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RESUMO 
 

Kernels com base ambiental otimizam a alocação de recursos com predição genômica 
multi-características e multi-ambientes para milho tropical 

 
O sucesso da predição genômica (GP) é diretamente dependente do estabelecimento de 

uma população de treinamento. A incorporação de dados de caracterização ambiental de alta 
qualidade aumenta a eficiência dos modelos GP, especialmente para ensaios em múltiplos 
ambientes, e fornece uma melhor explicação de fontes de variação. Assim, a caracterização 
ambiental pode ajudar em ensaios multi-características e multi-ambientais (MTMET), melhorando 
a capacidade preditiva (PA), selecionando informações de forma mais assertiva e capturando 
relações entre ambientes e genótipos. Portanto, neste estudo, objetivamos formar populações de 
treinamento otimizadas para MTMET. O trabalho de fenotipagem é diminuído devido a tamanhos 
populacionais menores, mas com indivíduos selecionados de forma otimizada, mantendo a 
capacidade preditiva em níveis satisfatórios. Para isso, avaliamos a capacidade preditiva de cinco 
modelos de GP usando o modelo GBLUP com efeitos aditivos e de dominância (M1) como padrão 
e, em seguida, adicionando interação genótipo por ambiente (G × E) (M2) , dados ambientais (W) 
(M3), W + G × E (M4) e, finalmente, W + G × W (M5), onde G × W denota a interação entre o 
genótipo e dados ambientais. Além disso, consideramos ensaios multi-ambientais de característica 
única (STMET) e MTMET, para três características: produtividade de grãos (GY), altura da planta 
(PH) e altura da espiga (EH), com dois conjuntos de dados e dois esquemas de validação cruzada. 
Posteriormente, construímos dois kernels para a interação de genótipo por ambiente por 
característica (GET) e interação de genótipo por dados ambientais por característica (GWT) para 
aplicar algoritmos genéticos e selecionar combinações de genótipo: ambiente: característica que 
representam 98% da variação existente no conjunto de dados e então formar a população de 
treinamento otimizada (OTS). Em seguida, realizamos GP e avaliamos sua PA e ganho genético 
por valor investido. Posteriormente, comparamos o cenário padrão (MTMET CV2) com  as OTS 
em relação à PA e ganho genético por valor investido. Considerando o melhor cenário para OTS, 
que incluí o kernel GWT, houve uma redução de até 60% em termos de PA. Por outro lado, foi 
possível reduzir o número de parcelas: características a serem fenotipadas em até 98%. Além disso, 
utilizando OTS com base em dados ambientais, foi possível aumentar a resposta à seleção por valor 
investido em 142%. Dessa forma, nossos resultados sugerem que algoritmos genéticos de 
otimização associados a dados genômicos e ambientais são eficientes em formar populações de 
treinamento otimizadas para predição genômica e melhorar as respostas à seleção por dólar 
investido. Porém, é importante lembrar que existem interações específicas dentro dos conjuntos 
de dados que não devem ser ignoradas ao utilizar a abordagem proposta. 
 
Palavras-chave: Seleção genômica, População de treinamento otimizada, Caracterização 

ambiental, Resposta à seleção, Capacidade preditiva 
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ABSTRACT 
 
Enviromic-based kernels optimize resource allocation with multi-trait multi-environment 

genomic prediction for tropical maize 
 

Genomic prediction (GP) success is directly dependent on establishing a training 
population. Incorporating high-quality envirotyping data increases the efficiency of GP models, 
especially for multi-environment trials, and provides a better explanation of variation sources. 
Thus, it can help on multi-trait multi-environment trials (MTMET) by improving predictive ability 
(PA), selecting information more assertively, and capturing relationships between environments 
and genotypes. Therefore, in this study, we aimed to design optimized training sets for MTMET. 
The phenotypic labor is diminished due to lower but optimally selected population sizes while 
keeping the predictive ability at satisfactory levels. For that, we evaluated the predictive ability of 
five GP models using the Genomic Best linear unbiased predictor model (GBLUP) with additive 
+ dominance effects (M1) as the gold standard and then adding genotype by environment 
interaction (G × E) (M2), enviromic data (W) (M3), W+G × E (M4), and finally W+G × W (M5), 
where G × W denotes the genotype by enviromic interaction. Moreover, we considered single-trait 
multi-environment trials (STMET) and MTMET, for three traits: grain yield (GY), plant height 
(PH), and ear height (EH), with two datasets and two cross-validation schemes. Afterward, we built 
two kernels for genotype by environment by trait interaction (GET) and genotype by enviromic by 
trait interaction (GWT) to apply genetic algorithms to select genotype:environment:trait 
combinations that represent 98% of the variation of the whole dataset and composed the optimized 
training set (OTS). Then, we performed GP and accessed its PA and genetic gain per amount 
invested. Subsequently, we compared benchmarks with OTS regarding the PA and genetic 
improvement per unit invested. Considering the best scenario for OTS, which included the GWT 
kernel, there was a reduction of up to 60% in terms of PA. On the other hand, it was possible to 
reduce the number of plot:traits to be phenotyped up to 98%. Furthermore, using OTS based on 
enviromic data, it was possible to increase the response to selection per amount invested by 142%. 
Consequently, our results suggested that genetic algorithms of optimization associated with 
genomic and enviromic data are efficient in designing optimized training sets for genomic 
prediction and improve the genetic gains per dollar invested. Although, it is worth remembering 
that exist specific interactions within datasets that should not be ignored when using the proposed 
approach. 
 
Keywords: Genomic selection, Optimized training set, Envirotyping, Response to selection, 

Predictive ability 
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1. INTRODUCTION 

In the last decades, maize (Zea mays L.) has reached the level of the world's largest crop, being the only one 

to produce more than 1 billion tons per year (Contini et al., 2019), which makes it a crop of high economic importance, 

due also to its multiple uses, such as human and animal nutrition, ethanol fuel production and in the pharmaceutical 

industry. Although maize yield has been growing, the development of new cultivars, adapted to the specific 

edaphoclimatic conditions of different regions at different planting times, is still necessary (Andrade et al., 2016). 

As an allogamous species of great agronomic interest, maize has already been extensively studied by 

breeding programs, and the increase in productivity in this species is mainly dependent on the development of single- 

cross cultivars, also known as hybrids, where the hybridization is used to explore the expression of heterosis, first 

described by Shull (1908), which is quite expressive and well known in maize. To released new cultivars capable of 

high yields and great performance of other agronomical characteristics, maize breeding programs develop thousands 

of hybrids each year that need to be evaluated in field experiments; however, resources are limited, and evaluations are 

expensive and labor-intensive. The time, area, labor, and budget required to evaluate all those materials in all the desired 

locations and for all the traits of interest each year are very high and, in most cases, unfeasible. Therefore, technologies, 

such as genomic prediction (GP), capable of predicting the performance of those materials early, with no need to wait 

until the end of the crop cycle to discard unwanted materials, are of great interest to the sector (Schrag et al., 2009; 

Werner et al., 2020). 

GP emerged with the promise of increasing genetic gain per unit of time and reducing costs (Meuwissen et 

al., 2001), and has been widely studied for different crops like maize, wheat, rice, coffee, and brachiaria (Crossa et al., 

2017; Carvalho et al., 2020; Matias et al., 2019), as well as for livestock and forest trees. GS has been used for many 

purposes, for example, to predict the performance of lines and double haploids during the initial stages of development 

(Krchov & Bernardo, 2015; Werner et al., 2020), quality (Ibba et al., 2020; Lado et al., 2018), resistance to diseases 

(Rutkoski et al., 2012) and performance of single-crosses (Bandeira e Sousa et al., 2017; Lyra et al., 2017; Alves et al., 

2019). Several groups have showed that there are advantages with the inclusion of multiple traits (MT) in GP, since 

they explore the correlation between traits and their heritability in the prediction process, surpassing single-trait models' 

predictive ability (Jia & Jannink, 2012; Lado et al., 2018; Schulthess et al., 2018). Moreover, the use of multi-

environment models (MET) seems unquestionable (Guo et al., 2020; Oakey et al., 2016). Consequently, the 

combination  of both, multi-trait multi-environment models (MTMET), may improve the accuracy and save labor 

costs (de Oliveira et al., 2020; Montesinos-López et al., 2016, 2019; Wang et al., 2018). 

