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RESUMO 

Análises genômicas aplicados ao melhoramento do tomateiro: da arquitetura genética até 
a seleção genômica 

Tecnologias moleculares com grande potencial para auxiliar estudos genéticos se 
tornaram disponíveis para cultura do tomateiro (Solanum lycopersicum) recentemente.  O que 
permitiu a aplicação de análises modernas ao estudo de caracteres complexos, especialmente 
dentro do contexto de populações de melhoramento. Variâncias fenotípicas e genotípicas 
identificadas nestas populações poderiam ser prontamente exploradas pelos melhoristas. Desta 
forma, a identificação de regiões genômicas e de marcadores associados a características de 
interesse possui enorme potencial para auxiliar o melhoramento do tomateiro. Neste trabalho 
diferentes tipos de análises genômicas foram aplicados a populações de tomate, tanto indústria 
quanto in natura, buscando estudar deste o controle genético de caracteres relevantes até a 
aplicabilidade de modelo de predição. O objetivo do primeiro capítulo foi fornecer conhecimento 
básico para auxiliar programas de melhoramento de porta enxerto. Para tal, um estudo de 
mapeamento associativo foi realizado em um painel de diversidade buscando desvendar o 
controle genético ligado a performance como porta enxerto e a características do sistema 
radicular. Polimorfismos associados a caracteres quantitativos foram identificados para quase 
todas as características avaliadas, bem como genótipos com potencial para serem usados como 
parentais. O segundo capítulo foi desenvolvido na The Ohio State University e utilizou diferentes 
populações de tomate indústria para reportar um quantitative trait locus (QTL) relacionado a 
produção total, validá-lo e incorporá-lo em modelos de predição genômica. Um QTL associado a 
produção total no cromossomo cinco foi identificado, validado e a incorporação de informações 
de marcadores ligados a este QTL e seu efeito gênico aumentou a capacidade preditiva de 
modelos de seleção genômica.  

Palavras-chave: Melhoramento de porta enxertos, Genética do sistema radicular, 
Crescimento da copa, Predição genômica, Produção de tomate para 
processamento 
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ABSTRACT 

Genomic analysis applied to tomato improvement: from genetic architecture to genomic 
selection 

Molecular technologies that can greatly assist genetic studies are currently available for 
tomato crop (Solanum lycopersicum). This allowed the application of modern analysis to study 
complex traits, especially within a breeding population context. Phenotypic and genotypic 
variance found in this scenario could be readily explored by breeders. Thereby, identifying 
genomic regions and markers associated with important traits could greatly assist tomato 
breeding. Here different genomic analysis were applied to fresh and processing tomato 
populations aiming to study from the genetic control of relevant traits to the feasibility of 
prediction models. The goal of the first chapter of this thesis was to provide base knowledge to 
rootstock breeding programs. A genome-wide association study was performed on a diversity 
panel to uncover the genetic control of rootstock performance and root system features. 
Quantitative traits nucleotides associated with most traits evaluated were identified, as well as 
genotypes with the potential to be used as rootstock parents. The second chapter was developed 
at The Ohio State University and used different processing tomato populations to report a yield-
related quantitative traits locus (QTL), validate it and incorporate it into genomic prediction 
models. A yield-related QTL on chromosome five was identified and validated, and adding 
linkage and gene effect information about it improved prediction accuracies.  

Keywords: Rootstock breeding, Root system genetics, Scion growth, Genomic prediction, 
Processing tomato yield 
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1. INTRODUCTION 

Tomato (Solanum lycopersicum) stands as one of the main vegetable crop worldwide. It 

industry can be divided into two basic types, the fresh-market tomato that is grown for fresh 

consumption, and the processing tomato that is destined for processed foods. Each type possesses 

its own characteristics of cultivation and ideotypes to be achieved by breeding programs.  

The use of molecular markers has leveraged huge advances in plant breeding. Mapping 

experiments have been widely used to identify genes/quantitative traits locus (QTL) related to 

interest traits and markers associated with it that can further be used for selection. Indeed, marker-

assisted selection (MAS) strategies have proven to increase the efficiency and cost-effectiveness of 

breeding programs (Vivek et al., 2017). In tomato crop there is a long history of using MAS, 

especially to guide the introduction of novel disease resistance from a wild relative into an improved 

variety and to pyramid resistance genes (Rick, 1974; Hanson et al., 2016).  

As a model and well-study specie, many markers associated with genes or QTLs were 

reported for numerous economically important traits in tomato (Foolad and Panthee, 2012). It is 

important to highlight though, that most of the genetic inheritance research done so far focused on 

differences between domesticated and wild tomatoes, and most of this phenotypic/genotypic 

variance is already fixed in contemporary varieties (Foolad and Panthee, 2012; Bhandari et al., 2023).  

Currently, more modern tools were developed and are available for the research 

community, including the tomato reference genome (The Tomato Genome Consortium, 2012), 

high-density genetic maps, and high-throughput molecular markers (Cappetta et al., 2020). These 

tools allowed the application of modern genomic analysis approaches, such as genome-wide 

association studies (GWAS) and genomic selection (GS), especially within a breeding population 

context.  

In this thesis, different genomic analyses were applied to tomato (S. lycopersicum) 

populations aiming to study the genetic control of relevant traits and the feasibility of prediction 

models. The goal of the first chapter was to provide base knowledge that can assist rootstock 

breeding programs. A GWAS was performed on a diversity panel to uncover the genetic architecture 

of initial rootstock performance and root system features, and potential genotypes were identified to 

be further used as rootstock parents. The second chapter was developed at The Ohio State 

University and divided into three stages. The first stage used a recombinant inbred line (RIL) 

population to identify yield-related QTLs, and derived generations to validate those. Next, an 

independent Testcross population was used to estimate the gene effects of markers linked to the 

QTLs. Finally, genomic prediction models that incorporated information on linkage and gene effects 
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were developed using three training populations and tested through F1 prediction in an independent 

population of hybrids 
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2. GENOMIC REGIONS FROM ROOTSTOCK ARE ASSOCIATED WITH IMPROVED EARLY STEM 

GROWTH AND ROOT TRAITS IN GRAFTED TOMATO 

Abstract 

Grafting has become a widespread tool for enhancing tomato growth, leading many companies to seek 
out superior rootstock materials. Despite this trend, there is limited information available on how rootstock affects 
scion development, or on the genetics of root morphology that could support breeding programs searching for 
superior materials. Here, we evaluated a diverse panel of tomatoes (Solanum lycopersicum L.) for their potential use as 
rootstock, as well as root morphology traits. Our aim was to obtain knowledge that could assist breeding programs. 
We conducted three experiments in different seasons to identify stable genotypes, investigate the relationship 
between root and shoot traits, and identify loci related to key traits using genome-wide association studies (GWAS). 
The panel was genotyped using a single nucleotide polymorphism (SNP) panel derived from the "SolCAP" Infinium 
array and through genotyping by sequencing, resulting in a total of 3,305 SNPs. We tested two GWAS models, 
FarmCPU and MLMM, and found that the panel showed high diversity for all evaluated traits, enabling us to select 
superior materials. We also found that vigorous root systems were highly correlated with improved early stem 
growth. We identified 7 shoot dry mass-related, 5 shoot height-related, 6 ratio of shoot/root-related, 7 root dry 
mass-related, and 4 root volume-related quantitative trait nucleotides (QTNs), with some QTNs associated with 
more than one trait. The FarmCPU model identified most of the associations. To our knowledge, this is the first 
population-level study focusing on rootstock traits, which opens possibilities for further research that can assist 
rootstock breeding. 

 
Keywords: Solanum lycopersicum, genome-wide association studies (GWAS), genetic control, marker-assisted breeding, 
scion development 

 

2.1. Introduction 

Tomato is one of the most appreciated and produced vegetable crops worldwide. As a 

crop highly susceptible to several biotic and abiotic stressors, the use of the rootstock throughout 

grafting became a widespread tool in cultivations under greenhouses and open fields. Grafting 

can be used to improve plant vigor, increase yield and/or fruit quality, obtain 

resistance/tolerance to diseases, and obtain tolerance to restrictive environmental conditions 

(Kubota et al. 2008). Reports of increased yield in grafted tomatoes are widely reported (Venema 

et al. 2008; Barrett et al. 2012; Djidonou et al. 2013; Bayindir and Kamdemir, 2022). Increased 

scion vigor and yield are attributed to improved uptake of water and minerals conferred by the 

rootstock through a more vigorous root system (Martínez-Ballesta et al. 2010; Paez-Garcia et al. 

2015; Bayindir and Kamdemir, 2022). 

The increasing use of grafting tools has also affected breeding programs, by allowing 

them to focus independently on different traits for rootstock and scion genotypes (Mudge et al., 

2009). Indeed, the interest of vegetable seed companies in obtaining superior rootstock genotypes 

has been growing (Lee et al., 2010). Since the rootstock contributes to the grafted complex 

through its root system, breeding strategies require a deeper understanding of how root 

morphology features influence scion development. 

Research on rootstock performance has focused on measuring scion traits, with poor or 

no evaluation of root traits. Additionally, few studies have been conducted to uncover the 
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underlying genetic architecture modulating root system traits (Alaguero-Cordovilla et al. 2018; 

Xie et al., 2019). Understanding the variability and genetic contribution of rootstock features may 

help to give directions in developing genotypes with superior performance (Paez-Garcia et al., 

2015; Khan et al., 2016; Bayindir and Kamdemir, 2022). 

In addition to phenotypic assessment and quantification, genetic evaluation may provide 

additional informations about the characteristics of superior rootstocks. Molecular markers have 

been increasingly used in breeding programs to assist selection of interesting alleles. Due to the 

difficulty of phenotyping root systems, marker-based approaches are even more attractive for 

selection (Coudert et al., 2010). Genome-wide association studies (GWAS) provide an efficient 

method for identifying single nucleotide polymorphisms (SNPs) associated with specific traits, or 

quantitative trait nucleotides (QTNs). The availability of high-throughput genotyping of SNPs 

facilitates high-resolution genetic analysis (Cortes et al., 2021). In addition, GWAS is appropriate 

for unstructured germplasm collections and exploits genetic recombination events that occurred 

over several generations in the populations (Yu and Buckler, 2006) as a powerful tool for 

studying simple and complex traits (Cortes et al., 2021). Coupling GWAS with the several 

available tomato reference genomes allows more accurate QTL localization and elucidation of 

potential candidate genes (Sim et al., 2012; Tomato Genome Consortium, 2012).  

Based on that, in this work we evaluated a diversity panel of tomatoes (Solanum 

lycopersicum L.) for their performance as rootstock, measured by scion growth after grafting, and 

root system morphology. So, this study had three main goals: a) Understand how root traits 

affect initial growth of the scion; b) Search for quantitative trait nucleotides (QTNs) associated 

with improved scion growth and root system features through GWAS analysis; and, c) Identify 

promising genotypes for use as rootstocks or parents in a rootstock breeding program. 

 

2.2. Materials and Methods 

Plant material and grafting  

A tomato panel of 249 accessions was evaluated as rootstock. These accessions were 

selected from the germplasm collection belonging to the Horticultural Breeding Laboratory, 

Genetics Department of the University of São Paulo, including a diversity of accessions 

developed and/or collected in Brazil and in other countries. The collection contains accession of 

Solanum lycopersicum L. var. esculentum and Solanum lycopersicum L. var. cerasiforme (Supplementary 

Table 1).  

The tomato seedlings were produced in coconut fiber substrate, using the nutrition 

protocol from the Horticultural Breeding Laboratory. At 20 days after sowing, the seedlings were 
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grafted using a scalpel and silicone clips to keep the plants together, using the splice method. 

After grafting, the plants were kept in a humid chamber and then acclimatized for 10 days before 

being ready for installation in the experiment. The panel genotypes were grafted under the 

common scion the cultivar “Santa Clara”. As an additional control, cv. “Santa Clara” was self-

grafted, totaling 250 treatments. 

 

Experimental design and phenotypic evaluations 

We conducted three experiments to evaluate the rootstock morphologic traits and 

changes in early scion growth under grafting. Prior to establishing hydroponic production we 

carefully washed grafted seedling roots to remove all substrates. We choose to grow the plants in 

a static hydroponic system (Supplementary Figure 1) to allow free root growth and to avoid any 

loss that could be caused by root cleaning prior to phenotypic evaluation and quantification. The 

trials were set up in a randomized block design, with three replications/blocks, each block 

corresponding to one pool, and plots composed of three plants. Each pool consisted of 600 liters 

of a modified Hoagland and Arnon (1950) diluted to 50% concentration relative to complete 

nutrient solution (Supplementary Table 2). This volume corresponded to a pool depth of 14 

centimeters. Two water circulation pumps were installed in each pool to keep the nutrient 

solution homogeneous. We used polystyrene plates to suspend the seedlings over the nutrient 

solution. Further detail on pool structure can be found in Supplementary Figure 1. Nutrient 

solution levels (height relative to the depth) was measured daily and the volume was maintained 

by adding more water as needed. The experiments were conducted in three time periods, 

November to December 2020, February to March 2021, and July 2021, to account for potential 

environmental x genotype interaction and allow the selection of stable genotypes. The weather 

conditions can be found in Supplementary Figure 2. A total of 196 genotypes were evaluated in 

experiment 1, and 241 genotypes in experiments 2 and 3.  

