explain the
minor difference in predictive accuracy between the BN and PBN models when attempting to
partition genetics effects influencing single versus multiple traits. This interpretation is sup-
ported by the finding that prediction accuracies obtained by the MTi-GBLUP (PH time series)
and MTr-GBLUP (DBY and PH time series) models were similar to each other. Additionally,
the lower than expected performance of the PBN model relative to the BN model could be
attributed to the modest correlations observed between DBY and the multiple PH traits (r =
0.10 - 0.31). Simulation studies have shown that genetic correlations weaker than 0.5 do not
provide marked improvements to the prediction accuracy of GP models used for multiple traits
(Calus and Veerkamp, 2011; dos Santos et al., 2016b). Further studies analyzing traits
having strong genetic correlations with DBY are needed to better understand how to further
improve the prediction accuracy of the PBN model.

The DBN model, a variant of hidden Markov models that is intended for modeling
continuous variables (Murphy, 2013), was used to exploit the effects of artificial bins from the
prediction of PH at earlier time points. This connection of genetic information between time
points was crucial for dramatically improving the performance of the Bayesian framework in the
forward-chaining CV scheme. Moreover, the predictions using the posterior mean of the DBN
model allowed us to obtain predictions as precise as the point estimates from the MTi-GBLUP
model and construct indices with posterior samples to identify optimal time points for indirect
selection. The strong correlation between multiple time points for PH is quite possibly the main
factor that favored the improvement of prediction accuracy for the DBN model compared to
the BN and PBN models that did not leverage information over time. In contrast to the high
predictive performance achieved in the forward-chaining CV scheme, relatively lower predictive
accuracies were observed for the DBN model in the 5-fold CV scheme, especially when removing
lines across all time points to split the data into training and testing sets. This is because
the splitting did not allow the DBN model to learn with precision the effects of the artificial
bins between time points and added noise to the artificial bin estimates. Despite the sharing of
genetic signals over time, these findings suggest that the DBN model should not be used when
lines are completely unobserved across all time points (Burgueño et al., 2012; Dias et al., 2018;
Fernandes et al., 2018). This reduced level of prediction performance because of unobserved
lines has also been previously reported for multivariate GP models tested with a 5-fold CV
scheme (Burgueño et al., 2012; Dias et al., 2018; Fernandes et al., 2018).

Even though modeling growth dynamics is an important area of research, there have
been a limited number of studies in plants that have analyzed longitudinal phenotypes related
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to growth rate with GP models. In a greenhouse study of 357 diverse rice (Oryza sativa L.)
accessions, Campbell et al. (2018) developed GP models with a first- or second-order Legendre
polynomial to predict the sum of “plant pixels” from image-based phenotyping as a daily estimate
of shoot biomass during initial growth stages (13 to 33 days after transplant), resulting in an
11.6% improvement in prediction accuracies relative to a single time point analysis. Despite
the advantage of fitting a nonlinear random regression model with phenotypic data that showed
an exponential curve over 20 days of early vegetative growth, this procedure is limited to only
early developmental stage phenotypes such as shoot biomass that follow an exponential growth
curve. In our study, PH was measured throughout the entire growing season without a focus
on the early vegetative stage, thus the collected PH data did not have an exponential shape.
The modelling of genetic effects as either a linear additive function over time or though the
G var-cov matrix might be the main factor causing the 36.4-52.4% (training slice: 30-45 DAP;
predicting: 120 DAP) improvements in prediction accuracy of the DBN, MTi-GBLUP, and MTr-
GBLUP models. When analyzing repeated measures of height collected from an interior spruce
(Picea engelmannii × glauca) population of 769 trees at six sparse time points over a period of 37
years, Ratcliffe et al. (2015) observed minor differences in prediction performance among the
evaluated BCπ, rrBLUP, and generalized ridge regression models. These findings are contrary
to our evaluated PGMs that recovered genetic information between time points that showed
substantial improvement compared to the BN model - a Bayesian formulation of the rrBLUP
model.