However, regardless of the GP method, the training set population (TRN) needs to be genotyped and high-

quality phenotyped, while the testing set population (TST) only needs to be genotyped. The establishment of the TRN, 

which should be representative in terms of size, diversity, and the relationship of the individuals to be predicted, is the 

key to success in genomic selection (Jannink et al., 2010; Akdemir et al., 2015; Crossa et al., 2017; Varshney, 2017; Ibba 

et al., 2020). For that, the main objectives are to minimize costs associated with phenotyping by selecting smaller 

training populations, and maximize the predictive ability for the individuals of the TST, through efficient resource 

allocation (Isidro et al., 2015; Lado et al., 2018; Pinho Morais et al., 2020; Riedelsheimer & Melchinger, 2013; Technow 

et al., 2014). Additionally, there is a lack of knowledge on how to distribute genotypes optimally in multi-environment 

trials in order to achieve the best balance between the number of genotypes tested in the field and the predictive 

capacity of GP models, to maximize the selection gain with fixed area and budget resources (Jarquin et al., 2020). 

Furthermore, in MTMET, we could also ask: which traits should be evaluated in each genotype:trial combination? 
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Hence, the strategy is to design optimized populations for GP, which allows keeping the accuracy of 

prediction at satisfactory levels using a smaller, but representative in terms of information (Fritsche-Neto et al. 2018). 

In this context, many studies have been carried out aiming to establishing the balance between investment and 

efficiency through different methods, experiment design, statistical analysis, and TRN composition. For instance, the 

genetic algorithm to design training populations, developed by Akdemir (2017), was tested by Pinho Morais et al. 

(2020) for several population sizes. The responses were compared with randomly selected populations, noting that 

optimizing TRN can be effective to obtain satisfactory accuracies. Using MT models, Lado et al. (2018) tested other 

resource allocation strategies by comparing the PA with different levels of availability of phenotypic information for 

the target trait (expensive and labor-intensive). For that, they decreased the TRN sizes from 80 to 10%; then included 

the phenotypic data of all individuals for correlated traits (less laborious and less costly), and finally, considered 

balanced and unbalanced scenarios. The results showed no loss in PA when reducing TRN for target trait up to 30% 

but using fully information of correlated traits; additionally, the unbalanced phenotyping approach for correlated traits 

performed better than the balanced one, for the same purpose of reducing TRN. Another strategy was proposed by 

Costa-Neto et al. (2021a), who investigated the inclusion of dominance effects and envirotyping data into a single-trait 

MET scenario. The authors founded that, especially for traits with low heritability and highly influenced by the 

environment, the environmental covariables (EC) can increase PA for new environments or newly developed hybrids 

by tracking variation sources, environment resources, and reducing the error variance. 

As described above, the use of accurate genetic algorithms for optimizing training populations can help to 

reduce the number of genotypes to compose the TRN, as well as reducing costs and field labor, but maintaining good 

values of predictive accuracy (Akdemir, 2017; Akdemir et al., 2015; Misztal et al., 2014; Misztal, 2016). Additionally, 

the collection and processing of environmental data can help in the optimization process. Instead of using a simple 

incidence matrix of environments to model the G × E interaction, processed environmental data better describe 

specific relationships between environments and crop phenology, called envirotyping. Through that, it is possible to 

describe the quality of an environment and estimate the resources it has available to satisfy the crop needs. When it 

comes to multi-environment trials (MET), environmental quality ends up as a global average of the entire experimental 

network. With the aid of some tools, such as the EnvRtype R package of Costa-Neto et al. (2021b), it is possible to 

compose a covariance matrix (W) between trials, which then allows, among other things, to dissect the G × E 

interaction, and to build environmental relationship matrices for genomic prediction, which better explain the sources 

of non-genetic variation, such as the influence of environments on phenotypic variation. Finally, the envirotyping 

information can be associated with genomic data in genetic algorithms to better select genotypes and target 

environments, which are more informative in terms of G × E (Costa-Neto et al., 2021a).  

Compiling these ideas, to optimize TRN sets, MT models may contribute to predict quantitative target traits 

based on correlated characteristics. Also, MET models allow the inclusion of the interaction term G × E, which 

undoubtedly helps predict non-phenotyped individuals. Finally, the envirotyping comes as an emerging component 

for selecting fewer but well-optimized trial locations. Therefore, our goal was to test the performance of optimized 

training sets (OTS) for multi-characteristic multi-environmental trials, where individuals were selected through the 

combination of two genetic-based strategies, and the use of environmental covariables (W) in the selection of training 

population and in genomic prediction models, aiming to diminish the phenotypic labor due to smaller but optimally 

selected population, keeping the predictive ability at satisfactory levels, and then compare these results with 

benchmarks values. For that, we (i) fitted and compared the performance of five different prediction models, 

progressively including environmental covariables and interactions terms (G × E and G × W); (ii) estimated the 
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genomic prediction ability of the five prediction models for single and multi-traits multi-environment trials, to use as 

benchmarks values; and (iii) estimated genomic prediction ability using OTS with controlled unbalancing of G, E and 

traits information, selected by a genetic algorithm. 
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2. MATERIALS AND METHODS 

2.1. Plant material 

The phenotypic data consisted of two datasets of tropical maize single-cross hybrids. Plant material was 

evaluated for the following three traits of agronomic interest: grain yield (GY, in ton ha-1), plant height (PH, in cm), 

and ear height (EH, in cm). For GY assessment, ears were harvested at physiological maturity, grains were adjusted to 

13% moisture, and the yield was corrected by area and plant population. PH and EH were measured from the soil 

surface to the flag leaf collar and the highest ear, respectively, on five representative plants within each plot.  

HEL dataset  

 Provided by Helix Seeds (HEL), the first dataset was composed of phenotypic and genotypic data of 452 

maize hybrids, obtained from single crosses in a partial diallel mating design among 106 tropical maize inbred lines. In 

order to balance the data, only genotypes that were evaluated in all locations for all traits were considered, so that 247 

remained for analysis. Balancing the data will later allow the creation of controlled imbalances. The experimental design 

used was randomized complete blocks with two replications per genotype per location. Hybrids were evaluated in trials 

carried out over the 2014/15 growing season at three locations in Brazil: Ipiaçu (IP) and Pato de Minas (PM) in the 

state of Minas Gerais, and Sertanópolis (SE) in the state of Paraná.  

USP dataset  

The second dataset belongs to the University of Sao Paulo (USP). The data consist of 903 maize single 

crosses obtained from a diallel mating design between 49 inbred lines. Balancing the data, 623 genotypes remained for 

analysis. Hybrids were evaluated at two locations in Brazil: Piracicaba (PI) and Anhumas (AN), in São Paulo. They 

were evaluated for two years during the second growing season of years 2016 e 2017. The experimental design was an 

augmented block, with two commercial hybrids as checks per block. Although the areas are relatively close on the 

map, the soil and climate conditions are quite contrasting, thus characterizing different environments, allowing us to 

consider each location × year combination as an environment: AN16, PI16, AN17, and PI17. 

Further details about both datasets can be found at Alves et al. (2019), Bandeira e Sousa et al. (2017) and 

Lyra et al. (2017). 

 

2.2. Genotypic data 

Parental inbred lines from HEL and USP datasets were genotyped with an Affymetrix® Axiom® Maize 

Genotyping SNP array of 616 K (Unterseer et al., 2014). The genomic quality control (QC) was performed using the 

SNPRelate package (Zheng et al., 2012) from R software. Markers with a call rate ≤ 0.95 for HEL and a call rate ≤ 

0.90 for USP, heterozygous loci in at least one of the parental lines, and monomorphic loci were removed.  