The plants were grown for two weeks before evaluation. At the end of the experiment, 

the plants were cut at the point of grafting, separating the shoot from the root system. We 

measured the shoot height (SH, cm) from the grafting point to the last branch with a ruler and 

then stored it in identified paper bags. The roots were stored in plastic pots with a 25% ethanol 

solution to preserve them until evaluation. 

The shoot samples were put into a forced air circulation oven at 65 °C and, after the 

samples were completely dry (constant mass), they were weighed to obtain the shoot dry mass 

(SDM, g). We used an Epson LA2400 scanner to acquire root images and processed these images 

using the WinRHIZO (Reagent Instruments Inc., Quebec, Canada) to obtain root volume (RV, 
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cm3), root average diameter (RAD, mm), and root surface area (cm2). Next, the samples were 

dried out and weighed to determine the root dry mass (RDM, g). The ratio of shoot/root (RSR, 

g.g-1) was obtained by dividing the SDM by the RDM, and the root-specific area (RSA, cm2.g) by 

dividing the root surface area by the RDM.  

 

DNA extraction, genotyping, and quality filtering 

DNA extraction was performed on young leaflets with the DNeasy Plant Mini Kit 

(Qiagen). The DNA was quantified based on the fluorescence method using Qubit (Invitrogen) 

and normalized at 30 ƞg.uL-1. Two types of marker sets were used. First, we genotyped the panel 

using an optimized set of 384 single nucleotide polymorphisms (SNPs). This SNP panel was 

derived from the validated polymorphisms in the “SolCAP” Infinium array (Illumina Inc., San 

Diego, CA)(Sim et al. 2012a) by filtering the 7,000 SNPs based on genome coverage, 

recombination and polymorphic information content (Sim et al. 2012b). The 384 SNPs were 

called using an amplicon-based sequencing assay (PlexSeqTM, AgriPlex Genomics, Cleveland, 

Ohio, USA).  

Additionally, we obtained a genotyping by sequencing (GBS) marker set (Elshire et al. 

2011). Genomic libraries were built according to Poland et al. (2012) with some modifications, 

using the restriction enzymes PstI and MseI. Then, the libraries were sequenced on an Illumina 

HighSeq2500. More details on genotyping, alignment, and SNP calls are described in 

Niederheitmann (2021).  

We identified the physical position for both marker sets using the tomato reference 

genome SL.3.0 (The Tomato Genome Consortium, 2012). Merging positional and genetic 

information and data filtering was accomplished using R v. 3.6.1 (R Development Core Team, 

2020). Retained SNPs with a Call rate > 90% and removed markers with a Minor allele frequency 

(MAF) lower than 3%. The initial set composed of 384 PlexSeqTM SNPs and 7,247 GBS SNPs 

was reduced to 3,305 total SNPs after filtering and was the set used for GWAS analysis. 

 

Phenotypic analysis 

Principal component analysis and Pearson correlation were performed to study how the 

traits interact with each other. We then used the ASReml-R 4.0 package (Butler et al. 2017) to fit 

the following model and extract the adjusted means:  

 

𝑦 = 𝑋1𝑔 + 𝑋2𝑒 + 𝑋3𝑔𝑒 + 𝑍1𝑏 +  ɛ        (1) 

 



15 
 

where y refers to the phenotypic observation; X1, X2, and X3 are the incidence matrices 

of fixed effects; and Z1 is the incidence matrix for random effect. g is the genotype fixed effect; e  

is the experiment fixed effect; ge is the fixed effect of interaction between genotype and 

experiment; b is the random effect of blocks within experiments, where b  ~ N (0, Iσb
2); and ɛ is 

the residual random effect, where we used the command ~dsum to account for different 

variances between experiments. A completely random model was fitted to extract variances 

components, and calculate broad sense heritabilities using the following formula: 

 

ℎ2 =  
𝜎𝑔

2

𝜎𝑔
2 +

𝜎𝑔𝑒
2

𝑒 +
𝜎𝑟

2

𝑏𝑒

        (2) 

 

Where, h2 refers to heritability; σg
2 is the genotype variance component; σge

2 is the 

variance component due to interaction between genotype and experiments; σr
2 is the residual 

variance component; e is the number of experiments (e=3); and b is the number of blocks (b=3).  

 

GWAS analysis and QTNs interval confidence  

GWAS was performed on the adjusted means of all traits evaluated using the GAPIT 

package (Lipka et al. 2012). We fit two multi-locus models to search for trait-associated QTNs, 

Multiple Loci Linear Mixed Model (MLMM) (Segura et al. 2012) and Fixed and Random 

Circulating Probability Unification (FarmCPU) (Liu et al. 2016). MLMM is a modified Mixed 

Linear Model (MLM) (Yu et al. 2006), that in addition to incorporating population structure and 

kinship as an adjustment to control false positives on association tests, also includes markers as 

covariates in a stepwise process that intends to partially remove the confounding effects of 

kinship and testing markers. FarmCPU divides MLMM into two parts that are iteratively used: a 

fixed effect model that tests the markers one at a time using multiple associated markers as 

covariates aiming to control false positives, and a random effect model that estimates and uses 

the associated markers to define kinship, avoiding over-fitting. We used three PCA to account for 

the population structure for both models. A threshold of 0.0005 was used to declare a significant 

association with a QTN to balance type I and type II error as described (Nguyen et al. 2021).We 

used the CMplot package (Yin et al. 2021) to build the Manhattan plots, QQ plots, and a figure 

representing the genome coverage for the markers used in GWAS. 

QTN confidence intervals surrounding each trait-associated SNP were defined based on 

linkage disequilibrium (LD) as described previously (Bineau et al. 2021). We first compute the 

marker pairwise LD within each chromosome using the Sommer package (Covarrubias-Pazaran 



16 

2016). We next defined the confidence interval based on LD r2 higher than 0.5 in a 2 Mbp region 

around the SNP (1 Mb downstream and upstream). Multiple SNPs within the confidence interval 

were treated as the same QTN. 

 

2.3. Results 

Phenotypic data analysis 

Exploratory analysis and heritabilities 

The minimum, mean, and maximum values for the phenotypic traits are presented in 

Table 1, and demonstrate the panel diversity for all traits evaluated. Heritabilities ranged from 

0.22, for shoot height (SH), to 0.34, for root average diameter (RAD), with indices showing 

higher values. The interaction between genotypes and experiments contributed variance to the 

denominator which decreased the heritabilities of all traits.  

 
Table 1. Range of values and heritabilities for phenotypic traits. SDM, shoot dry mass; SH, shoot height; RSR, ratio 

of shoot/root; RDM, root dry mass; RAD, root average diameter; RV, root volume; RSA, root specific area 

Trait SDM SH RSR RDM RAD RV RSA 

 g cm g g-1 g mm cm3 cm2 g-1 

Minimum 0,35 11,93 4,31 0,07 0,46 0,71 784,4 

Mean 0,69 18,58 7,11 0,09 0,52 1,49 1116,1 

Maximum 1,13 23,6 11,98 0,16 0,61 2,45 1461,5 

Heritability 0,26 0,22 0,30 0,32 0,34 0,24 0,33 

 

We observed a positive correlation between almost all traits, except RAD and ratio of 

shoot/root (RSR) (Figure 1). Indeed, RAD was negatively correlated with all others traits. RSR 

can be considered a measure of carbon partitioning between shoot and roots, and although it was 

negatively correlated with root dry mass (RDM), it was positively correlated with shoot dry mass 

(SDM) and shoot SH. The trait most correlated with SDM was SH, followed by root volume 

(RV) and RDM. RDM and RV were also highly correlated with each other. RSA can be 

interpreted as a contact surface measure that reflects how much root system carbon was truly 

converted in root contact area, and it was moderately correlated with the other traits, except 

RAD.  

PCA analysis also demonstrated the high correlation between traits, with the first two 

principal components accounting for 73% of data variation (Figure 2). Visualization of the first 

two PCA also illustrated the panel’s phenotypic diversity relative to both root and scion traits as 

influenced by grafting. 
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Figure 1. Pearson´s Correlation between the seven evaluated phenotypic traits. SDM, shoot dry mass; SH, shoot 

height; RSR, ratio of shoot/root; RDM, root dry mass; RAD, root average diameter; RV, root volume; RSA, root 

specific area. Non-significant correlations are omitted 

 

 

 

Figure 2. Principal components analysis using 7 phenotypic traits and 250 treatments. SDM, shoot dry mass; SH, 

shoot height; RSR, ratio of shoot/root; RDM, root dry mass; RAD, root average diameter; RV, root volume; RSA, 

root specific area 
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Panel rootstock potential 

Considering SDM as a direct measure of scion development, we found that most panel 

genotypes were able to impart greater scion growth compared to the “Santa Clara” self-grafted 

control (Figure 3). This result can also be observed in the PCA plot (Figure 2), where the self-

grafted control is placed further to the left of the first component axis, which mostly accounts for 

SDM and SH variation. 

 

 

 

 

2.4. Materials and methods 

2.5. Materials and methods 

 

 

 

 

 

Figure 3. Genotypes grafting potential to increase shoot dry mass (SDM) 

 

Selection of best rootstock genotypes  

We chose to use the adjusted mean model (equation 1) to select the top twenty SDM 

genotypes due to the heterogeneity of variances between experiment 1 and experiments 2 and 3. 

Genotypes panel numbers 21, 22, 25, 34, 85, 96, 128, 199, 205, 217, 234, 236, 244, 249, 275, 289, 

297, 336, 337, and 359 were selected by the model, and most of them displayed SDM 

performance that exceeded the mean for all experiments (Figure 4). 
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Figure 4. Biplots of shoot dry mass (SDM) adjusted means for the 249 genotypes evaluated, including the selected 

individuals. (A) environment 1 x environment 2; (B) environment 1 x environment 3; (C) environment 2 x 

environment 3. The black lines represent the experiment’s means 

 

Genotypic data analysis 

Genome coverage  

Following quality control we retained 3,305 SNPs. These markers were unevenly 

distributed across the genome. In most chromosomes, the markers were placed mainly on the 

distal ends with few SNPs on the pericentromeric regions. Chromosomes 4, 5, and 9 presented 
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more markers distributed along these. The average number of markers per chromosome was 275, 

with a low of 86 on chromosome 8 and a high of 556 on chromosome 9 (Supplementary Table 

3). A graphical representation of genome coverage can be found in Supplementary Figure 3.  

 

Genome-wide association study  

A total of 30 QTNs were identified. At least one QTN was identified for most traits 

evaluated, with the exception of RAD and RSA. We detected eight markers associated with SDM 

(Figure 5), nine with SH, six with RSR, eight with RDM, and four with RV (Supplementary 

Figures 4-7). QTNs were found on almost all chromosomes, suggesting complex inheritance for 

most of these traits. 

 

 

Figure 5. Manhattan and QQ plots for shoot dry mass (SDM). (A) FarmCPU model; (B) MLMM model. The grey 

dotted lines on Manhattan plots represent the defined cut (p > 0.0005) 
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QTNs were further evaluated through boxplot visualization (Figure 6 for SDM, and 

Supplementary Figures 8, 9 and 10 for the other traits). Boxplot visualization revealed the 

possibility false positives associations, such as gbs_Chr07_1373843 for SDM, 

gbs_Chr01_2140956 and gbs_Chr11_5693979 for SH, and gbs_Chr02_53445405 for RDM. 

These markers did not show a clear effect of an allele substitution and thus were removed for 

further steps. 

 

Figure 6. Boxplot visualization of the effect of allele substitution for shoot dry mass (SDM) detected QTNs 

 

Based on SNP association and confidence interval we defined seven reliable SDM-

related, five SH-related, six RSR-related, seven RDM-related, and four RV-related QTNs. The 

QTNs are summarized in Table 2. Markers gbs_Chr03_123173, gbs_Chr04_64660316, 

gbs_Chr06_43560142, and gbs_Chr11_5440952 were detected for more than one trait, though 

always between the highly correlated traits such as SDM, SH, RDM, and RV. In some cases, 

although different markers were detected for correlated traits, they are located inside the 

confidence interval. This is the case for markers gbs_Chr09_5599363 and gbs_Chr09_5838440, 

which are placed in the interval between 5573820 and 6776714 bp on chromosome 9, markers 

gbs_Chr10_57346179 and gbs_Chr10_57351889, located between 57197730 and 58350349 on 

chromosome 10, and markers gbs_Chr11_5440952, gbs_Chr11_5507348, gbs_Chr11_5542428, 

and gbs_Chr11_5693979, which accounted for the same region on chromosome 11.  