The implemented PGMs provided a powerful modelling framework to infer uncertainty
based on well-established probability theory (Murphy, 2013; Bishop, 2013), allowing us to
define optimal time points for earlier selection of a target trait within season or indirect selection
through secondary correlated traits. To this end, we used the posterior distribution of the CIs
and observed that the ordering of the lines changed minimally after 45 DAP, which suggested
an opportunity to indirectly select for DBY based on early season PH measures as secondary
traits. The Bayesian CIs allowed the direct assessment of overlapping time points with credible
intervals for identying optimal time points contrary to the point estimate approach of Hamblin
and Zimmermann (1986) applied to genomic prediction of a PH time series and DBY in sorghum
by (Fernandes et al., 2018). The Bayesian CIs also did not require resampling to build the
index. In addition, we used the DBN model to evaluate the phenotypic plasticity of PH with the
CILs at the population level. The pattern of phenotypic plasticity shown by the CILs confirmed
the general findings of the CIs–the ranking of lines by PH changed minimally from early (45
DAP) to late (120 DAP) measures. Early within-season selection for PH could help to efficiently
accelerate the breeding process. Considering the breeder’s equation ∆G = i hσg/L (Li et al.,
2018), reducing the length of the generation (L) for given a selection intensity (i) could provide
a new avenue for increasing genetic gain per unit of time through early indirect selection of PH
and DBY at 45 DAP in these tested environments.

Given that the order of lines ranked by PH minimally changed across the measured
plant developmental stages and had a moderate coincidence with rankings based on DBY, we
propose a two-level indirect selection framework: (i) fit the DBN model–Bayesian model with the
best performance for predicting future measures–to learn posterior values of the GEBVs in initial
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growth stages for PH repeated measures and obtain a precise estimate of the ranking of each line
at the end of the season; (ii) compute CI and CIL to evaluate the extent to which the rank order of
lines change; (iii) use GEBVs of the previous time point as a secondary trait; (iv) perform indirect
selection for PH at the end of the season as first-level target trait; and (v) perform indirect
selection for DBY as the second-level target trait. This selection approach together with the
trait-assisted genomic selection approach proposed by Fernandes et al. (2018) may allow the
end of season rank order of observed and eventually unobserved lines to be accurately predicted
early in the growing season. When combined with high-throughput phenotyping platforms, the
two-level indirect selection framework has the potential to further accelerate selection cycles and
support a larger number of evaluated families. This could be accomplished by deploying low-cost
ground rovers (e.g., Earthsense, https://www.earthsense.co) for repeated measurements of
height and other traits genetically correlated with DBY on field-grown plants in combination
with off-season winter nurseries and greenhouses with automated phenotyping systems (e.g.,
Lemnatec, http://www.lemnatec.com; Photon Systems Instruments, http://www.psi.cz) and
optimized LED lights for speed breeding (Watson et al., 2018).

3.6 Conclusion

We analyzed phenotypic measures over time for PH and DBY at the end of the season
to design a novel indirect selection scheme. To that end, we developed and evaluated novel
Bayesian networks for GP that were used to better model and understand phenotypic plasticity
of PH across different plant developmental stages. The GP models showed minor differences
in prediction accuracies for the 5-fold CV scheme. In stark contrast, in the forward-chaining
CV scheme, we observed a 36.4-52.4% improvement in prediction accuracy of the DBN and
multivariate GBLUP models (train on 45 DAP, predict 120 DAP) compared to the BN and
PBN models that assumed independence over time. The Bayesian models were used to show
that the ranking of lines changed minimally after 45 DAP based on the CI and CIL, serving
as novel approaches to understand ranking dynamics with repeated measures. These results
suggest that in these environments 45 DAP is an optimal developmental stage for imposing a
two-level indirect selection framework for biomass sorghum. Such that indirect selection for end
of season PH (first-level target trait) and DBY (second-level target trait) could be performed
based on the ranking of lines by PH at 45 DAP (secondary trait).
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