The genotypic data of the hybrids were obtained by combining the homozygous markers of their parental 

lines. The imputation of the lines and genotypes was performed by Synbreed (Wimmer et al., 2012) using the Beagle 

4.0 algorithm (Browning & Browning, 2008). Allele frequencies and linkage disequilibrium were computed using the 

genotypes of the hybrids. Then, markers with Minor Allele Frequency (MAF) ≤ 0.05 were removed. After QC, 30,467 

and 62,409 high-quality SNPs were available to analyze the HEL and USP datasets, respectively. All the analyses were 

performed in the R software (R Core team, 2020). 
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2.3. Enviromic data 

 EC were obtained from the EnvRtype R package (Costa-Neto et al., 2021b), to be used as descriptors of 

the environment for prediction purposes, aiming to increase predictive accuracy (PA) in multi-environment GP 

scenarios. EnvRtype is a very practical package to acquire and process weather data. Based on trial network information 

like geographical coordinates (WGS84), plant date, and harvest date, the package collects and processes remote weather 

data from NASAPower. The environmental factors can be summarized according to the plant phenology intervals of 

growth or preestablished fixed time intervals. For this research, we used five-time intervals according to the maize 

cycle phenology, defined as 0-14, 15-35, 36-60, 61-90, and 91-120 days after emergency. The environmental factors 

used were: radiation-related (sunshine hours, in hours, and total daylength, in hours), radiation balance (Insolation 

Incident on a Horizontal Surface, Shortwave, and Downward Thermal Infrared Radiative Flux, Longwave), and 

atmospheric demands (rainfall precipitation, in mm, and relative air humidity, in %) as described in Costa-Neto et al. 

(2021a). The ECs can be estimated from mean air temperature and accumulated precipitation over the period, for 

example, and then used to establish G × E interaction. This process creates a covariate matrix of ECs called W, which 

produces environmental relationship matrices for genomic prediction. Then, we can calculate an enviromic kernel, 

equivalent to a genomic relationship matrix, as follows (Costa-Neto et al., 2021b): 

𝐾# =
𝑊𝑊′

𝑡𝑟𝑎𝑐𝑒	(𝑊𝑊.)/𝑛𝑟𝑜𝑤(𝑊) 

where 𝐾# is the enviromic-based kernel for the similarity between environments and W is the matrix of ECs.  

For HEL dataset, each environment was characterized by 217 ECs, and for USP dataset, each environment was 

characterized by 238 ECs, resulting in matrices of dimensions 3 × 217 and 4 × 238, then used to estimate the W matrix 

 

2.4.  Variable transformation 

We established an index for EH that represents the distance from the actual EH to an ideal ideotype, 

defined here as 80 centimeters, according to the following formula: 

𝐸𝐻67 = 	 |𝐸𝐻9: − 80| ∗ (−1)	 

where 𝐸𝐻67 is the transformed EH and 𝐸𝐻9: is the EH for genotype i at environment j. According to this index, the 

closer to zero, the closer to our ideal height. For PH, values were normalized, in order to obtain a normal distribution 

interval. To fit the models, all phenotypic data were centered and standardized. 

 

2.5. Statistical analysis 

2.5.1. Phenotypic analysis 

We used a linear mixed model for the two-step analysis to calculate the best linear unbiased estimates 

(BLUEs) of each trait's hybrids. BLUEs were obtained within environments for the USP and HEL datasets by the 

following respective models: 
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𝒚𝑼𝑺𝑷𝒊𝒋 = µ+	𝒈𝒊 +	𝒈∗ 	+ 	𝒃𝒍	 +	e𝒊𝒋 

𝒚𝑯𝑬𝑳𝒊𝒋 = µ+	𝒈𝒊 + 	𝒃𝒍 +	e𝒊𝒋 

 

where 𝒚𝒊𝒋 is the estimated phenotypic value of genotype i at environment j, µ is the general mean or 

intercept, 𝒈𝒊 is the fixed effect of hybrid genotype i, g* is the fixed effect of check genotypes, bl is the random effect 

of blocks for USP dataset (bl ~NM	(0,	σOPQ )	and the fixed effect of blocks for HEL dataset, and finally e𝒊𝒋 is the 

residual error for genotype i at environment j, where 𝜀 ~𝑁M(0,𝜎2).  

Phenotypic analyses were performed using the ASReml-R package (Butler, 2018) of R software (R Core 

Team, 2020) and subsequently used in our genomic prediction models. 

The variance components estimated for each model's effect will be used to estimate the average broad-

sense heritability H2. 

 

2.5.2. Genomic prediction scenarios  

In order to obtain a benchmark value of PA for the models, we first tested these models in full single-trait 

multi-environment trials (STMET) and multi-trait multi-environment trials (MTMET) genomic prediction analyses. 

From those, we were able to obtain the highest possible PA, for the specific datasets under study because we used all 

the information we had available (Fritsche-Neto et al., 2018), through cross-validation schemes with replication. 

The algorithms APY (Misztal et al., 2014; Misztal, 2016) and LA-GA-T, from the STPGA R package 

(Akdemir, 2017), were used in optimization scenarios. The APY is used for determining the size of samples by singular 

value decomposition. LA-GA-T is a genetic-based algorithm to select representative individuals from the population 

to compose the samples. For this purpose, two different kernels were built from the Kronecker product between the 

variance-covariance matrices of genotypes (G), environments (E), environmental covariables (W), and traits (T) as 

follows: ΣG ⨂ ΣE ⨂ ΣT and ΣG ⨂ ΣW ⨂ ΣT, hereafter called GET and GWT, respectively.  

These kernels, used as inputs for the algorithms, assemble combinations between our variables. Thus APY 

gives us the number of components that explain 98% of the variation within the population, and LA-GA-T selects 

that number of representative information inside the kernels. Moreover, a genotype was added as a check and therefore 

evaluated in all environments to create a connection between environments. 

The optimized samples from LA-GA-T were obtained three times for each dataset and considered the 

training set (TRN), while the remaining individuals were used as a testing set (TST). From these three samples (OTS 

1), two other scenarios were created, always within kernels. The former one was created by combining the samples 

two by two (OTS 2), which resulted in three replicates. In the latter, the three independent samples were added together 

(OTS 3), resulting in just one and bigger optimized training set (OTS).  
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2.5.3. Genomic prediction via single and multi-trait multi-environment models with 

additivity and dominance effects 

The genomic prediction was first performed by five GBLUP additive + dominance models for STMET 

and MTMET scenarios. The following models were already tested, for further details, see Costa-Neto et al. (2021a). 

 

Model 1 (M1): Environment and main additive plus dominance genomic effects (EAD)  

M1 is the most basic model tested, described as follows:  

𝒚 = 𝒁#	𝛽 + 𝒁X𝒖𝑨 + 𝒁X𝒖𝑫 + 𝜺 

where 𝒚 is the adjusted observed values (BLUEs) obtained from the first step for the hybrids. The fixed effects of 

environment were modeled by 𝒁𝑬	𝛽 with the incidence matrix 𝒁𝑬, and 𝒁X  is the incidence matrix for the genotypic 

effects. 𝒖𝑨 is the vector of additive genetic effects, where 𝒖𝑨 ~MN (0, Ga𝜎]Q), 𝒖𝑫 is the vector of dominance effects, 

where 𝒖𝑫 ~MN (0, Gd𝜎^Q), and 𝜺 the random residual effect, where 𝜺 ~MN (0, 𝜎_Q𝑰). Ga and Gd  are the genomic 

relationship matrices (GRM) for additive and dominant effects, respectively, given according to VanRaden (2008) as 

follows: 

𝑮𝒂 = 	
𝑊]𝑊]

.

2	 ∑ 𝑝9f
9 (1 −	𝑝9)

 

where the values from the incidence matrix WA are equal to 0, 1 and 2, for genotypes markers of A1A1, A1A2 and A2A2, 

respectively, and pi is the frequency of one allele from i locus. 

𝑮𝒅 =
𝑊^𝑊^

.

4∑ {(𝑝9(1 − 𝑝9)}Qf
9

 

where WD contains the values equal 0 (zero) for both homozygotes A1A1 and A2A2 and 1 for heterozygotes A1A2. 

 

Model 2 (M2): Environment, main effects plus block diagonal GE (EAD+GE)  

This model is an update of M1 accounting for the main effects (A and D), adding the additive × 

environment and dominance × environment interactions effects (AE and DE). 