FarmCPU showed greater ability in detecting associations than MLMM model and most 

markers identified by the latter were also identified by FarmCPU. We only found one marker 
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exclusively detected by MLMM and that represents a unique chromosome region, 

gbs_Chr03_2603399. 

 

Table 2. Quantitative trait nucleotides (QTNs) detected through GWAS analysis, chromosome, their positions, 

related trait, model of detection, minor allele frequency (MAF), and alleles (¹reference allele; ²alternative allele) 

 

QTN genotype of selected individuals 

An effective way to design crosses that aim to further develop superior rootstock material 

to improve scion growth could be pursued by combining beneficial alleles at the associated 

QTNs. Seven reliable SDM-related and four RDM-related QTNs were identified and their 

genotypes for the twenty superior accessions are presented in Table 3. Markers 

gbs_Chr06_43560142, gbs_Chr08_61010457, and gbs_Chr09_5838440 are monomorphic for the 

beneficial allele in the selected set and can be ignored. Genotypes GENO199 and GENO25 have 

almost all associated-QTNs with the beneficial allele and are potential parents for crosses, such as 

GENO199 x GENO25, GENO199 x GENO128, and GENO25 x GENO205. 

Markers Chr Position (Mb) Trait Model MAF 

solcap_snp_sl_6255 2 20824592 RSR FarmCPU A¹/G² (0.30) 

gbs_Chr02_45884979 2 45884979 RDM FarmCPU G¹/A² (0.20) 

gbs_Chr03_123173 3 123173 SDM, RDM, and RV FarmCPU A¹/T² (0.35) 

gbs_Chr03_2603399 3 2603399 RSR MLMM T¹/G² (0.09) 

gbs_Chr04_12360258 4 12360258 RSR FarmCPU C¹/T² (0.06) 

gbs_Chr04_55420736 4 55420736 RSR FarmCPU G¹/A² (0.21) 

gbs_Chr04_64660316 4 64660316 SDM and RDM FarmCPU G¹/A² (0.06) 

solcap_snp_sl_2629 6 33633429 SH FarmCPU T¹/C² (0.43) 

gbs_Chr06_43560142 6 43560142 RDM and RV FarmCPU and MLMM A¹/G² (0.15) 

gbs_Chr07_63050211 7 63050211 SH FarmCPU C¹/T² (0.19) 

gbs_Chr08_61010457 8 61010457 RDM FarmCPU and MLMM A¹/G² (0.09) 

gbs_Chr09_17688 9 17688 SDM FarmCPU G¹/A² (0.30) 

gbs_Chr09_5599363 9 5599363 SH FarmCPU G¹/A² (0.04) 

gbs_Chr09_5838440 9 5838440 SDM FarmCPU T¹/G² (0.06) 

gbs_Chr09_28487419 9 28487419 RV FarmCPU C¹/T² (0.07) 

gbs_Chr09_57177772 9 57177772 RSR FarmCPU G¹/T² (0.08) 

gbs_Chr10_57346179 10 57346179 RV FarmCPU G¹/T² (0.43) 

gbs_Chr10_57351889 10 57351889 RDM FarmCPU G¹/C² (0.42) 

solcap_snp_sl_8859 10 63956636 RDM FarmCPU C¹/G² (0.11) 

gbs_Chr11_32940 11 32940 SDM FarmCPU G¹/A² (0.07) 

gbs_Chr11_5440952 11 5440952 SDM and SH FarmCPU and MLMM A¹/G² (0.32) 

gbs_Chr11_5507348 11 5507348 SH MLMM T¹/C² (0.22) 

gbs_Chr11_5542428 11 5542428 SH MLMM G¹/C² (0.22) 

gbs_Chr11_37771444 11 37771444 RSR FarmCPU A¹/T² (0.25) 

solcap_snp_sl_12664 12 2301635 SH FarmCPU A¹/T² (0.27) 

gbs_Chr12_31517373 12 31517373 SDM FarmCPU G¹/A² (0.49) 
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Table 3. Shoot dry mass (SDM) and root dry mass (RDM)-related quantitative traits nucleotides (QTN) genotypes 

for the twenty best performing accessions 

 

2.4. Discussion 

We evaluated rootstock performance based on scion growth and root morphology in a 

large and diverse population of S. lycopersicum. We found an uneven distribution of markers on the 

genome with a concentration of SNPs on the chromosome’s distal ends. This is common 

coverage patter reported in tomato (Chen et al., 2014; Xie et al., 2019), and it is probably due to 

the narrow genetic diversity resulting from the high inbreeding rate that occurred during the 

tomato domestication process (Foolad, 2007). Although tomato is known to be a crop with a 

narrow genetic base, the germplasm panel demonstrated high phenotypic diversity for both the 

ability to improve scion growth and desirable root morphology traits. Superior accessions were 

identified based on phenotypic performance.   

 
QTNs 

Chromoso
me 

2 3 4 6 8 9 9 10 11 11 12 

Position 
(bp) 

458849
79 

1231
73 

646603
16 

435601
42 

610104
57 

1768
8 

58384
40 

57351
889 

3294
0 

54409
52 

315173
73 

Alleles G/A A/T G/A A/G A/G G/A T/G G/C G/A A/G G/A 

Beneficial 
allele 

A T A A A A T G G A G 

GENO21 AA AA GG AA AA GG TT GG GG AA GG 

GENO22 GG AA GG AA AA AA TT GG GG AA GG 

GENO25 GG TT GG AA AA AA TT GG GG AA GG 

GENO34 GG AA GG AA AA GG TT CC GG AA GG 

GENO85 GG 
 

GG AA AA AA TT GG GG GG AA 

GENO96 
 

AT 
 

AA AA AA TT GC AA AA GG 

GENO128 GG TT 
 

AA AA AA TT GG GG GG AA 

GENO199 GG AA AA AA AA AA TT GG GG AA GG 

GENO205 GG TT GG AA AA AA TT GG GG GG GG 

GENO217 GG TT GG AA AA AA TT GG GG AA AA 

GENO234 GG AA GG AA AA AA TT GG GG GG GG 

GENO236 AA AA GG AA AA GG TT GG GG AA GG 

GENO244 GG TT GG AA AA GG TT GG GG AA GG 

GENO249 GG TT GG AA AA GG TT GC GG AG GG 

GENO275 GG AA GG AA AA AA TT GG GG GG GG 

GENO289 GG AA AA AA AA GG TT CC GG AA AA 

GENO297 GG AA AA AA AA GG TT GG GG GG AA 

GENO336 GG AA GG AA AA GG TT GG GG AA GG 

GENO337 AA AA GG AA AA GG TT CC GG AA GG 

GENO359 GG 
 

AA AA AA AA TT GG GG GG AA 
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The performance of grafted plants is usually attributed to an improved ability to absorb 

water and nutrients conferred through a more vigorous root system (Martínez-Ballesta et al., 

2010; Lovelli et al., 2012; Paez-Garcia et al., 2015; Suchoff et al., 2017; Xie et al., 2019; Bayindir 

and Kamdemir 2022). A comparison of self-grafted and non-grafted plants suggested a 

potentially beneficial effect on scion development caused by the grafting process itself (Khah et 

al, 2006; Sánches-Rodríguez et al., 2014; Kabas & Kucukaydin, 2022). A robust root system has 

also been related to tolerance to edaphic stress, such as low availability of nutrients (Hill et al., 

2006; Lambers et al., 2006; Suchoff et al., 2017). 

We did not investigate the grafting effect per se, but our results showed that most 

genotypes evaluated were able to improve scion growth compared to the self-grafted check. We 

attribute improved scion growth to a robust root system. We found a high correlation between 

SDM and RV/RDM, and two QNTs (gbs_Chr03_123173 and gbs_Chr04_64660316) which 

were associated with both SDM and RDM. Indeed, this high positive correlation between traits is 

beneficial for breeding purposes as it allows for the simultaneous selection of traits.  

Tomato has a long history of genetic breeding, though few programs have addressed 

root morphology traits as a key breeding objective, even for rootstock materials. The main 

reasons for this gap of information are attributed to the difficulty of phenotyping and complex or 

unknown genetic control of root traits (Kuijken et al., 2015). QTL mapping in an F2 population, 

derived from a cross between S. lycopersicum and S. cheesmanie, and evaluated as rootstock in early 

seedlings stages identified two QTLs hotspot regions for root and shoot traits (Xie et al., 2019). 

Although none of these QTLs overlapped with those we identified here, the authors also 

reported a high positive correlation between root and shoot traits.  

Our work took a first step in filling this gap by providing basic information on the 

genetic background of key shoot/root traits. We were able to select twenty superior genotypes to 

be used as rootstock parents and, by looking at their genotypes, to design crosses that could join 

together most of the identified QTNs for both shoot and root traits. Selection root traits must be 

tagged if ones want to succeed in rootstock breeding programs (Bayindir and Kamdemir 2022). 

The evaluation of rootstock materials should be performed within the context of 

grafting since there is evidence scion may also affect root growth (Kakita et al., 2015). In 

addition, roots present plasticity depending on the medium in which they are grown (Bao et al., 

2014; Robbins et al., 2015). Research will be needed to assess whether the hydroponic evaluation 

presented here can be extrapolated to soil or substrate media. Finally, further studies are also 

necessary to validate the QTNs and discover if they continue to affect the growth and vigor of 

older plants.  
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We started with a set of 7,631 SNPs that was reduced to 3,305 after filtering for quality 

and MAF. This number provided excellent genome coverage, especially given the reduced 

recombination found in populations of S. lycopersicum (Sim et al., 2012a). For GWAS analysis, the 

FarmCPU model showed greater statistical power relative to MLMM, with almost all QTNs 

detected with MLMM also detected by FarmCPU. FarmCPU accounts for the confounding 

effects of kinship by only using the associated markers to derive the kinship matrix used as a co-

variate. The nature of crop improvement programs creates a situation where kinship estimates 

may differ across the genome due to selection. GWAS model comparison using simulated and 

real data from maize and soybean indicated FarmCPU reduced both false positives and false 

negatives relative to other models (including MLMM) (Kaler et al. 2020). The superiority of 

FarmCPU over MLM model was also reported in tomatoes (Rodriguez et al. 2020). 

 

2.5. Conclusion 

A robust root system is associated with improved early growth in grafted tomatoes. Stable 

QTNs related to shoot dry mass (SDM), shoot height (SH), the ratio of shoot/root (RSR), root 

dry mass (RDM), and root volume (RV) were identified. We select twenty superior rootstock 

materials to be used as parents and allow the combination of many of the detected QTNs. 
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Supplementary Information 

Supplementary Table 1. Tomato (Solanum lycopersicum L.) diversity panel description and its occurrence on all trials 

Panel 
number 

USP entry Entry Varieties 
Experiment 

1 2 3 

1 USP001 
 

Olena Ukrainien Present Present Present 

2 USP002 
 

Pusa Ruby Present Present Present 

3 USP003 
 

Early cherry Present Present Present 

4 USP004 
 

Sebastopol Present Present Present 

5 USP005 
 

Cereja FC ("Perinha") Present Present Present 

6 USP006 
 

Santa Cruz Kada Gigante Present Present Present 

7 USP007R 
 

Corrogo Present Present Present 

8 USP007M 
 

Corrogo Present Present Present 

9 USP008 
 

San Marzano Present Present Present 

10 USP009 
 

Yoshimatsu-L3 Present Present Present 

11 USP010 
 

Azure Present Present Present 

12 USP011 
 

Tecoh Tepee Present Present Present 

13 USP012 
 

Santa Clara Present Present Present 

14 USP013 
 

High Country Present Present Present 

15 USP014 
 

Immune Present Present Present 

16 USP015 
 

Indigo Rose Present Present Present 

17 USP016 
 

Banana Legs Present Present Present 

18 USP017 
 

Calabash Rouge Present Present Present 

19 USP018 
 

Coeur de Boeuf Jaune Present Present Present 

20 USP019 
 

Tasty Evergreen Present Present Present 

21 USP020 
 

Tropic Two Orders Present Present Present 

22 USP021 
 

Géante D´Orenburg Present Present Present 

23 USP022 
 

Solymari Present Present Present 

24 USP023 
 

Tomate Laranja Salada (Top 
Seed) 

Present Present Present 

25 USP024 
 

White Wonder Present Present Present 

26 USP025 
 

Pêache Rouge Present Present Present 

27 USP026A 
 

Prize of the Trial Absent Present Present 

28 USP026V 
 

Prize of the Trial Absent Present Present 

29 USP027 
 

Tomate Cereja Laranja (Top 
Seed) 

