• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.11.2020.tde-12012021-102452
Documento
Autor
Nome completo
Mariana Silva Vianna
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2020
Orientador
Banca examinadora
Pinheiro, Jose Baldin (Presidente)
Molin, Jose Paulo
Zerbato, Cristiano
Título em inglês
Evaluation of vegetation indices from aerial images in soybean breeding
Palavras-chave em inglês
Glicine max
High throughput phenotyping
Plant breeding
RGB images
Vegetation index
Resumo em inglês
High throughput phenotyping (HTP) is an emerging tool that allows access and identifies simple and complex quantitative traits, accelerating genetic discoveries, and selection. Vegetation indices have been using to detect variation in the crop field, demonstrating correlation with several traits of crop performance. Thus, this study had the main goal to estimate vegetation indices and their correlation with agronomic traits in different soybean populations using RGB images derived from an unmanned aerial vehicle (UAV). Were conducted three experiments in the 2018/2019 season: RIL-C (stink bugs control), RIL-N (Without stink bugs control), and LQ (Without fertilization, soil correction, and stink bugs control) aiming to evaluate genetic resistance to the stink bug complex in soybean lineages. The genotypes were evaluated based on the following traits: Number the days to maturity (NDM), agronomic value (AV), Lodging (LOD), Plant height maturity (PHM), and grain yield (GY). A UAV system with an RGB camera coupled was used to acquire aerial photography flight over the field during the R5 stage. Was estimated the Red Green Blue Vegetation Index (RGBVI), Gren Leaf Index (GLI), Visible Atmospheric Resistant Index (VARI), Triangular Greenness Index (TGI), Normalized Green Red Difference Index (NGRDI), and canopy from the orthomosaic. Linear mixed models were used to estimate the variance of each trait using the likelihood ratio test, and the principal component analysis (PCA) was performed using the Best Linear Unbiased Predictions (BLUPs) to verify the multivariate pattern among genotypes. The results showed significant genotypic effects for the majority of the traits evaluated. High broad-sense heritability of the traits can be observed. The principal component analysis revealed that the genotypes had more agronomic performance in the experiment with control of stink bugs, also, showed a strong correlation between the traits GY and PHM, and independence between the traits LOD and NDM. There were significant correlations among the agronomic traits, vegetation indices, and canopy, that can be used for indirect selection and joint selections of the traits of the best lineages in the breeding pipeline.
Título em português
Avaliação de índices de vegetação a partir de imagens aéreas no melhoramento de soja
Palavras-chave em português
Glycine max
Fenotipagem de alto rendimento
Imagens RGB
Índices de vegetação
Melhoramento de plantas
Resumo em português
A fenotipagem de alto rendimento (HTP) é uma ferramenta emergente que permite acesso e identificação dos caracteres quantitativos simples e complexos, acelerando descobertas genéticas e seleção. Os índices de vegetação têm sido utilizados para detectar variações no campo, demonstrando correlação com vários caracteres importantes ao desempenho das culturas. Assim, este estudo teve como objetivo principal estimar índices de vegetação e suas correlações com caracteres agronômicos em diferentes populações de soja, utilizando imagens RGB derivadas de veículo aéreo não tripulado (UAV). Foram conduzidos três experimentos na safra 2018/2019: RIL-C (com controle de percevejos), RIL-N (sem controle de percevejos) e LQ (sem fertilização, correção do solo e controle de percevejos) com o objetivo de avaliar a resistência genética ao complexo de percevejos em linhagens de soja. Os genótipos foram avaliados com base nas seguintes caracteres: número de dias para a maturidade (NDM), valor agronômico (AV), acamamento (LOD), altura da planta na maturidade (PHM) e rendimento de grãos (GY). Um sistema UAV com uma câmera RGB acoplada foi usado para adquirir um vôo de fotografia aérea sobre o campo durante o estágio R5. Foram estimados o Índice de Vegetação Azul Verde Vermelho (RGBVI), Índice de Folha de Verde (GLI), Índice Resistente à Atmosfera Visível (VARI), Índice de Verdidão Triangular (TGI), Índice de Diferença de Verde Vermelho Normalizado (NGRDI) e dossel (Canopy) do ortomosaico. Modelos lineares mistos foram usados para estimar a variância de cada caratere usando o teste da razão de verossimilhança, e a análise de componentes principais foi realizada usando os BLUPs para verificar o padrão multivariado entre os genótipos. Os resultados mostraram efeitos genotípicos significativos para maioria dos caracteres avaliados. Pode-se observar alta herdabilidade dos caracteres. A análise dos componentes principais revelou que os genótipos apresentaram maior desempenho agronômico no experimento com controle de percevejos, além de mostrar forte correlação entre os caracteres GY e PHM e independência entre os caracteres LOD e NDM. Houve correlações significativas entre os caracteres agronômicos, índices de vegetação e dossel, que podem ser usadas para seleção indireta e seleções conjuntas dos caracteres das melhores linhagens no melhoramento de soja.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-01-14
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.