𝒚 = 𝒁𝑬	𝛽 + 𝒁X𝒖𝑨 + 𝒁X𝒖𝑫 + 𝒖𝑨𝑬 + 𝒖𝑫𝑬 + 	𝜺 

where 𝒖𝑨𝑬 and 𝒖𝑫𝑬 the vectors of random effects of the interactions. 𝒖𝑨𝑬 and 𝒖𝑫𝑬 have a multivariate normal 

distribution, 𝒖𝑨𝑬 ~ MN (0,[𝒁X𝐴𝒁X′] 	⊙ [𝒁𝑬𝒁𝑬′]	𝜎o_Q ) and 𝒖𝑫𝑬~ MN (0,[𝒁X𝐷𝒁X′] 	⊙ [𝒁𝑬𝒁𝑬′]	𝜎q_Q ), where 𝝈𝒂𝒆𝟐  

and 𝝈𝒅𝒆𝟐  are the variance components for 𝒖𝑨𝑬 and 𝒖𝑫𝑬 interaction effects, respectively (Bandeira e Sousa et al., 2017; 

Jarquín et al., 2014; Lopez-Cruz et al., 2015). 

 

Model 3 (M3): main effects plus main environmental covariable information (EAD+W)  

This third model includes environmental covariables information (W) from envirotyping data. 

𝒚 = 𝒁𝑬	𝛽 + 𝒁X𝒖𝑨 + 𝒁X𝒖𝑫 + 𝒖𝑾 + 	𝜺 
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where 𝒖𝑾  is the matrix of environmental covariables, as according to Costa-Neto et al. (2021a), it is non-genetic 

information that fills the gap between genomic phenotypic information that remains across environments. 

 

Model 4 (M4): main effects EADW plus reaction norm for GE (EAD+W+GE)  

This model is an extension of the previous model (M3), adding the environment's additive and dominance 

interactions. 

𝒚 = 𝒁𝑬	𝛽 + 𝒁X𝒖𝑨 + 𝒁X𝒖𝑫 + 𝒖𝑾 +	𝒖𝑨𝑬 + 𝒖𝑫𝑬 + 𝜺 

 

Model 5 (M5): main effects EAD plus W plus reaction norm for GW (EAD+W+GW)  

This model is a modification of the latter (M4) reaction-norm variation; it replaces the genomic × 

environment interactions with the genomic × enviromic effects interactions. 

𝒚 = 𝒁𝑬	𝛽 + 𝒁X𝒖𝑨 + 𝒁X𝒖𝑫 + 𝒖𝑾 + 𝒖𝑨𝑾 + 𝒖𝑫𝑾 + 	𝜺 

where 𝒖𝑨𝑾 and 𝒖𝑫𝑾 are the vectors of random effects of interactions. 𝒖𝑨𝑾 and 𝒖𝑫𝑾 have a multivariate normal 

distribution, 𝒖𝑨𝑾 ~ MN (0, [𝒁X𝐴 𝒁X′] 	⊙ [𝑾𝑾′]	𝜎ovQ ) and 𝒖𝑫𝑾 ~ MN (0, [𝒁X𝐷 𝒁X′] 	⊙ [𝑾𝑾′]	𝜎qvQ ). Here we 

can assume that there are distinct levels of relationship between genotypes and environments.  

All models were fitted with the Bayesian Generalized Linear Regression BGLR R package (Pérez & de los 

Campos, 2014a; Pérez & De Los Campos, 2014b), using a Gibbs sampler with 10,000 iterations, assuming a burn-in 

of 1,000, and a thinning of 2. 

It is important to point out that the "Multitrait" function of the BGLR package has some basic premises 

that must be met for the model to work, one of which is the availability of complete information from at least one 

genotype. Here, as we used the multiple traits with the multiple environments approach, we established a genotype as 

a check, with complete phenotypic data available, common to all environments. This way, it was possible to connect 

the environments, especially when we explored the G × E interaction. 

 

2.6. Assessing the predictive ability of the models 

Two cross-validation schemes were used to access GP models' predictive ability, proposed by Burgueño et 

al. (2012).  

The first validation scheme, known as CV1, was applied considering 50 random partitions with 70% of 

phenotypic and genotypic (genotypes phenotyped for all traits in all environments) information as TRN, while the 

remaining 30% (genotypes not phenotyped in any of the environments) were predicted, using only their genotypic 

information. This scheme aims to quantify GP models' ability and reproduce a scenario frequently faced by breeders 

when predicting new genotypes in a network of already known environments, i.e., newly developed maize hybrids 

never evaluated in any environment. The second scheme, CV2, mimics another common situation when genotypes 

are tested in unbalanced field trials (or incomplete field trials), i.e., some genotypes are evaluated in some environments 

but not in the entire experimental network. For this scheme, we also used 50 random partitions with 70% of the 

information (genotype–environment combinations) as TRN, and the remaining 30% as TST.  
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For each TRN-TST partition, models were fitted using the TRN, and we performed Pearson's correlation 

coefficient between the predicted value and the observed value or BLUE of the TST individuals within each 

environment, for each one of the 50 partitions, then these correlations were used to assess the accuracy and compare 

the performance of each model. Since the BLUEs were calculated by environment, the PAs were also calculated by 

environment. The same 50 TRN-TST partitions were used to fit each model, allowing access to the best performance 

model. 

For OTS, the predictive ability was also calculated as the Pearson's correlation coefficient between the 

predicted value and the adjusted observed value or BLUE of the TST individuals within each environment for each 

trait; then the average of environments was taken. 

 

2.7.  Response to selection per unit invested 

The genetic gain per dollar invested was estimated to compare the efficiency of the scenarios tested in this 

work with pure phenotypic selection (PS). The methodology was based on information from Krchov & Bernardo 

(2015) and Muleta et al. (2019). The phenotyping costs assumed were: 2 US dollars (USD) per plot per trait for PH 

and EH; 4 USD per plot for GY. For genotyping, we considered 20 USD per sample. As we are dealing with F1 maize 

hybrids, the parental inbred lines are genotyped, and the hybrid genotype is assembled in silico. This way, the total cost 

is the sum of the expenses with genotyping (20 USD × number of lines) plus phenotyping the TRN. This calculation 

was made for each dataset × scenario, considering the three OTS scenarios (OTS 1, OTS 2 and OTS 3) for each kernel 

and the MTMET CV2 standard scenario. For the phenotypic selection scenario, the accuracy (1/√𝐻Q ) was divided 

by phenotyping cost, 8 USD per plot, for the complete dataset. The genetic gain was estimated by dividing the PA by 

the corresponding cost and subsequently transformed to the base of 10,000 USD, given the fact the other components 

of the breeder’s equation (Lush, 1937) were considered as fixed. 
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3. RESULTS 

3.1. Descriptive statistics 

Pearson's correlation between traits was calculated for each dataset, using the BLUEs obtained in the first 

step. As a consequence of the EH transformation, GY assumed a negative correlation with the other traits. For the 

HEL dataset, GY had a moderately negative correlation with PH and EH, of −0.55 and −0.58, respectively, while PH 

and EH had a high positive correlation of 0.82. For the USP dataset, GY had weak negative correlations with PH and 

EH, of −0.44 and −0.33, respectively, while PH and EH had a high positive correlation of 0.70.  

Estimated heritability was intermediate to high: for the HEL dataset, trait heritability varied from 0.62, 0.78 

and 0.80 for GY, PH and EH respectively; for the USP dataset, heritability was 0.56 for GY, 0.84 for PH and 0.89 for 

EH.  

As expected, the correlation for the complex trait GY was lower than for PH and EH; additionally, the 

complex trait had a lower heritability than the auxiliary ones. 