Present Present Present 

30 USP028 
 

Olirose de St Domingue Present Present Present 

31 USP029 
 

Persimmon Present Present Present 

32 USP030 
 

IPA-6 Present Present Present 

33 USP031 
 

Santa Adélia Present Present Present 

34 USP032 
 

Amalia Present Present Present 

35 USP033 
 

INCA-945 Present Present Present 

36 USP034 
 

Mara Present Present Present 

39 USP038 LA4393 
 

Absent Present Present 

40 USP039 LA2414 Cal Ace Present Present Present 

41 USP040 LA4348 
 

Present Present Present 

42 USP041 LA2661 Nagcarlang Present Absent Present 

43 USP042 LA2706 Moneymaker Present Present Present 
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44 USP043 LA4104 
 

Present Present Present 

45 USP044 LA1787 
 

Absent Present Present 

46 USP045 LA4285 
 

Present Absent Present 

47 USP046 LA2086 
 

Present Present Present 

49 USP048 LA4451 Black Cherry Absent Present Present 

50 USP049 LA4449 Black Plum Present Present Present 

51 USP050 LA2413 
 

Present Present Present 

52 USP051 LA3667 
 

Present Present Present 

53 USP052 LA2644 
 

Absent Present Present 

54 USP053 LA3736 
 

Present Present Present 

56 USP055 LA2830 
 

Absent Present Present 

57 USP056 LA3847 NC HS-1 Present Present Absent 

58 USP057 LA3043 
 

Present Present Present 

59 USP058 LA3471 
 

Absent Present Present 

60 USP059 LA0806 
 

Present Present Present 

61 USP060 LA4425 
 

Absent Absent Present 

62 USP061 LA2399 
 

Present Present Present 

63 USP062 LA3273 
 

Present Present Present 

65 USP064 LA2445 
 

Present Present Present 

66 USP065 LA2531A 
 

Present Present Present 

68 USP067 LA2939 
 

Present Present Present 

69 USP068 
 

Balkonstar Absent Present Present 

70 USP069 
 

Saint Pierre Present Present Present 

71 USP070 
 

Motelle (PCTM) Present Present Present 

72 USP072 LA4026 
 

Present Present Present 

73 USP073 LA3151 
 

Present Present Present 

74 USP074 LA3475 M82 Present Present Present 

75 USP082 CNPH0527 
 

Absent Present Present 

76 USP083 CNPH0511 
 

Present Present Present 

77 USP084 CNPH0263 
 

Present Present Present 

78 USP085 CNPH0616 
 

Present Present Present 

79 USP086 CNPH0357 
 

Present Present Present 

80 USP087 CNPH0083 
 

Present Present Present 

81 USP088 CNPH0082 
 

Absent Present Present 

82 USP089 CNPH0633 
 

Absent Present Present 

83 USP090 CNPH0899 
 

Absent Present Present 

84 USP091 CNPH0422 
 

Present Present Present 

85 USP092 CNPH0883 
 

Present Present Present 

87 USP094 CNPH0529 
 

Present Present Present 

88 USP095 CNPH0650 
 

Present Present Present 

90 USP097 CNPH0500 
 

Present Present Present 

91 USP098 CNPH0443 
 

Present Present Present 

92 USP099 CNPH0525 
 

Absent Present Present 

93 USP100 CNPH1137 
 

Present Present Present 

94 USP101 CNPH1218 
 

Present Present Present 

95 USP102 CNPH1200 
 

Present Present Present 

96 USP103 CNPH0512 
 

Present Present Present 

97 USP104 CNPH0528 
 

Present Present Present 
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98 USP105 CNPH0080 
 

Present Present Present 

99 USP106 CNPH0523 
 

Present Present Present 

100 USP107 CNPH1100 
 

Present Present Present 

101 USP108 CNPH0846 
 

Absent Present Present 

102 USP109 CNPH0357 
 

Present Present Present 

103 USP110A CNPH1138R 
 

Present Present Absent 

104 USP110B CNPH1138C 
 

Present Present Present 

105 USP111 CNPH0920 
 

Present Present Absent 

106 USP112 CNPH0442 
 

Present Present Present 

107 USP113 CNPH0923 
 

Present Present Present 

108 USP114 CNPH0390 
 

Present Present Present 

109 USP115 CNPH0081 
 

Present Present Present 

110 USP116 CNPH0635 
 

Present Present Present 

111 USP117 CNPH0079 
 

Present Present Present 

113 USP119 CNPH0634 
 

Present Present Present 

114 USP120 
 

Mangymakuh Present Present Present 

115 USP121 
 

Idyll Present Present Present 

117 USP123 
 

Hellfrucht Present Present Present 

118 USP124 
 

Tomate Gaúcho laranja (top 
seed) 

Present Present Present 

119 USP125 
 

Santa Cruz Kada (Paulista) - 
ISLA 

Present Present Present 

120 USP126 LA0330 
 

Present Present Present 

121 USP127 
 

Lingüiça Polonesa Present Present Present 

122 USP128 
 

Tomato tree Present Present Present 

124 USP130 
 

Des Andes Present Present Present 

125 USP131 
 

Prune Noire Present Present Present 

126 USP132 
 

Beauté Blanche Present Present Present 

127 USP133 
 

Striped Cavern Present Present Present 

128 USP134 
 

Poire Rouge Present Present Present 

129 USP135 
 

Tigerella Present Present Present 

130 USP136 
 

De Barao Gold Present Present Present 

131 USP137 
 

Noire de Crimée Present Present Present 

132 USP138 
 

Orange Queen Present Present Present 

133 USP139 
 

Podland Pink Present Present Present 

134 USP140 
 

Black Prince Present Present Present 

135 USP141 
 

Green Sausage Present Present Present 

136 USP142 
 

Eva's Purple Ball Present Present Present 

137 USP143 
 

Coeur de Boeuf Orange Present Present Present 

138 USP144 
 

Burbank Present Present Present 

139 USP145 
 

Ester Hess Yellow Present Present Present 

140 USP146 
 

Peasant Present Present Present 

142 USP148 LA0791 Long Jhon Present Absent Absent 

143 USP149 FAP0002 
 

Present Present Present 

144 USP150 FAP0001 
 

Absent Present Absent 

145 USP153 FAP0005 
 

Absent Present Present 

146 USP154 
 

Tomate Italiano para molhos 
(Topseed) 

Present Present Present 

147 USP155 
 

Tomate Pêra Amarelo 
(Topseed) 

Present Present Present 
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148 USP156 PNZ006 TSW-10 CNPH Present Present Present 

149 USP157 PNZ009 AG 45 (Ohio 8145) Present Present Present 

151 USP158B PNZ102 Rotam-4 Present Present Present 

152 USP159A PNZ100 Stevens Present Present Present 

153 USP160 PNZ103 Rodade Present Absent Present 

154 USP161 PNZ223 Vietnamita-BWR Present Present Present 

155 USP162 
 

PCV-01 Present Present Present 

156 USP163 
 

Hawaii 7996 Present Present Present 

161 GT0012 
 

CAL J, LOTE: 478 1041 Present Present Present 

163 GT0027 
 

SEED 062 CAMARILLO Present Absent Absent 

164 GT0028 
 

SEED 062 PETOEARLY Present Present Present 

166 GT0033 
 

FPA-4 Present Present Present 

170 GT0056 
 

NEMADORO Present Present Present 

177 GT0084 
 

EARLY CASCADE 312 Present Present Present 

179 GT0087 
 

SAINT PIERRE Present Present Present 

180 GT0092 
 

VF 90 Present Present Present 

186 GT0102 
 

CARAÍBA Present Present Present 

188 GT0104 
 

SEED VF 198 Present Present Present 

190 GT0106 
 

SEED NAPOLI VF Present Present Present 

194 GT0117 
 

PETO 13 Present Present Present 

195 GT0127 
 

FARLYSTONE, LOTE: 
5921006 

Present Present Present 

197 GT0130 
 

PETOEARLY, LOTE: 
6721067 

Present Present Present 

198 GT0131 
 

RIO GRANDE, LOTE: 
7457042 

Present Present Present 

199 GT0135 
 

SANTA CRUZ KADA Present Present Present 

200 GT0137 
 

PIRACÓ Absent Present Present 

201 GT0138 
 

PIRACÓ PROJETO III Absent Present Present 

205 GT0150 
 

SANTA CRUZ ANODA Present Present Present 

206 GT0162 
 

CASTLONG, LOTE: 2237-69 Present Present Present 

207 GT0163 
 

CASTLEBLOCK, LOTE: 
2299-245 

Present Present Present 

208 GT0164 
 

CASTLESTAR EHV, LOTE: 
2627 

Absent Present Present 

209 GT0165 
 

UC - 82-A, LOTE: 2556 Absent Present Present 

210 GT0166 
 

CASTLEMOR IMP., LOTE: 
2416-15 

Absent Present Present 

211 GT0167 
 

CALYPSO, LOTE: 2697 Absent Present Present 

214 
  

Tomate Cereja Samambaia 
(Tradicional Hortaliças) 

Absent Present Present 

215 
  

Santa Clara (Hortec) Absent Present Present 

216 
  

San Marzano PCS 9/2001 (LG) Absent Present Present 

217 
  

Minitomate Acesso 21 - IAC 
(melhor) 

Present Present Present 

219 
  

Cuor di bue (Hortus Sementi) Present Present Present 

220 
  

Saint Pierre (Hortus Sementi) Present Present Present 

221 
  

Santa Cruz Kada Gigante (Top 
Seed) 

Present Present Present 

222 
  

San Marzano (Landen) Present Present Present 

223 
 

IAC-1689 Homesweet Heirloom Absent Present Absent 

224 
 

IAC-1693 Aussie Heirloom Absent Absent Present 
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225 
 

IAC-1691 Black Prince Heirloom Absent Present Present 

226 
 

IAC-1692 
Costoluto genovese 

(multiplicação) 
Absent Present Present 

227 
 

IAC-1692 Costoluto genovese Present Present Present 

228 
 

IAC-1696 Caspian Pink Heirloom Present Present Present 

229 
 

IAC-1695 Purple Russian Heirloom Present Present Present 

230 
 

IAC-1697 Cherokee Purple Heirloom Present Present Present 

231 
 

IAC-1694 Goliath Tomato Present Present Present 

232 
 

IAC-1693 Aussie Tomato Present Present Present 

233 
 

IAC-1690 Black Krim Heirloom Absent Present Present 

234 
  

Tomate Santa Cruz + Brinde Present Present Present 

235 
 

IAC-1612 Peacevine Present Present Present 

236 
 

IAC-1613 S.T. Pierre Present Present Present 

237 
 

IAC-1614 Money Marker Absent Present Present 

239 
 

IAC-1615 Matina Present Present Present 

240 
 

IAC-1617 Arkansas Trveller Present Present Present 

241 
 

IAC-1619 Stupice Present Present Present 

242 
 

IAC-1618 Bruno Simonetti Present Present Present 

243 
 

IAC-1605 Uco Plata Present Present Present 

244 
 

IAC-1606 TSW-10 Present Present Present 

245 
 

IAC-1607 Mars Present Present Present 

246 
 

IAC-1608 ILDI Naranja Absent Present Present 

247 
 

IAC-1610 Black Plum Paste Present Present Present 

248 
 

IAC-1611 Cradwich Absent Present Present 

249 
 

CGT-01 Linha de origem desconhecida Present Present Present 

250 
 

CGT-03 Missouri 91 Present Present Present 

251 
 

CGT-04 Missouri 93 Present Present Present 

253 
 

CGT-06 Romitel Present Present Present 

255 
 

CGT-14 Rio Fuego Present Present Present 

257 
 

CGT-21-1 Hirol (Vermelho) Absent Present Present 

259 
 

CGT-22 Rio Grande Absent Present Present 

260 
 

CGT-23 UC 105 Present Present Present 

261 
 

CGT-25 Rotec Present Present Present 

262 
 

CGT-26 Rossol Present Present Present 

263 
 

CGT-27 Rio Fuego Present Present Present 

264 
 

CGT-28 Hoffit Present Present Present 

265 
 

CGT-29 Mecline Absent Present Present 

266 
 

CGT-32 Heinz 1548 Absent Present Present 

267 
 

CGT-33 M 204 Absent Present Present 

269 
 

CGT-35-1 Dela Plata Absent Present Present 

270 
 

CGT-36 M 145 (Saladette) Absent Present Absent 

271 
 

CGT-37 PU 7328 (bu) Present Present Present 

272 
 

CGT-38 Romitel Present Present Present 

273 
 

CGT-43 Santa Adélia Super Absent Present Present 

275 
 

CGT-45 Roquesso (Ag. 591) Present Present Present 

276 
 

CGT-47 Santa Clara Albino Absent Present Present 

277 
 

CGT-48 Olho Roxo Present Present Present 

279 
 

CGT-52 Floradade (F2 Ve Sm) Absent Present Present 

280 
 

CGT-54 Calypso Absent Present Present 
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282 
 

CGT-57 Angela Hiper Absent Present Present 

283 
 

CGT-58 Europeel Absent Present Present 

284 
 

CGT-62 Missouri Present Present Present 

285 
 

CGT-64 Príncipe Gigante Ag. 590 Present Present Present 

286 
 

CGT-67 Yoshimatsu-4 (INPA) Present Present Present 

287 
 

CGT-68 Hoffit Present Present Present 

288 
 

CGT-72 Rimone Present Present Present 

289 
 

CGT-73 Licapal Present Present Present 

291 
 

CGT-77 Romitel Absent Present Present 

292 
 

CGT-84 Santo Antonio Present Present Present 

293 
 

CGT-85 Motelle Absent Present Present 

294 
 

CGT-88 Tropicana Absent Present Present 

295 
 

CGT-90 Rotam-4 Present Present Present 

296 
 

CGT-91 Rodade Present Absent Present 

297 
 

CGT-97 Olho Roxo Melhorado Present Present Present 

298 
 

CGT-98 P213 - PA (Tropicana) Present Present Present 

299 
  

Tomate Ferraz Ipa-8 
(Hortivale) 

Present Present Present 

326 
 

GT0048 PAKMOR (VF) Absent Present Present 

336 
 

GT0077 HEINZ 1350 Present Present Present 

337 
 

GT0085 SUPERMARKET 87170 Present Present Present 

343 
 

GT0101 MECANO Absent Present Present 

348 
 

GT0118 TROPIC Present Present Present 

359 
 

GT0181 "VERDINHO" Present Present Present 
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Supplementary Figure 1. a) Hydroponic pools used for rootstock evaluations. The pools were built using concrete 
blocks covered with a layer of non-woven geotextile and a second layer of black plastic. Two recirculating pumps 
coupled to hoses that ran the entire pool length were used to keep the solution homogeneous; b) The seedlings were 
suspended over the solution in Styrofoam plates with sponge sheets; c)  The seedlings were spaced eight centimeters 
apart, with three plants per plot, and two treatments per line; d) Seedlings after fourteen days 
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Supplementary Table 2. Modified Hoagland and Arnon solution used at 50% power in this research. The 

quantities below were used for each 1000 liters of nutrient solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Macronutrients grams.1000 L-1 

Ca(NO3)2.4H2O 118 

KNO3 50,5 

MgSO4.7H2O 49,2 

KH2PO4 13,6 

Micronutrients  

H3BO3 7,2 

MnCl2.4H2O 4,52 

ZnSO4.7H2O 0,55 

CuSO4.5H2O 0,2 

NaMoO4 0,225 

Fe-EDTA  

EDTA-Na2 33,2 

NaOH 3,65 

FeSO4.7H2O 25 
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Supplementary Figure 2. Temperature and humidy data for all trials 
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Supplementary Table 3. Number of markers per chromosome 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Supplementary Figure 3. Genome coverage of 3.305 SNPs markers used for GWAS analysis 

 

 

 

 

 

Chromosome Number of markers 

1 150 

2 431 

3 309 

4 417 

5 272 

6 363 

7 90 

8 86 

9 556 

10 123 

11 254 

12 254 

Total 3305 

Média 275,4 
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Supplementary Figure 4. Manhattan and QQ plots for shoot height. (a) FarmCPU model; (b) MLMM model. The 

grey dotted line on Manhattan plots represent the defined cut (p > 0.0005) 
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Supplementary Figure 5. Manhattan and QQ plots for ratio of shoot/root. (a) FarmCPU model; (b) MLMM 

model. The grey dotted line on Manhattan plots represent the defined cut (p > 0.0005) 
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Supplementary Figure 6. Manhattan and QQ plots for root dry mass. (a) FarmCPU model; (b) MLMM model. The 

grey dotted line on Manhattan plots represent the defined cut (p > 0.0005) 
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Supplementary Figure 7. Manhattan and QQ plots for root volume. (a) FarmCPU model; (b) MLMM model. The 

grey dotted line on Manhattan plots represent the defined cut (p > 0.0005) 
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Supplementary Figure 8. Boxplot visualization of the effect of allele substitution for detected QTNs of shoot 

height (SH), ratio of shoot/root (RSR), root dry mass (RDM), and root volume (RV) 
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Supplementary Figure 9. Boxplot visualization of the effect of allele substitution for detected QTNs of shoot 

height (SH), ratio of shoot/root (RSR), root dry mass (RDM), and root volume (RV) 
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Supplementary Figure 10. Boxplot visualization of the effect of allele substitution for detected QTNs of shoot 

height (SH), ratio of shoot/root (RSR), root dry mass (RDM), and root volume (RV) 
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3. IMPROVEMENT OF GENOMIC SELECTION MODELS FOR YIELD IN PROCESSING TOMATO 

THROUGH INCORPORATION OF LINKAGE AND GENE EFFECTS 

Abstract 
For specialty crops such as tomato, there is a lack of genetic information regarding important traits such 

as yield.  This situation is due to many factors including the lack of a tradition for collecting quantitative data, limited 
resources, and small population sizes in breeding programs. Although genomic selection is now a widely used tool in 
plant breeding, its application to improving horticultural crops has lagged behind those in staple grain crops. Here, 
we use genomic analysis strategies in several processing tomato populations to search for yield-related quantitative 
trait loci (QTL) and incorporate this information into prediction and selection models. We first performed genome-
wide association studies in a nested recombinant inbred line (RIL) population and composite interval mapping in a 
bi-parental RIL to identify genomic regions associated with yield and fruit weight. A yield-associated QTL on 
chromosome five was identified which explained 29% of the variation. Validation in subsequent generations 
suggested the QTL had dominant gene action. The QTL is associated with an introgression from Hawaii 7998 and 
contains a novel allele of the self-pruning gene (Sp5), a potential candidate gene, associated with both yield and plant 
architecture. We tested genomic selection models for yield and fruit size based on inbred line populations through 
cross-validation and the ability to predict an independent set of hybrids. Positional information on yield and fruit 
weight QLTs and estimates of gene action were added to these models and further tested. Inclusion of positional 
information and dominance for the QTL on chromosome 5 improved prediction accuracies in genomic selection 
models. 
 
Keywords: Solanum lycopersicum, genomic prediction, large effect QTL, complex traits, yield genetics 

 

3.1. Introduction 

Crop yield is thought to be a complex trait influenced by many genetic and 

environmental factors. Despite the importance of yield, a description of the underlying genetic 

control is lacking for many crop plants. This paucity of information is ascribed to the complex 

genetic nature of yield and the underlying belief that quantitative agricultural traits are controlled 

by many genes of small effect, referred to as the “infinitesimal model” (Barton et al., 2017). 

However, studies of complex quantitative traits often demonstrate kurtosis suggesting that they 

are conditioned by both genes of small effect and genes of moderate to large effect (for example: 

Edwards et al., 1987 and Hayes and Goddered, 2001). In some crops such as tomato (Solanum 

lycopersicum L.), there is a lack of studies investigating yield in target populations that are relevant 

to the community engaged in crop improvement. Although several quantitative trait loci (QTLs) 

have been reported over the 12 tomato chromosomes, these studies are conducted in wide 

crosses and there is limited concordance across studies (Foolad, 2007; Hernández-Bautista et al., 

2015).   

An experimental limitation to genetic studies of yield in breeding relevant populations 

has been a lack of polymorphic markers. Despite a long history of molecular breeding in tomato, 

an emphasis on wide crosses led to a dearth of tools for use in cultivated populations. This 

situation changed shortly after the emergence of the first reference genome for tomato (The 

Tomato Genome Consortium, 2012). The availability of next-generation sequencing platforms 

(Patel et al., 2015), a reduction in genotyping costs (Wetterstrand, 2022), and the emergence of 
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highly parallel genotyping platforms allowed the applied research community to develop markers 

appropriate for dissecting complex traits and selection within breeding populations (Sim et al., 

2012b, Sim et al., 2015).  

Establishing linkage between protein or DNA sequence polymorphism and variation 

quantitative trait loci (QTL) opens several strategies for marker-assisted selection (MAS).  In 

tomato, MAS for selection of major resistance loci has a history dating back more than fifty years 

(Rick and Fobes, 1974; Bolkan et al., 1983; Williamson and Colwell, 1991). More recently, the 

increased availability of markers polymorphic in breeding populations has facilitated forward 

selection coupled to background-genome selection (Orchard et al., 2021; Bernal et al., 2020). 

Finally, approaches to selection that use sequence polymorphism to develop predictive models, 

genomic selection, have demonstrated potential. Genomic selection (GS), originally proposed by 

Meuwissen et al. (2001), uses all available markers to estimate breeding values and predict 

performance. This approach is based on the infinitesimal model and the simplifying assumption 

that trait value is a result of the linear combination of additive genetic and nongenetic sources of 

variation (Fisher, 1919). GS is becoming a powerful tool for implementation in modern breeding 

programs (Bassi et al., 2016) and has shown promise in tomato for plant disease resistance 

(Liabeuf et al., 2018), fruit size (Hernández-Bautista et al., 2016), and fruit quality (Duangjit et al., 

2016, Yamamoto et al., 2017). Predictive models that incorporate knowledge of linkage and non-

additive gene effects have shown promise (Liabeuf et al., 2018). 

In this study, we present evidence for a yield-related QTL on chromosome five of 

tomato. This QTL is inherited from inbred line OH987034 as part of an introgression from 

Hawaii 7998 and includes a novel allele of the self-pruning gene (Sp5). We investigated the effects 

of an allele substitution at this QTL, and demonstrate dominant gene action. We also investigated 

evidence for QTL fruit size, another component of yield. We aimed to test whether accounting 

for dominance effects and modeling yield-related QTL as a fixed effect could increase prediction 

of hybrid performance. We demonstrate that incorporating knowledge of linkage and gene action 

in a genomic prediction framework improves GS model performance. 

 

3.2. Materials and Methods 

Plant materials and field/greenhouse evaluations 

This work consisted of three stages and different populations were used in each (Figure 

1). First, we performed QTL mapping using a nested recombinant inbred line (RIL) population 

to identify regions associated with yield-related traits and defined chromosomal intervals 

associated with these. We validated QTL using subsequent generations and estimated the effects 
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of allele substitutions for SNPs within intervals using an independent testcross population. 

Finally, we developed genomic selection (GS) models using three training populations and tested 

prediction models through cross-validation and F1 prediction in an independent population of 

hybrids.  

 

 

 

Figure 1. Graphic representation of the research stages. The nested RIL population was first analyzed using GWAS 

to search for regions associated with yield components. A bi-parental subset, RIL2 (OH7814 x OH987034), was 

then used for composite interval mapping to more precisely define the regions of the genome associated with yield 

components. RIL2-derived progenies were also studied to validate these QTLs and demonstrated an association with 

the candidate gene SP5. Gene effects were estimated for intervals associated with yield components using an 

independent hybrid testcross population. Three populations were then used to develop and test genomic prediction 

models that accounted for these QTLs and estimated gene effects. Finally, the accuracy of the models was tested 

against experimental data for an independent set of hybrids. 

 

The training populations consisted of the RIL population formed from three crosses 

involving OH2641 x OH987034, OH7814 x OH987034, and OH2641 x OH981136 with 95, 

119, and 68 fifth generation self-fertilized (F5) progenies, respectively. A subset of the RIL 

population, RIL2, derived from the OH7814 x OH987034 cross, was used for the genetic 

mapping and QTL analysis of yield-related traits using interval mapping. OH7814 is an early-

season inbred (Berry and Gould, 1983) and OH987034 is a high-yielding bacterial spot resistant 

inbred (Francis and Miller, 2005). The second training population was the Solanaceae 

Coordinated Agriculture Project (SolCAP) inbred line population which represents parent 

germplasm for the North American processing tomato industry as described previously (Merk et 

al, 2012 and Sim et al., 2012b). The 143 SolCAP inbred lines were used as a training population 
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for genomic prediction and selected inbreds were used as test cross parents to estimate gene 

action and the effect of allele substitutions for markers associated with yield related traits. 

SolCAP inbreds were also used to test hybrid prediction. The third training population was the 

combined SolCAP and RIL populations. 

Both SolCAP and RIL inbred lines were evaluated in the field using an augmented 

experimental design (Federer et al., 1975; Lin and Poushinsky, 1983; Lin et al., 1983). We 

evaluated the RIL and RIL2 sub-population in an augmented design, planted at the North-

Central Agriculture Research Station in Fremont, Ohio, and the Horticulture Unit 1 Research 

Farm in Wooster, Ohio over the course of two years (2011 and 2012) representing four 

environments. Row, Column, and Quadrant were variables with over-replicated checks used to 

account for spatial variation in three dimensions within each environment. The best linear 

unbiased predictor (BLUP) for each genotype and environment was estimated based on the 

model (Y = Genotype + Row + Column + Quadrant + Error), where all model factors were 

random. Analysis was performed with R software 4.1.1 (R Core Team, 2022), and functions 

“lmer” and “ranef” from the lme4 package (Bates et al., 2015). BLUPs across the four 

environments were subsequently averaged.  