 

3.2. Optimized training sets (OTS) 

The first result of selecting information to form the training populations, using the APY algorithm, returned 

the effective population sizes (Ne) for each kernel, as described below. HEL dataset: GET – OTS1: 155 combined 

information of genotype × environment × trait selected to form the TRN, which represents 7.4% of observations; 

GWT– OTS1: 102 combined information of genotype × environment × trait selected to form the TRN, based on 

environmental covariables (W), representing 5% of observations. USP dataset: GET– OTS1: 267 combined 

information of genotype × environment × trait selected to form the TRN set, representing 3.7% of observations; 

GWT– OTS1: 107 combined information of genotype × environment × trait selected to form the TRN set, 

representing 1.6% of observations. Sample size differs depending on the kernel and germplasm since the amount of 

available information varies as well as the genomic source. From this number, in order to minimize the stochastic 

error, the LA-GA-T algorithm was performed three times to select the individuals. Thus, the first validation scheme 

was done for OTS 1; the second combining the three basic populations, two by two, also resulting in three different 

repetitions, where for Helix the Ne were: GET – OTS 2 = 306, representing 13.8% and GWT – OTS 2  = 206, 

representing 9.3% of total observations, respectively, and for USP: GET – OTS 2  = 533, representing 7.1% and GWT 

– OTS 2 = 224, representing 3% of total observations, respectively. Finally we added the three repetitions of the base 

population to form a larger, but optimized training population, which corresponds to Helix: GET – OTS 3 = 436, 

representing 19.6% and GWT – OTS 3 = 300 representing 13.5% of total observations, and for USP: GET – OTS 3  

= 775, representing 10.4% and GWT – OTS 3 = 326, representing 4.4% of total observations, respectively. The 

difference in selecting information between the three repetitions from the different OTS tested scenarios can be seen 

in the heatmaps for Helix (Figure 1) and USP (Figure 2).  
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Figure 1. Heatmap of OTS (optimized training sets) graph for the Helix dataset. In green are the hybrids selected to form the 
training population, for each trait × environment and repetition inside kernels. The solid line that crosses all the graphs represents 
the genotype used as a check. The environments on the x-axis: IP (Ipiaçu), PM (Patos de Minas), and SE (Sertanópolis); the traits 
under study: EH (ear height), GY (grain yield), and PH (plant height). The kernels: GET (Genotype × environment × trait) and 
GWT (genotype × environmental covariables × trait) used as the base to select information. 
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Figure 2. Heatmap of OTS (optimized training sets) graph for the USP dataset. In green we see the distribution of the hybrids 
selected to form the training population, for each trait x environment and repetition inside kernels. The solid line that crosses 
all the graphs represents the genotype used as a check. The environments on the x-axis: AN.16 (Anhembi, 2016), PI.16 
(Piracicaba, 2016), AN.17 (Anhembi, 2017) and PI.17 (Piracicaba, 2017); the traits under study: EH (ear height), GY (grain 
yield) and PH (plant height). The kernels: GET (Genotype × environment × trait) and GWT (genotype × environmental 
covariables × trait) used as base to select information. 

 

3.3. Predictive abilities of the five models over STMET and MTMET scenarios 

HEL dataset 

Single-trait multi-environment trial analysis: Results for CV1 showed, on average, PAs varying from 0.53 to 0.73 

(Supplementary Table 1). However, individually, environment SE was inferior in predicting GY, mainly when models 

without G × E interactions (M1 and M3) were used. In contrast, models including G × E (M2 and M4) increased PA 

from 100 to 104% and G × W (M5) increased PA by 92% for this specific trait × environment; considering the average 

within environments, PA for GY between models varies from 3 to 19%. For EH and PH, PAs were higher, from 0.70 

to 0.73, and differences between models were minimal, from 0 to 2%. Results for CV2 (Supplementary Table 1) 

produced the same patterns as those for CV1, ranging from 0.52 to 0.79 when the overall average of environments 

was considered. For GY in the SE environment, PA could increase between 61 to 68% when models with G × W 

(M5) and G × E interactions (M2 and M4) were used, respectively. For EH and PH, the accuracies were similar within 

models, with a maximum difference of 2%. Comparing CV1 with CV2, PA means increased from 3 to 8%, and 

differences were higher for PH and EH. In general, M4 showed the best performance. Overall, the greatest difference 

was observed for GY, between models M1 and M3 (without G × E interaction) and M2 and M4 (with G × E 
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interaction), where M4 (M2) outperformed M3 (M1) between 25 and 30%, however, M5 also outperformed M3 (M1) 

by  29%. 

Multi-trait multi-environment trial analysis: As for the STMET analysis, the results of the multi-trait analysis 

showed a similar pattern of responses, both for CV1 and CV2, varying from 0.54 to 0.73 and 0.53 to 0.79, respectively 

(Supplementary Table 2). Nevertheless, we noticed that PAs increased between 61 and 68% for CV1 in the SE 

environment, which show the lowest PA for GY in MTMET, like for STMET, when not exploring G × W and G × 

E interaction effects. Considering the average within environments, the PA variation for GY between models is 

practically identical to that of STME (0-24%). For EH and PH, accuracy varies from 0.70 to 0.73 and 0.75 to 0.79 for 

CV1 and CV2, but in general, the means ranged from 0 to 1%, where M4 performed better. Comparing CV1 with 

CV2, the PAs increased from 2.4 to 7.7%, with higher PA differences for GY. Comparing STMET with MTMET, 

PAs rose from 0 to 1.4%, where the differences were higher for GY and nonexistent for PH.  

 

USP dataset 

Single-trait multi-environment trial analysis: Results for CV1 showed PAs varying from 0.46 to 0.65. The PI.17 

environment isolated was inferior for predicting EH when models without G × E interactions (M1 and M3) were 

used (Supplementary Table 3). In contrast, models with G × E (M2 and M4) could increase the accuracy up to 

440% in the PI.17 environment for EH (considering the overall average within environments, PA for EH varied from 

0 to 7%) and model with G × W increases PA by 420% for the same environment × trait;  other environments 

performed very well for EH, with PA from 0.66 to 0.80. For GY, PA ranged from 0.42 to 0.51. For PH, PA were high, 

from 0.63 to 0.68 between environments, with no difference between models. Results for CV2 produced almost the 

same patterns as those for CV1. For EH in the PI.17 environment, PA could increase by 340% when models with G 

× E interactions were used and 320% when using G × W . Despite the environment, PI.17 for EH, the accuracy of 

all other traits and environments was similar within models, with differences around 0 to 5%. In general, M4 showed 

the best performance. Comparing CV1 with CV2, the PA increased from 4 to 8% for GY and PH, respectively. 

Multi-trait multi-environment trial analysis: As for the STMET analysis, the results of the multi-trait analysis 

showed similar response patterns, both for CV1 and CV2 (Supplementary Table 4). Nevertheless, PAs increased 

between 4 and 8%. Also for STMET, the PI.17 environment showed low PA for EH in MTMET, but by exploring G 

× E, accuracy increases up to 333%. For GY, accuracies vary from 0.42 to 0.52, and for PH, from 0.63 to 0.72, but 

for both, in general, the means do not vary. Comparing STMET with MTMET, PAs changed from 0 to 0.4%. Including 

interaction effects (no matter if G × E or G × W) always increase PA. 

 

3.4. Predictive ability for OTS scenarios 

Similar to what was done previously, for the optimized training sets, the five models were also tested. The 

model that achieved the best performance was the M4, so only this result will be presented. Helix dataset: In the overall 

average of traits, for OTS 1, PAs were 0.55 and 0.41 for kernels GET and GWT, respectively. Those values increased 

to 0.63 (+15.9%) and 0.50 (+22.6%), then 0.68 (+7.7%) and 0.61 (+21.4%), for OTS 2 then OTS 3, while the 

maximum PA obtained by the benchmark CV2 was 0.74 (Table 1 and Figure 3). USP dataset: in the overall average of 
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traits, for OTS 1, PAs were 0.41 and 0.24 for kernels GET and GWT, respectively. Following the same pattern, when 

we increased the size of TRN, those values increased to 0.47 (+15.6%) and 0.30 (+24.4%) for OTS 2, then 0.52 (+9%) 

and 0.44 (+46.5%) for OTS 3, while the maximum PA obtained by the benchmark CV2 was 0.61 (Table 1 and Figure 

4).  