We used an independent testcross population to estimate gene action and the effect of 

allele substitutions for markers associated with yield-related traits. This population consisted of 

fifty-seven hybrids and was formed by crossing selections from the RIL population with inbred 

lines 2K1-1439, OH05-8127, OH05-8157, OH08-7460, OH8556, selected from the SolCAP 

population (Merk et al., 2012; Sim et al., 2012b).  The testcross hybrids were evaluated in 

Wooster and Fremont in 2017, using a randomized complete block design with two blocks at 

each location. The experimental design was treated as fully random and BLUPs were averaged 

across the two locations.  

Finally, a set of 76 F1 hybrids was used to test the prediction ability of our models (stage 

three, Figure 1). These hybrids were developed by crossing 32 SolCAP lines in various 

combinations and were evaluated in a randomized complete block design with two replications 

per environment in Wooster and Fremont over two years. BLUPs were estimated in each 

environment and were subsequently averaged. All populations were evaluated for total yield 

(kg.plant-1 and ripe kg.plant-1) and fruit weight (grams.fruit-1). 

 

DNA extraction and molecular marker genotyping 

Genomic DNA was isolated from fresh, young leaf tissue using a CTAB method scaled 

to 96-well format (Sim et al., 2015). Single-nucleotide polymorphisms (SNPs) were genotyped on 
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two platforms. The “SolCAP” Infinium array (Illumina Inc., San Diego, CA) developed for 

tomato (Sim et al., 2012a) contained 7,700 SNPs, 3,255 of which were polymorphic within the 

SolCAP inbred population. Previous data suggested that recombination in tomato was limited 

and the 3,255 SNPs would produce redundant genome coverage (Sim et al., 2012a). SNPs for the 

RIL population were therefore selected to cover the genome based on polymorphic information 

content, recombination, and physical position (Sim et al., 2012b). A 384-marker panel was 

selected as an optimized SNP set designed for use in a Competitive Allele Specific Polymorphism 

(KASP) assay (Semagn et al., 2014). Genotyping of the progenies was performed as a service by 

LGC Genomics (LGC Group, Middlesex, UK). All genotypes were coded relative to OH8245 as 

a genotype reference. Test-cross and hybrid genotypes were inferred by combining data for the 

two parent genotypes. 

 

Genome-wide association studies (GWAS), genetic mapping, QTL analysis, and single-

marker analysis 

GWAS analysis was conducted using GAPIT (Lipka et al., 2012) by fitting the fixed and 

random circulating probability unification (FarmCPU) model in the RIL population (Liu et al., 

2016). The FarmCPU model uses only the associated genetic markers as pseudo Quantitative 

Trait Nucleotides (QTNs) to derive kinship correction, controlling false positives as well as the 

MLM model with reductions in both false negatives and computing times (Liu et al., 2016). The 

first three principal component analysis scores were used as fixed effects to account for 

population structure. 

A set of 260 SNP markers from the 384 marker panel were polymorphic in the RIL2 

population (OH7814 x OH987034). Of these, 196 markers passed quality filter for segregation 

distortion, missing data, and independence and were used to construct a genetic map using qtl 

package 1.50 (Broman et al. 2003). Map order was adjusted using the “Reorder” function in the 

qtl package and quality was assessed based on the logarithm of odds (LOD), chromosome 

lengths, and heatmaps. The Kosambi map function was applied for calculating the map distance 

(cM) between adjacent markers (Kosambi, 1944). Finally, map quality was assessed using linear 

regression to compare genetic and physical position relative to the SL.4.0 tomato genome 

(Hosmani et al., 2019). 

QTL analysis was performed by composite interval mapping (CIM) within the qtl 

package, using a 1 cM scan to detect putative QTL. We included a single cofactor with a 10 cM 

window size. The 95% significance LOD threshold was determined using 1000 permutations 

(Churchill and Doerge, 1994). A linear regression of phenotypes on markers was used to infer the 
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proportion of variance explained by the QTL. A LOD-defined interval (CIM interval) was used 

to detect SNPs highly associated with the putative QTLs. We also performed a single marker 

analysis aiming to define a wider region of association around the peaks (SMA interval), using the 

simplified model (Y= m + e) and considering as associated markers those that had a P-value < 

0.01. The markers included in these intervals were tested for linkage disequilibrium, and when 

dependency between two markers was detected we eliminated one of those. This step was 

necessary because modeling such markers as fixed covariates inside the mixed model approach in 

the third research stage does not allow dependency between factors. 

 

Gene effect estimation. Action and allele substitution 

We estimated the gene effects for all markers detected in the previous stage in the 

Testcross population. The linear regression model (Y = m + e) was used to obtain each locus 

genotype value and infer the gene action effect. These estimations were used later for modeling 

different degrees of dominance in genomic prediction. A phase adjustment was made when 

necessary to match the Testcross QTL signal by multiplying genotypes values by -1 when the 

beneficial allele was coded with a negative sign so that the beneficial genotype value was always 

positive.   

 

Candidate gene identification and association analysis of Hawaii 7998 SP5 allele with 

plant architecture and yield components 

Sequence for SP5G was retrieved from the National Center for Biotechnology 

Information (NCBI) using GeneBank identification AY186736.1 (Carmel-Goren et al., 2003). 

The Basic Local Alignment Search Technique (BLAST) tool at the Sol Genomics Network 

(https://solgenomics.net/) was used to identify the International Tomato Annotation Group 

(ITAG) gene identification for SP5G.   

Two strategies were used to identify polymorphisms in SP5G.  First, genome sequences 

provided by the Tomato Genome Consortium (The Tomato Genome Consortium, 2012) for the 

red-fruited tomato varieties Heinz 1706 (Hosmani et al., 2019), LA1589 (The Tomato Genome 

Consortium, 2012), and Hawaii 7998 (Anderson, 2020) were searched using stand-alone BLAST. 

Sequences matching AY186736.1 were retrieved for each accession. Second, a PCR amplification 

strategy was used for sequencing to confirm polymorphisms identified in the bioinformatic 

pipeline. We developed eleven pairs of tiled primers each amplifying approximately 600 bp 

spanning the structural gene. Primer pairs (5′ to 3′) included: SPOH-1 F: 

TCCCAATAAACAAAGGAAAAAG R: TTCATTGCTACTTAAGTGGTTTCTC; SPOH-2 F: 
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CGAGAAAGGATTTAATTTCTCAAA R: TGGATACATGAGCCATGACAA; SPOH-3 F: 

AATATGACGCATAAATCATTCCA  R: GGCCAAACGTTTCTTTACCA; SPOH-4 F: 

TGTCAAAATTACTTGATTCTCCAC  R: AATCAATGGTTGACAAGTCGTG; SPOH-5 F: 

TGAAGATGCGACTTTGTTTGA R: ACTTGTGAAGGCCTCAAGGA; SPOH-6 F: 

AAAATATCATCCATCCATCTCATGT R: GCCTTTGCACATATTGTCCTT; SPOH-7 F: 

GGTTGACATTGATGGAGACG R: GCATCAGGATCCACCATAATC; SPOH-8 F: 

GTAACATGTATGTTTAATATTGCAAGC R: TGTAAGGGGATTAAGCAATCG; SPOH-9 

F: TCGTCGATAGCGAAGACAAA; R: CGCGTATTTTCCTTGTTTCAA; SPOH-10 F: 

TTACGCAGTGACGAAGCAAG R:  CAGCAACAGGCAAACCTAGA; SPOH-11 F: 

CGTTATACAGGCAATGAAGTCG R: TCTCATAATTTCAATTTTCTTCGAT. Sequencing, 

quality control, and alignment followed procedures described previously for the Beta locus 

(Orchard et al., 2021). 

For confirmation of QTL discovery from the GWAS and CIM analysis, F3 individuals 

derived from OH7814 x OH987034 and OH2641 x OH987034 F2 progeny were selected for 

evaluation. The F2 seeds used to select F3 individuals and subsequent F4 families were from the 

same crosses used to develop the nested RIL but were independent of the RIL lines advanced. 

Selected F3 individuals were evaluated in a greenhouse trial for fourteen traits related to plant 

architecture: plant height (distance in centimeters from the first node to the first flower cluster), 

number of nodes (before the first flower cluster), internode length (average internode length in 

centimeters), flowering time (number of days before the first flower was observed), number of 

flower clusters, number of flowers (total number of flowers on all flower clusters), number of 

flowers on the first and second clusters, first and second flower cluster position (main or lateral 

stem), first and second clusters type A (single or double), and first and second clusters type B 

(bifurcated or not). F4 selections derived from five heterozygous F3 plants were generated based 

on polymorphism detected by SP5OH-9 primers (F: TCGTCGATAGCGAAGACAAA; R: 

CGCGTATTTTCCTTGTTTCAA). From each of these five families, we selected three possible 

genotypes (homozygous Hawaii 7998, heterozygous, and homozygous for the common allele 

found in processing tomato). A trial containing a total of 30 plots (5 families x 3 genotypes x 2 

blocks) was evaluated in the field as a randomized complete block design. Plots consisted of 20 

plants each based on the SP5G allele. We evaluated production by measuring ripe, green, cull, 

and total fruit for the central five plants based on yield (kg.plant-1), marketable fruit (kg.plant-1), 

fruit weight (grams.fruit-1), and plot width (centimeters). Analysis of F3 individuals was based on 

the linear regression model (Y = m + e) where m was the marker effect.  For binary traits, a 

Kruskal–Wallis test was applied using the function kruskal.test in R (R Core team, 2022). For F4 
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families the model was (Y = f + m + e) where f was a variable for family which traces back to 

specific F3 individual, which was self-pollinated to produce F4 families, separated by genotype as 

described above.   

 

Genomic prediction models 

Genomic prediction models were developed and tested on three populations: SolCAP 

inbreds, the nested RIL, and the two populations combined. A total of 268 markers passed 

quality control based on <5% missing data, a minimum 5% minor allele frequency (MAF), and 

were used for prediction. Two types of models were evaluated: 1) a completely random model, 

with the assumption that all markers had a small effect and a common variance estimated using 

ridge regression; and, 2) a mixed model, in which markers linked to a QTL were considered as 

fixed effect covariates, and markers out of the interval were considered as random effects. Within 

the mixed model, we also tested two intervals of QTL-linked markers, a narrow interval detected 

by the CIM threshold, and a wider interval detected through single marker analysis (SMA).  

Genomic selection (GS) models were developed using the rrBLUP package in R 

(Endelman, 2011). We estimated the marker effects and genomic estimated breeding value 

(GEBV) using three training populations, as described above. We assessed the model’s prediction 

accuracy through leave-one-out cross-validation. The Pearson coefficient of correlation between 

estimated GEBV and the phenotypic BLUP (rg), accuracy, was used to measure prediction 

performance.  

To access the potential of these models to predict further generations, we calculated 

GEBVs for hybrids using the estimated marker effects and evaluated the prediction accuracy 

based on the correlation between their GEBVs and phenotypic BLUPs (rg). We adjusted the 

original GS models to account for QTL dominance effects using three different scenarios: a) 

Additivity, where the genotype scoring matrix was the standard -1, 0, and 1; b) Dominance, in 

which we re-scored linked heterozygous SNPs according to the gene action estimate to reflect the 

beneficial allele (-1 or 1); c) Estimated degree of dominance, where we used Testcross gene effect 

estimations in the marker matrix. For this final approach, we normalized the gene effect 

estimation to a range of two to be consistent with the original range of marker scoring.  

We also performed all previously described analyses in the SolCAP population with the 

full marker data set of 3,255 markers. Inside the QTL intervals, we retained only markers that 

were present in the reduced marker set. This step was necessary to allow faithful comparisons 

between marker sets. 
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3.3. Results 

Identifying QTLs associated with yield components 

GWAS analysis of the nested RIL population revealed a peak on chromosome five 

associated with kg production per plant, represented by marker solcap_snp_sl_12285 (Figure 2). 

We also detected four peaks related to fruit weight, one peak each on chromosome one 

(solcap_snp_sl_13762) and five (solcap_snp_sl_23786), and two peaks on chromosome three 

(solcap_snp_sl_62180 and solcap_snp_sl_20723). 

 

Figure 2. Manhattan and QQ plots resulted from FarmCPU model for kg per plant (a), and fruit weight (b) of RIL 

population. The black lines represents Bonferroni correction threshold. 

 

We constructed a linkage map of the OH7814 x OH987034 RIL population (n = 119) 

using 196 SNP markers (Supplementary Table S1) and obtained 128 genetic bins. The map and 

map quality are summarized in Table 1. For almost all the markers the reference order resulted in 

a higher LOD score and/or a shorter distance between adjacent markers. There was no 

information for marker solcap_snp_19661 in the SL.4.0 tomato genome reference. This marker 

was reordered on chromosome 3, resulting in the best fit. We split chromosome 9 into two 

linkage groups because a recombination fraction greater than 0.5 was found for adjacent markers. 