 

 

Figure 3. The trend graph shows the increase in the average PA (predictive ability, mean of environments and traits) according to 
increases in the Helix dataset's training set size. GET and GWT are the kernels used as the basis for selection of information by the 
LA-GA-T algorithm. The 4 points of each line correspond to OTS1, OTS2, OTS3 and finally CV2, which is a benchmark or the 
highest value achieved with this dataset under this particular study's conditions. 
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Figure 4. The trend graph shows the increase in the average (predictive ability, mean of environments and traits) according to 
increases in the USP dataset's training set size. GET and GWT are the kernels used as the basis for selection of information by the 
LA-GA-T algorithm. The 4 points of each line correspond to OTS1, OTS2, OTS3 and finally CV2, which is our benchmark or the 
highest value achieved with this dataset under this particular study's conditions. 

 

 

Table 1. Average increase, per trait, in predictive ability, according to an increase in the training set (denoted here as OTS 1, 2 and 
3), for both GET and GWT kernels, in the Helix and USP datasets. Ne: number of information used as the training set; prediction 
accuracies for EH: ear height, GY: grain yield and PH: plant height. Values in parentheses show the percentage increase between 
that value and the value immediately preceding it. 

 
 

GET  GWT 
 OTS Ne  EH GY PH  Ne  EH GY PH 

Helix 

1 155 0.61 0.47 0.56  102 0.43 0.42 0.38 
 

2 306 
(+97%) 

0.67 
(+11,2%) 

0.56 
(+18%) 

0.66 
(+19,2%) 

 206 
(+100%) 

0.54 
(+23,5%) 

0.50 
(+19,8%) 

0.48 
(+24,3%) 

3 436 
(+42%) 

0.72 
(+7%) 

0.60 
(+7,7%) 

0.72 
(+8,5%) 

 300 
(+45%) 

0.64 
(+18,4%) 

0.60 
(+19,3%) 

0.63 
(+26,7%) 

  GET  GWT 
 OTS Ne EH GY PH  Ne EH GY PH 

USP 

1 267 0.47 0.28 0.48  107 0.22 0.19 0.32 
 

2 533 
(+91.9%) 

0.52 
(+12.6%) 

0.34 
(+19.8%) 

0.56 
(+16%) 

 224 
(+87.5%) 

0.31 
(+42.2%) 

0.23 
(+23%) 

0.36 
(+12.8%) 

3 775 
(+45%) 

0.56 
(+5.9%) 

0.40 
(+17%) 

0.61 
(+8.7%) 

 326 
(+43%) 

0.43 
(+39%) 

0.35 
(+51.5%) 

0.54 
(+49.2%) 
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3.5.  Response to selection per amount invested  

The genetic gain per dollar per 10,000 USD invested was estimated for each dataset × OTS' scenario, 

primarily to compare the efficiency at the kernel level. Then, between scenarios: OTS versus MTMET CV2 and OTS 

versus phenotypic selection, within datasets. 

For the HEL dataset, the results showed an inversion of gain between the kernels over scenarios. While the 

GET kernel started at 0.80 × 10-3 and went to 0.58 × 10-3, the GWT kernel started at 0.70 × 10-3 and went to 0.67 × 

10-3 gain per 10,000 USD invested. For PS, the gain was 0.14 × 10-3 (Figure 5). 

For the USP dataset, the GET kernel started with a gain of 1.29 × 10-3, and went to 0.47 × 10-3, while the 

GWT kernel started at 1.42 × 10-3 and went to 1.15 × 10-3.  For PS, the gain was 0.04 × 10-3. 

As a matter of comparison, we did the same procedure for the standard scenario MTMET CV2 (for M4) 

and the gains per investment were 0.16 × 10-3 for HEL and 0.02 × 10-3 for the USP dataset.  

 

 

Figure 5. Gain per cost × 10-3 (per 10,000 dollars invested) for the HEL and USP datasets, comparing the two optimization kernels 
(GET and GWT) and the standard scenario (MTMET CV2, TRN = 70%). The cost includes the phenotyping of TRN (3 USD per 
trait per plot) and the whole dataset's genotyping (20 USD per sample). 
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4. DISCUSSION 

The major goal of GS can be defined as increasing the genetic gain with no increase in costs compared to 

phenotypic selection only (Crossa et al., 2017; Werner et al., 2020), thus compensating the loss in predictive ability by 

the gains in response to selection.  

The traits evaluated here are moderately to strongly positively correlated by Pearson's correlation 

coefficient. However, the selection targets for them in a real breeding program are in opposite directions. While we 

want to increase grain yield, we want to decrease plant height and stabilize ear height. Dwarf plants with high yield are 

already a reality in other crops like wheat and rice. However, in maize, dwarfing mutant genes have been studied. 

Unlike wheat and rice, PH in maize is a quantitative trait that affects other plant characteristics like yield losses, making 

it difficult to apply (Chen et al., 2018). Since we want all those attributes simultaneously, we created a selection index 

for EH, which measures the distance from the ideal ideotype defined here as 80 centimeters. Then, traits assume a 

negative correlation between them due to the index, allowing us to select for all the traits concurrently (Wang et al., 

2018). 

Similar to what Ibba et al. (2020) and Werner et al. (2020) reported and to what was expected, accuracy is 

specific to the population, which depends on many other factors like the model chosen, the traits to be predicted, trait 

heritability, the correlation between traits, the environments, and  the correlation between environments. So, the results 

here were no exception. Differences in predictive ability between the two datasets, which occurred for benchmarks 

(CV1 and CV2) and OTS's kernels (GET and GWT), can be partially attributed to differences in Pearson's correlation 

coefficient between traits, since PA is directly related to the correlation between traits (Lado et al., 2018). 

We could see that some models overperformed others, which was also expected since they contain 

additional terms or variance components such as environmental covariables (W) and interaction terms (G × E and G 

× W) that better capture the portion of variance explained by the model (Alves et al., 2019). Results of Dias et al. 

(2018) suggested that GBLUP models that contain additivity, dominance and G × E interaction should be preferred 

for predicting the performance of newly developed hybrids in any MET analyses, as is the case with STMET and 

MTMET under CV1, and OTS. 

In this study, two cross-validation schemes, CV1 and CV2 (Burgueño et al., 2012) were used to evaluate 

PA for both STMET and MTMET models. For all combination scenarios of dataset, model, single or multi-trait, CV2 

outperformed CV1, because, in this scheme, we have phenotypic information of genotypes in some environments, but 

not in others, which helped increase the PA of the models. With CV1 and CV2, single-trait and multi-trait genomic 

prediction with multi-environment trials are well described and established in the general literature and for the data 

used in this study (Bandeira e Sousa et al., 2017; Alves et al., 2019). Random cross-validation schemes CV2 and CV1 

combined with STMET and MTMET were then used here as benchmarks and as a matter of comparison for the five 

different prediction models tested (Werner et al., 2020). Thus, based on this prior validation, the model with the highest 

accuracies (M4) was chosen for the prediction using the optimized training set populations, and those validations were 

also used in a scale as a comparison parameter for prediction accuracies while increasing the effective population sizes 

of TRN (see Figure 3 and Figure 4). Note that the model whose performance was superior includes the G × E 

interaction component, in agreement with what has already been reported by several authors (Acosta-Pech et al., 2017; 

Burgueño et al., 2012; Dias et al., 2018; Jarquin et al., 2020; Montesinos-López et al., 2019; Robert et al., 2020) and 

more recently by Jarquin et al. (2021). As well, add the interaction effect G × W (M5) increases PA when compared 

to the main effects models (M1 and M3), but not as much as models containing the G × E,  similar to what was already 
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presented by Robert et al. (2020) and (Jarquin et al., 2021), however, G × W has the advantage of predicting new 

environments (Costa-Neto et al., 2021; Jarquin et al., 2021; Robert et al., 2020), that has not been tested here. Also, 

MTMET models gave a small increase in PA compared with STMET, especially for models containing the G × E 

term (Lyra et al., 2017; Mendonça & Fritsche-Neto, 2020). Furthermore, as Costa-Neto et al. (2021a) reported, 

including the W matrix helps increase PA, especially in the case of untested hybrids and/or untested environments, by 

better explaining sources of variation, capturing the environment potential per se and its interaction with the genotypes. 

Nevertheless, in the present study, and according to what was presented by Jarquin et al. (2021), the inclusion of W 

matrix alone (M3) did not improve PA, but was similarly to the M1; and the inclusion of W with G × E in M4, gave 

similar results than the G × E alone (M2). Despite that, the W matrix allows optimizing complex information, as we 

saw in our OTS's scenarios, then optimizing trials (Jarquin et al., 2021).  

Studies involving SNP data, such as GP, require the inverse of the genomic relationship matrix (GRM). 

However, as the number of individuals to be evaluated increases, the computational cost of this matrix's inversion is 

relatively high, with limitations in memory and time. In order to minimize this problem, Misztal et al. (2016) proposed 

the algorithm for proven and young animals (APY). Using the APY it is not necessary to make a complete inversion 

of the GRM, since its result returns the number of individuals (n) needed to sample 98% of the population variation; 

then the inverse of GRM can be obtained by recursion, based on the information of the core individuals. Despite 

reducing the number of individuals, this algorithm does not specifically indicate which genotypes we should select as 

core individuals. Hence, it is necessary to take a random sample of population. Here we extended the APY to plants. 

Since the APY does not provide information on which genotypes should be included in the core population, another 

algorithm was used to efficiently select these individuals. We used the genetic optimization algorithm in the selection 

of sub-populations, the LA-GA-T (look ahead genetic algorithm with taboo) proposed by Akdemir (2017) in his 

STPGA (Selection of Training Populations by Genetic Algorithm) R package. Genetic algorithms work based on the 

principles of biological evolution, so that they solve their problems using evolutionary strategies, where at each 

iteration, the best individuals are selected and elite individuals and so on form the next population. Still, the term taboo 

indicates that the solutions recently tested will be avoided in the next attempts, avoiding unnecessary evaluations, and 

limiting the number of iterations necessary to reach convergence. Thus, LA-GA-T optimizes the selection, on a genetic 

basis, of the n genotypes informed by APY to compose our optimized  training set (OTS) (Fristche-Neto et al., 2018). 

In this context, Mendonça & Fritsche-Neto (2020) used the algorithm designed by Akdemir (2017) to select the most 

representative genotypes to build the training population. Similarly to our findings they did not notice an increase in 

PA while using OTS, but reduced the budget.  

Nevertheless, in the present work, we extended these algorithms to more complex relationship matrices, as 

the Kronecker product of the genomic relationship matrix (GRM), with the environmental variances and covariances 

matrix (W) and the traits (T) of interest (G ⊗ E ⊗	T	or	G	⊗	W	⊗	T). Although these scenarios cause a high level of 

imbalance in the data, they will give an idea about which genotypes need to be phenotyped, in which locations and for 

which traits in order to form a smaller but optimized training set, reducing fieldwork and the financial resources spent 

on evaluations, and how much data imbalance the models support for the prediction of hybrids, without important 

losses in PA. Thus, it allowed us to identify which genotypes should be evaluated in which environments and for which 

traits, to form a super-optimized training population, capable of predicting the performance of the entire population 

for all traits and environments, filling gaps in GS and answering questions about the optimal partition of genotypes 

across environments (Jarquin et al., 2020).  
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Voss-Fels et al. (2019) said that the TRN have to be exceptionally large. Similarly, Wang et al. (2018) 

described that the larger the TRN, the better the estimation of genetic effects and therefore, the greater the accuracy, 

mainly for low heritability traits. Here, the amount of information for each OTS, regardless of the kernel, is small, 

representing between 1.6 and 19.6% of the total available information. Moreover, the samples have a good distribution 

of genotypes, including those genotypes that perform well, and those that are not so good, bringing positive impacts 

on PA (Michel et al., 2020). As expected and similar to what Pinho Morais et al. (2020) found, with a small effective 

population size, PA is diminished, since the sample contains small genetic variability. However, we still obtained 

satisfactory prediction values, with an overall mean up to 0.41 and 0.54 for USP and Helix, respectively, with the 

advantage that costs were reduced by more than 1000% and the labor with the TRN was also reduced. According to 

Krchov and Bernardo (2015), accuracies should be greater than 0.50 so that the genomic selection is superior and 

chosen instead of the phenotypic selection. 

It is interesting to notice that, with a similar increase in effective population size, of approximately 90-100% 

from OTS 1 to OTS 2, and from OTS 2 to OTS 3, respecting the particularities of each training set population, the 

increases in PA are different for each kernel-dataset combination, as given in Figure 1, Figure 2 and Table 1, which 

show that PA practically doubled for GWT when compared to GET, mainly for the USP dataset, whose amount of 

information used as TRN represents a very small portion of the total dataset. Therefore, it means that a small increase 

in the training population results in satisfactory PA increases, especially when considering the response to selection. 

However, GET proved less efficient for optimizing TRN, because it assumes that the environments are not related, 

and thus needs more information to explain variations in the whole dataset, while GWT proved more efficient for 

optimizing TRN, than using the W matrix for optimization. With all the aggregated information it carries, GWT is able 

to select individuals more assertively, and then needs less information to form the OTS, so the TRN size is smaller, 

providing the added advantages of lower cost and labor. Showed here for a complex case, the global idea is similar to 

what was observed in Costa-Neto et al. (2021a), adding information to help in prediction. 

Since the costs of genotyping are decreasing, whereas the costs of field testing in maize are either stagnant 

or increasing, and adding that genotypic information is stable, not liable to seasonal variation, less effort is expended  

saving money resources, genotypic selection is, from this perspective, more efficient (Krchov & Bernardo, 2015). It is 

worth noting that with a fixed budget, as we decrease the training population size, using OTS for example, we can 

have a larger test population, since the resources are reallocated from phenotyping to genotyping, or even, with a fixed 

training population, small budget increments mean a significant increase in the test population, which can be 

considerably expanded for greater selection gains (Riedelsheimer & Melchinger, 2013; Krchov & Bernardo, 2015).  

Looking to reduce costs with phenotyping, Lado et al. (2018) working with wheat, found that there were 

no losses in the predictive power when reducing the training population up to 30% when traits highly correlated to 

the trait of interest are used in the multi-trait model because the correlation between the traits and the heritability of 

each assists in the prediction of the other. Here, we could reduce the training population up to approximately 4% 

obtaining satisfactory results when considering the selection gains per 10,000USD invested, which were about 0.70 × 

10-3 against 0.16 × 10-3, with optimized (GWT) against standard scenario (MTMET CV2) TRN, respectively, for the 

HEL dataset and 1.42 × 10-3 against 0.16 × 10-3 for the USP dataset 

The genetic gain per dollar invested was estimated as a basis of comparison for responses in different TRN 

sizes, datasets and mainly to justify the use of optimization for training populations in genomic selection. From the 

results, we can infer that the optimized populations have advantages over the standard scenario (70% TRN-30% TST). 

The difference in gains between the datasets is due to their particular characteristics, such as the number of inbred 
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lines and the PA reached. For the HEL dataset, however, PA was higher, and the costs of genotyping were also higher, 

since there were a great number of inbred lines, so gains were lower; there was also an inversion of gains between 

GET and GWT, where the efficiency of the GWT kernel remains practically constant while that of GET falls. For the 

USP dataset it was the opposite; nevertheless, the PAs were lower, there were fewer individuals to both genotype and 

phenotype. In this way, the costs per individual were lower and the gains were higher, and GWT outperformed GET 

in all the scenarios. Altogether, GWT allowed reducing the TRN of up to 58% compared with GET. From this point 

of view, although the PA using GWT is the lowest, independent of the scenario, its advantage can be offset by the 

gain in the  response to selection per USD invested (see Figure 5); giving special attention to GWT in the USP dataset. 

In summary, compared with MTMET – CV2, with GWT there was a reduction of up to 60% in terms of PA; however, 

it brings the possibility of substantially reducing the number of plot:traits to be phenotyped of up to 98%. Furthermore, 

using OTS plus W, allows increasing the response to selection per amount invested up to 142% compared with GET; 

thus, there is no gain in PA with OTS, but the reduction in the training population greatly reduces costs and fieldwork, 

thus, the relative genetic gains are greater. 

In light of this, our results add to the subject of training populations, answering questions about which 

design to use to distribute the population for evaluation, which individuals to choose to form the training population, 

because as already seen, TRN is the key to the success of GS. 