The map covered a total genetic distance of 588 cM, the average distance between markers was 

around 3 cM, and the maximum gap was 47.4 cM on chromosome 8 (Table 1). For each 

chromosome, the number of markers ranged from 5 to 65, and the length ranged between 13.1 

and 81.5 cM. 
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Table 1. Genetic map quality for F5 recombinant inbred lines population OH7814 x OH987034 

aPercentage calculated based on the region covered between the first and last marker of the genetic map and the 

region covered between the first and last marker of the reference genome. 

 

A region around 41 cM on chromosome 5 behaves as a putative QTL for kg production 

per plant and ripe kg per plant (Figure 2), and explained 0.29 of the phenotypic variation. We 

detect this peak for most or all the individual trials, suggesting this QTL is robust and can be 

detected despite variation in environmental conditions (Table 2). Two QTLs were detected for 

fruit weight, one on chromosome 2 and another on 5, which explains 0.11 and 0.18 of the 

variation, respectively. The chromosome 5 peak was stable in three environments. Although 

QTL for fruit weight on chromosome two was only detected in one of the trials, its appearance 

in the combined data analysis may suggest that it has a consistent small effect across all the trials. 

 

Chromosome 
Number 

of 
markers 

Length  

Average 
distance 
between 
markers  

Largest 
distance 
between 
markers  

Percentage 
of reference 

genome 
covereda 

Linear regression between 
genetic map vs physical map 

(SL4.0) 

Adjusted r2 p-value 

  ⸻⸻⸻⸻⸻ cM ⸻⸻⸻⸻⸻     

1 13 81.5 7.4 18.5 94.75 0.67 3E-04 

2 28 62.2 2.8 21.6 35.28 0.99 2.2E-16 

3 9 49.8 8.3 20.0 83.23 0.91 1E-04 

4 11 13.1 2.2 8.7 75.99 0.79 1.3E-04 

5 64 53.4 1.9 9.0 94.01 0.64 8.5E-16 

6 5 50.7 12.7 30.4 24.54 0.99 4.9E-05 

7 10 59.8 8.5 22.6 93.25 0.75 7E-04 

8 12 69.4 9.9 47.4 97.56 0.65 1E-03 

9a 8 21.4 3.1 17.0 6.04 0.98 1.2E-08 

9b 2 0 - - - - - 

10 8 19.7 6.6 15.5 86.92 0.48 3.3E-02 

11 15 28.4 3.6 10.7 84.80 0.85 1.9E-07 

12 11 78.9 9.9 23.9 99.18 0.80 1.1E-03 

Total 196 588.2 - - - - - 
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Figure 3. Composite interval mapping (CIM) analysis of kilogram production per plant, fruit weight, in the OH7814 

x OH987034 recombinant inbreed line population. The horizontal lines represent the resampled LOD significance 

cutoff (α=0.05, N=1000 permutations) 

 

Table 2. Quantitative trait loci detected by composite interval mapping in the OH7814 x OH987034 recombinant 
inbred line population 

Trait Chromos
ome 

 Peak 
position 

(cM) 

LOD Threshold 
LODa 

Stabilityb Nearest marker 

kg per 
plant 

5  41 6.93 2.65 3/4 solcap_snp_sl_222 

Ripe kg 
per plant 

5  40 2.65 2.66 1/4 solcap_snp_sl_222 

Fruit 
weight 

2  8.98 2.85 2.54 1/4 Le001778_68_solcap_snp_sl_334
74 

5  1.46 4.81 2.54 3/4 solcap_snp_sl_23786 

aCalculated based resampling (α=0.05, N=1000 permutations). bNumber of times QTL appears in individual 
trial/total trials. 

 

Interval of QTL definition and gene effect estimation 

We considered the peak detected on chromosome five for kg.plant-1 in both analysis, 

GWAS and CIM, to define a yield QTL. Three markers were detected in that region for the 

narrow interval defined by CIM, solcap_snp_sl_12285, solcap_snp_sl_231, and 

solcap_snp_sl_37588. The marker solcap_snp_sl_231 did not pass linkage disequilibrium criteria 

for consideration as a fixed effect in GS models and was removed from further analyses. The two 

remaining markers represent the region between 62.55 and 63.43 Mbp on chromosome 5. A 

wider interval that included seven additional markers (solcap_snp_sl_12232, 

solcap_snp_sl_12233, solcap_snp_sl_12244, solcap_snp_sl_22642, solcap_snp_sl_37763, 
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solcap_snp_sl_345, and solcap_snp_sl_356) was defined through SMA around the QTL peak, 

and accounts for the region between 62.18 and 64.23 Mpb. 

To search regions associated with fruit weight, we only considered the peak found on 

chromosome 5, as it was the only region detected for both GWAS and CIM. The independent 

markers found in this region for the narrow interval were solcap_snp_sl_23832 and 

solcap_snp_sl_2378, representing the region between 3.48 and 3.72 Mpb. For the wider interval, 

the marker solcap_snp_sl_23722 was added and increased the region of interest to between 3.48 

and 4.11 Mpb.   

Estimations of the effect of an allele substitution for all markers related to the yield 

QTL on chromosome 5 indicated dominant to overdominant gene action (Supplementary Table 

S2). For the fruit weight QTL on chromosome 5 analysis did not detect a consistent or clear 

pattern of gene action, marker solcap_snp_sl_23832 showed dominance for larger fruit, while 

markers solcap_snp_sl_23786 and solcap_snp_sl_23722 suggested overdominance for small fruit 

(Supplementary Table S3).  

 

The chromosome 5 QTL is found in an introgression inherited from Hawaii 7998 which 

contains a novel allele of SP5 

The chromosome 5 QTL region, narrowly defined as 62.55 to 63.43 Mb, contains a 

paralog of self-pruning (sp) gene, SP5G (GeneBank ID AY186736.1, Carmel-Goren et al., 2003) 

which has the ITAG annotation Solyc05g053850.2 and maps to a physical location between 

63,889,954 and 63,891,979 bp relative to the H1706 reference. Sequencing identified a 3.6 Kb 

contig of SP5G including SPOH-3F through SPOH-11 F with a 198 bp insertion polymorphism 

distinguishing OH987034 from the common processing tomato allele shared by OH2461, 

OH7814, and H1706 with a 3.4 Kb contig.  The OH987034 allele is shared by Hawaii 7998, 

which is the source of the chromosome 5 introgression (Anderson et al., 2021). The primer pairs 

SPOH-9 and SPOH-10 flank the indel with the larger allele found in the Hawaii 7998 derived 

introgression. A SolCAP SNP marker, solcap_snp_sl_101092, which was not in our panel, lies in 

the first intron of Solyc05g053850.2. 

   Of the 14 traits evaluated for plant architecture in independent F3 progeny from 

OH7814 x OH987034 and OH2641 x OH987034, 7 showed differences associated with the 

SP5G genotype classes (Table 3). Plants with the Hawaii 7998 allele were taller and later than 

plants with the common processing allele. They had fewer flowers and flower clusters, but 

produced more axillary branches. Variation in inflorescence position, type, and internode length 

were not detected.  
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Table 3.  Association of SP5 alleles with traits related to plant architecture 

 

Trait 
Genotypic means of markers classesa 

 
R2 

p-value LSD0.05 

PP HH PH 

Height 30.39 38.06 33.8 0.44 <.0001 2.14 

Number of nodes 9.85 11.16 10.3 0.27 <.0001 0.54 

Flowering time 7.76 15.43 11.83 0.71 <.0001 1.23 

Number of flower clusters (FC) 3.61 2.06 2.93 0.48 <.0001 0.4 

Number of flowers 30.53 17.79 25.61 0.56 <.0001 2.78 

Number of flowers on the first FC 12.59 10.94 10.65 0.07 0.0128 1.44 

Number of flowers on the second FC 8.08 6.78 7.64 0.1 0.022 0.97 

aPP=Homozygous for Processing allele, HH= Ha7998 homozygote, and PH=heterozygote 

 

The Hawaii 7998 allele of SP5G was significantly associated with yield evaluated in F4 

families as measured by the weight of ripe, green, and total fruit harvested (Table 4). There was 

evidence of dominant gene action for total yield, as the heterozygous genotypes approached 

homozygous values. There was no difference in fruit size. In these families, SP5G association 

explained 0.71 to 0.1 proportion of the variation (R2) for plant architectural traits (Table 3) and 

0.26 to 0.1 proportion of the variation for yield (Table 4).  The Hawaii 7998 allele was associated 

with later flowering and larger plants with more prolific branching, though flower number per 

inflorescence was reduced. The effect of an allele substation was approximately 6 T/A of ripe 

fruit and 9 T/A of total fruit with gene action additive to dominant in these early generation 

families. The effect of family was non-significant. 

 

Table 4. Association of SP5 alleles with yield components 

Trait 
Genotypic means of markers classesa  

R2 p-value LSD0.05 
PP HH PH 

Ripe fruit weight 30.03 36.75 32.88 0.10 0.0316 4.93 

Green fruit weight 5.11 10.4 8.61 0.26 0.0079 3.23 

Cull fruit weight 4.35 2.33 4.21 - ns - 

Total fruit weight 39.49 49.46 45.7 0.11 0.0214 6.93 

Fruit size 6.15 6.4 6.32 - ns - 

1PP=Homozygous for Processing allele, HH= Ha7998 homozygote, and PH=heterozygote 
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Genomic prediction analysis 

To account for missing heritability, variation which was not accounted for in the QTL 

analysis, genomic prediction was explored. Prediction accuracies for yield based on cross-

validation ranged from a high of 0.39 for the Nested RIL, 0.38 for the SolCAP population, to 

0.30 for the combined population using the limited marker set and a completely random model 

(Table 5). Accuracies for the SolCAP population were 0.39 with the set of 3,255 markers. When 

treating markers associated with the chromosome 5 yield QTL based on the narrow interval 

defined by CIM as fixed effects, the accuracies increased in the Nested RIL and combined 

populations but not the SolCAP population for either marker set. Using the wider interval 

defined by SMA, accuracies increased in all training populations with both marker sets (Table 5). 

In contrast, accuracies for fruit size prediction in cross validation were higher, ranging from 0.35 

for the SolCAP training population to 0.58 for the nested RIL. Adding markers increased the 

prediction in the SolCAP population to 0.43, but modeling linked markers as fixed effects did not 

increase accuracy over the completely random model (Table 5). 

For prediction of hybrid performance, completely random models were predictive of 

yield only for the SolCAP model defined by the complete marker set as noted previously 

(Orchard, 2022). When markers linked to the yield-related QTL were treated as fixed effects, the 

accuracy of the additive SolCAP (3255) model increased from 0.23 to 0.31 when modeling the 

narrow interval. Modeling the larger interval increased accuracy for the SolCAP (3255) model 

from 0.23 to 0.29 and the model with 268 markers became significant (P = 0.04) with an accuracy 

of 0.23 (Table 6). We also investigated modeling the QTL-linked markers based on dominant 

gene action detected in the test cross population (Supplementary Table S2). Accounting for 

complete dominance or estimates based on the test-cross population using the window identified 

by CIM led to the same result, with accuracies of 0.35-0.36 for the SolCAP (3255) model and 

0.25 for the model based on fewer markers (Table 6). Expanding the interval resulted in a 

marginal decrease in accuracies, though significant correlations were observed for both SolCAP 

models. The method of accounting for dominance had a marginal effect on significance and 

accuracies.   

Accuracies of hybrid performance were higher for fruit size (Table 7). Highly significant 

correlations between predicted and observed values were detected for all training models with 

accuracies ranging from 0.64-0.76 for completely random models with additive gene action. 

Accuracies of random models did not increase when modeling linked markers as fixed effects. 

Incorporating dominance decreased accuracies marginally for all models, though correlations 

were still significant. Accuracies were marginally higher when the wider interval was modeled for 
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this trait (Table 7). The decrease in accuracy was greater for the mixed models when using the 

Nested RIL and Combined populations as training populations. Increasing marker number had a 

marginal effect in the SolCAP training sets (Table 7). 