Multi-trait and multi-environment analyses have been applied as a way to optimize the distribution of 

resources through GP, reaching satisfactory accuracy and gains; however, this scenario can still be worked on and 

improved, taking advantage of new tools, like the environmental relationship matrix (W matrix) and genetic algorithms 

(APY and LA-GA-T) to optimize the allocation of resources. To our knowledge, this is the first work that tests the 

optimization of training set populations with genetic algorithms, that determine the size of the population and select 

the individuals, based on complex kernels, causing a high level of imbalance, and we observed that, using a smaller 

optimized training set, we diminished the phenotypic evaluations in the field, consequently saving costs that can be 

reallocated for genotyping. Additionally, we calculated the gains per 10,000USD invested, which allowed us to infer 

that, in a practical way, by applying optimization and maintaining a constant selection intensity, under a fixed budget, 

the input lines/hybrids of a breeding program can be larger, a greater number of crosses can be tested per cycle and 

in the early stages, this will improve the gains. The initial investments in GS are considerably high, however they are 

offset by gains per unit of time. Nevertheless, it is known that that the genetic variance of a given population decreases 

over the selection cycles, especially in small populations sizes, which limits the selection gains (Muleta et al., 2019). 

Hence, we can consider the optimization aiming to renovate training sets each year, to keep GS accuracy acceptable 

and raise the gains. Therefore, periodic recalibration of the training population is important to endorse genetic 

variability and, in addition, using optimized population for recalibration, the cost of evaluation (genotyping plus 

phenotyping) is offset by the genetic gains obtained (Muleta et al., 2019). In summary, optimization gave a good balance 

between gain versus costs, and between gain versus labor, and added new insight for using the algorithms tested here.  
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5. CONCLUSIONS 

Genomic prediction models that include G × E and G × W interaction effects always increasing PA, 

performing better than main effects models, being G × E interaction the best scenario, with a small increase in multi-

trait multi-environment analysis when compared with single-trait multi-environment analysis. Furthermore, genetic 

algorithms of optimization associated with genomic and enviromic data are efficient in designing optimized training 

sets for genomic prediction and improve genetic gains per dollar invested. Although, it is worth remembering that 

exists a specific interaction between combination of germplasm, environments, experimental network and evaluated 

traits that must be taken into account when using the proposed approach. 
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SUPPLEMENTARY MATERIAL 

 
Supplementary Table 1. Prediction ability of the HEL dataset for single trait multi-environment trial (STMET) analysis for 
five models: EAD (M1); EAD+GE (M2); EADW (M3); EADW + GE  (M4) and  EADW + GW (M5), for both cross-
validations CV1 and CV2. PAs were calculated by environment for grain yield (GY), ear height (EH) and plant height (PH). 
Values of PA are the average between environments. Standard deviation appears before the "±" sign.  

Trait  M1 M2 M3 M4 M5 

CV1 

GY 
𝝁 0.53±0.20  0.66±0.13 0.53±0.20 0.66±0.13 0.64±0.15 

% −	20 0 −20 0 −3 

EH 
𝝁 0.69±0.06 0.70±0.06 0.69±0.06 0.70±0.06 0.70±0.06 
% −1 - −1 - - 

PH 
𝝁 0.72±0.06 0.73±0.06 0.72±0.06 0.73±0.06 0.73±0.06 
% −2 - −2 - - 

CV2 

GY 
𝝁 0.52±0.17 0.68±0.12 0.52±0.18 0.68±0.12 0.67±0.13 
% −24 - −24 - −2 

EH 
𝝁 0.75±0.06 0.75±0.05 0.75±0.05 0.75±0.05 0.75±0.05 
% - - - - - 

PH 
𝝁 0.78±0.05 0.79±0.05 0.78±0.05 0.79±0.05 0.79±0.05 
% − 2 - −2 - - 

 
 

Supplementary Table 2. Prediction ability of the HEL dataset for multi-trait multi-environment trial (MTMET) analysis for 
the five models under study: EAD (M1); EAD+GE (M2); EADW (M3); EADW + GE  (M4) and  EADW + GW (M5), for 
both cross-validation schemes CV1 and CV2. PAs were calculated by environment for grain yield (GY), ear height (EH) and 
plant height (PH). Values of PA are the average between environments. Standard deviation appears before the "±" sign. 

Trait  M1 M2 M3 M4 M5 

CV1 

GY 
𝝁 0.54±0.18 0.66±0.12 0.54±0.17 0.67±0.12 0.65±0.14 
% −19 - −19 - −3 

EH 
𝝁 0.70±0.06 0.70±0.06 0.70±0.06 0.71±0.06 0.70±0.06 
% −1 - −1 - - 

PH 
𝝁 0.72±0.06 0.73±0.06 0.72±0.06 0.73±0.06 0.73±0.06 
% −1 - −1 - - 

CV2 

GY 
𝝁 0.53±0.16 0.68±0.11 0.53±0.16 0.68±0.11 0.67±0.12 
% −22 - −22 - −1 

EH 
𝝁 0.70±0.06 0.75±0.06 0.75±0.06 0.75±0.06 0.75±0.06 
% - - - - - 

PH 
𝝁 0.78±0.05 0.79±0.05 0.78±0.05 0.79±0.05 0.79±0.05 
% −1 - −1 - - 
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Supplementary Table 3. Prediction ability of the USP dataset for single trait multi environment trial (STMET) analysis  for the 
five models under study: EAD (M1); EAD+GE (M2);  EADW (M3); EADW + GE  (M4) and  EADW + GW (M5) ), for both 
cross-validation schemes CV1 and CV2. PAs were calculated by environment for grain yield (GY),ear height (EH) and  plant height 
(PH). Values of PA are the average between environments. Standard deviation appears before the "±" sign. 

Trait  M1 M2 M3 M4 M5 

CV1 

GY 
𝝁 0.46±0.06 0.48±0.05 0.46±0.06 0.48±0.05 0.47±0.05 
% −4 - −4 - −1 

EH 
𝝁 0.57±0.30 0.62±0.22 0.57±0.30 0.62±0.22 0.62±0.22 
% −8 - −8 - - 

PH 
𝝁 0.65±0.05 0.65±0.05 0.65±0.05 0.65±0.05 0.65±0.05 
% - - - - - 

CV2 

GY 
𝝁 0.48±0.05 0.51±0.05 0.48±0.05 0.51±0.05 0.50±0.05 
% −6 - −6 - −2 

EH 
𝝁 0.58±0.31 0.61±0.24 0.58±0.31 0.61±0.24 0.61±0.25 
% −5 - −5 - −1 

PH 
𝝁 0.70±0.04 0.70±0.04 0.70±0.04 0.70±0.04 0.70±0.04 
% - - - - - 

 

Supplementary Table 4. Prediction ability of the USP dataset for multi-trait multi environment trials (MTMET) analysis  for 
the five models under study: EAD (M1); EAD+GE (M2);  EADW (M3); EADW + GE  (M4) and  EADW + GW (M5) ), for 
both cross-validation schemes CV1 and CV2. PAs were calculated by environment for grain yield (GY),ear height (EH) and  
plant height (PH). Values of PA are the average between environments. Standard deviation appears before the "±" sign. 

Trait  M1 M2 M3 M4 M5 

CV1 

GY 
𝝁 0.46±0.06 0.47±0.05 0.46±0.06 0.48±0.05 0.47±0.05 
% −4 - −4 - −2 

EH 
𝝁 0.57±0.30 0.62±0.22 0.57±0.30 0.62±0.22 0.62±0.22 
% −8 - −8 - - 

PH 
𝝁 0.65±0.05 0.65±0.05 0.65±0.05 0.65±0.05 0.65±0.05 
% - - - - - 

CV2 

GY 
𝝁 0.48±0.05 0.51±0.05 0.48±0.05 0.51±0.05 0.51±0.05 
% −6 - −6 - - 

EH 
𝝁 0.58±0.31 0.61±0.25 0.58±0.31 0.61±0.25 0.61±0.25 
% −5 - −5 - - 

PH 
𝝁 0.70±0.04 0.70±0.04 0.70±0.04 0.70±0.04 0.70±0.04 
% - - - - - 

 