 

Table 5. Cross-validation prediction accuracies for yield and fruit size using random and mixed models 

Populationa 

Yield 

Random modelb 
Mixed modelc 

Narrow interval (CIM) Wide interval (SMA) 

r p-value r p-value r p-value 

SolCAP (268) 0.38 3.04E-06 0.35 2.73E-05 0.41 4.22E-07 

Nested RIL 0.39 4.45E-11 0.44 9.05E-14 0.43 7.04E-13 

Combined 0.30 6.27E-10 0.32 4.89E-11 0.31 2.48E-10 

SolCAP(3255) 0.39 1.33E-06 0.36 1.28E-05 0.42 1.92E-07 

Population 

Fruit size 

Random model 
Mixed model 

Narrow interval (CIM) Wide interval (SMA) 

r p-value r p-value r p-value 

SolCAP (268) 0.35 3.46E-05 0.32 1.42E-04 0.33 1.02E-04 

Nested RIL 0.58 1.09E-24 0.54 3.41E-21 0.53 2.04E-20 

Combined 0.40 5.05E-17 0.41 5.11E-17 0.40 2.00E-16 

SolCAP(3255) 0.43 9.24E-08 0.36 1.85E-05 0.37 7.76E-06 

aSolCAP. Nested RIL. and combined population were evaluated using 268 markers. SolCAP(3255) corresponds to 
this population evaluation with full genotypic information. bRR-BLUP conventional model. with all markers treated 
as random. cA mixed model including QTL-linked markers as fixed covariates and the remaining markers as random. 
Two intervals of markers were tested. a narrow one detected through composite interval mapping (CIM) and a wider 
one detected with single markers analysis.  
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Table 6. Experimental prediction accuracies for hybrid yield 

Narrow interval (CIM)b 

Populationa 

Random model 

Additivec Dominanced Estimated dominancee 

r p-value r p-value r p-value 

SolCAP (268) 0.13 0.25 0.14 0.24 0.13 0.24 

Nested RIL 0.09 0.43 0.12 0.30 0.12 0.31 

Combined 0.19 0.11 0.21 0.07 0.21 0.07 

SolCAP (3255) 0.23 0.04 0.23 0.04 0.23 0.04 

Population 

Mixed model3 

Additive Regular dominance Estimated dominance 

r p-value r p-value r p-value 

SolCAP (268) 0.18 0.11 0.25 0.03 0.25 0.03 

Nested RIL 0.03 0.76 0.07 0.53 0.07 0.53 

Combined 0.13 0.26 0.19 0.09 0.21 0.07 

SolCAP (3255) 0.31 6.12E-3 0.35 1.65E-3 0.36 1.68E-3 

Wide interval (SMA)b 

Population 

Random model 

Additive Dominance Estimated dominance 

r p-value r p-value r p-value 

SolCAP (268) 0.13 0.25 0.15 0.18 0.15 0.19 

Nested RIL 0.09 0.43 0.17 0.13 0.16 0.16 

Combined 0.19 0.11 0.25 0.02 0.25 0.02 

SolCAP (3255) 0.23 0.04 0.23 0.04 0.23 0.04 

Population 

Mixed model 

Additive Regular dominance Estimated dominance 

r p-value r p-value r p-value 

SolCAP (268) 0.23 0.04 0.25 0.02 0.21 0.06 

Nested RIL 0.03 0.78 0.02 0.82 0.01 0.90 

Combined 0.14 0.21 0.20 0.07 0.19 0.09 

SolCAP (3255) 0.29 0.01 0.29 9.96E-3 0.27 0.01 

aSolCAP, Nested RIL, and combined populations were evaluated using 268 markers. SolCAP(3255) corresponds to the SolCAP 
population evaluated with 3,255 polymorphic markers from the Illumina Tomato array. bThe adjustments were made in two 
intervals, the narrow one included 2 markers detected through composite interval mapping (CIM), and the wider interval included 
9 markers detected through single markers analysis (SMA). cAssumes additive gene action, with markers scored -1, 0, 1. 
dHeterozygous loci were recoded according to the gene action estimate to reflect the beneficial allele (-1 or 1). eHeterozygous loci 
were recoded based on the estimated effect of an allele substitution.  
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Table 7. Experimental prediction accuracies for hybrid fruit size 

Narrow interval (CIM)b 

Populationa 

Random model 

Additivec Regular dominanced Estimated dominancee 

r p-value r p-value r p-value 

SolCAP (268) 0.74 4.60E-14 0.73 4.69E-14 0.73 1.48E-09 

Nested RIL 0.64 5.55E-10 0.64 2.14E-10 0.64 8.83E-13 

Combined 0.69 9.50E-12 0.68 5.28E-11 0.68 1.76E-11 

SolCAP (3255) 0.76 3.89E-15 0.76 3.82E-15 0.76 5.80E-15 

Population 

Mixed model 

Additive Regular dominance Estimated dominance 

r p-value r p-value r p-value 

SolCAP (268) 0.72 3.23E-13 0.69 3.21E-12 0.69 7.41E-12 

Nested RIL 0.39 4.74E-04 0.29 1.13E-02 0.31 7.10E-03 

Combined 0.62 2.58E-09 0.59 2.36E-08 0.58 4.26E-08 

SolCAP (3255) 0.75 6.62E-15 0.73 3.44E-14 0.73 5.50E-14 

Wide interval (SMA)b 

Population 

Random model 

Additive Regular dominance Estimated dominance 

r p-value r p-value r p-value 

SolCAP (268) 0.74 4.60E-14 0.74 1.47E-13 0.74 3.60E-14 

Nested RIL 0.64 5.55E-10 0.62 2.28E-09 0.62 2.71E-09 

Combined 0.69 9.50E-12 0.68 1.E-11 0.68 2.46E-11 

SolCAP (3255) 0.76 3.89E-15 0.75 5.06E-15 0.75 4.54E-15 

Population 

Mixed model 

Additive Regular dominance Estimated dominance 

r p-value r p-value r p-value 

SolCAP (268) 0.74 2.75E-14 0.69 8.65E-12 0.68 1.60E-11 

Nested RIL 0.35 1.77E-03 0.50 4.78E-06 0.50 5.81E-06 

Combined 0.66 1.17E-10 0.63 1.13E-09 0.63 8.71E-10 

SolCAP (3255) 0.77 7.84E-16 0.72 1.63E-13 0.72 2.28E-13 

aSolCAP, Nested RIL, and combined populations were evaluated using 268 markers. SolCAP(3255) corresponds to the SolCAP 
population evaluated with 3,255 polymorphic markers from the Illumina Tomato array. bThe adjustments were made in two 
intervals, the narrow one included 2 markers detected through composite interval mapping (CIM), and the wider interval included 
9 markers detected through single markers analysis (SMA). cAssumes additive gene action, with markers scored -1, 0, 1. 
dHeterozygous loci were recoded according to the gene action estimate to reflect the beneficial allele (-1 or 1). eHeterozygous loci 
were recoded based on the estimated effect of an allele substitution.  
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3.4. Discussion 

We explore the genetic basis of yield in processing tomato and identified a QTL on 

chromosome 5 which explains 29 percent of the variation for total fruit produced. Identifying a 

major yield-related QTL seems to contradict the infinitesimal model, though a review of the 

literature supports the existence of QTL for yield and yield-related traits. The majority of QTL 

analyses carried out on tomatoes used interspecific populations, which are often genetically 

distant from materials readily used in breeding programs. QTLs that are identified in wide crosses 

are often specific to those crosses and cannot be extrapolated. Although several yield-related 

QTLs have been identified in tomatoes, there is limited concordance across studies (Foolad, 

2007; Hernández-Bautista et al., 2015). Regarding fruit size, most QTLs were identified in 

chromosomes 1, 2, 3, 4, 6, 7, and 11, with many independent groups finding the same regions for 

different populations (Foolad, 2007). Several fruit size QTL identified in wide crosses have now 

been cloned and the beneficial alleles tend to be fixed in breeding programs suggesting that these 

alleles are domestication related and contribute little to variation in contemporary breeding 

populations (Rodríguez et al., 2011). More recently studies have begun to investigate the genetic 

basis of yield in breeding populations. QTL mapping in an F2 population derived from a cross 

between two commercial F1 hybrids of tomato identified 13 QTLs for plant growth, yield, and 

fruit (Ohyama et al., 2017). Although none of these QTL overlapped with those we identified 

here, this work serves to illustrate that exceptions to the infinitesimal model exist.   

The chromosome 5 QTL we identified, located between 62.55 to 63.43 Mb, contains a 

paralog of self-pruning (sp) SP5G (GeneBank ID AY186736.1, Carmel-Goren et al., 2003), which 

has the ITAG annotation Solyc05g053850.2 and maps to the physical location at approximately 

63.89 bp relative on the tomato reference. Self-pruning belongs to a family of genes which 

includes at least five other loci that are hypothesized to be involved in plant growth and 

development due to their sequence homology (Carmel-Goren et al., 2003). The discovery of a 

tomato line with a mutation in the SP gene on chromosome 6 (Yeager, 1927) is considered a 

milestone for tomato cultivation. Determinate plants are homozygous for the recessive allele (sp), 

and display a progressive decrease in the number of leaves separating each inflorescence until 

growth is ended by the production of two successive inflorescences. This growth pattern resulted 

in a compact plant with synchronized flowering and fruit ripening, and finally allowed mechanical 

harvesting (MacArthur, 1932; Pnueli et al., 1998). 

The region we defined overlaps with the location of obscuravenosa (obv), a gene which 

determines whether chloroplasts are found in cells around the leaf veins causing them to appear 

dark (Jones et al., 2007). Obscuravenosa was mapped to 63.05–64.01 Mb and the candidate gene, 
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Solyc05g054030, was identified as a C2H2 zinc finger transcription factor (Lu et al., 2021). It has 

been hypothesized that the prevalence of obv in processing varieties resulted from its linkage to a 

QTL, possibly an allele of SP5G, which affected compact plant habit associated with 

mechanically harvested tomatoes (Jones et al., 2007). Although flower number per inflorescence 

was lower in the greenhouse, the increased branching could explain higher yield in the field. 

Alleles of SP5G were shown to have flower-repressing activity (Cao et al., 2016), consistent with 

our observation. Variation in this locus may also be responsible for the loss of day-length-

sensitive flowering and may have played an important role in the expansion of cultivated tomato 

to beyond its center of origin (Soyk et al., 2017). The Hawaii 7998 introgression on chromosome 

5 with the yield QTL also contains resistances EB-5 and Rx-3, which confer resistance to early 

blight (Alternaria linariae) (Anderson, 2020) and bacterial spot race T1 (Xanthomonas sp.) (Yang et 

al. 2005; Sim et al., 2015), respectively. This introgression was found to be rare based on a 

genome comparison of 770 sequenced accessions of tomato (Anderson, 2020). This introgression 

is still therefore rare in breeding populations and could be fixed through selection.  

The discovery of a major QTL affecting processing tomato yield has implications for 

breeding programs. One approach is to fix the introgression through MAS.  Alternatively, a GS 

approach which uses whole-genome coverage to incorporate small effect QTL (Meuwissen et al, 

2001). However, traditional GS approaches assume additive gene action. Given our knowledge of 

genome position and gene action, we explored GS models that incorporate QTL information by 

modeling linked markers as fixed covariates. Additionally, we modeled dominant gene action. 

The mixed models accounting for the yield QTL on chromosome 5 improved hybrid prediction 

accuracy from 0.23 to 0.36 when dominance was considered and the full marker set was used for 

prediction. Also, incorporating linkage and dominance in mixed models improved accuracy from 

0.13 to 0.25 with the smaller marker set. Defining the QTL based on the narrow CIM interval 

performed better than the larger interval based on SMA. Hybrids were developed using lines 

from the SolCAP population, and models based on this training set were superior. 

For fruit weight, random models showed high hybrid prediction accuracies (0.74 - 0.76). 

Modeling different intervals and dominance failed to increase prediction accuracy. This failure 

held based on marker number and training population. For this trait, high prediction accuracies 

were observed across marker sets and training populations with fully random models. The fruit 

weight QTL we detected explained up to 18% of the variation, though their estimates of gene 

action were inconclusive because adjacent markers provided inconsistence estimates across the 

QTL interval. We conclude that this QTL may be restricted to the RIL population and cannot be 
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extrapolated. In addition, dominance does not seem to play an important role in fruit weight. The 

infinitesimal model may be a better description of genetic architecture for this case. 

The literature is divided regarding the value of incorporating linkage and gene action 

into predictive models. The inclusion of fixed covariates accounting for QTL signals in GS 

models has been shown to be effective in improving prediction accuracies in rice (Spindel et al., 

2016), tomato (Liabeuf et al., 2018), wheat (Arruda et al., 2016; Sarinelli et al., 2019; Zaim et al., 

2020), and maize (Bian and Holland, 2017). However, simulation studies including fixed effects 

for markers tagging GWAS peaks using wide data for maize and sorghum diversity panels 

showed no increase, or even a decrease, in prediction for most of the simulated genetic 

architectures (Rice and Lipka, 2019). The results reported here suggest there is practical value in 

incorporating information on linkage and gene action. 

 

3.5. Conclusion 

Chromosome 5 holds a dominant yield-related QTL in processing tomatoes. This QTL        

co-locates to an allele of SP5 that affects plant architecture. Adding information on this QTL and 

its gene action improved GS models. 
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Supplementary Material 

Supplementary Table S2 Genetic map for RIL population derived from OH7814 x OH987034 

Markers Synonyms Chromos
ome 

Linkage 
group 

Physical 
poistion Sl4.0 

Genetic 
position (cM) 

solcap_snp_sl_
15013 

 1 1 2677968 0 

solcap_snp_sl_
60078 

 1 1 2903136 1,375979188 

solcap_snp_sl_
20440 

 1 1 3637274 3,546025206 

solcap_snp_sl_
30116 

 1 1 70056469 9,758336778 

solcap_snp_sl_
36902 

 1 1 73555274 27,43201958 

solcap_snp_sl_
9751 

 1 1 77152068 41,40000748 

solcap_snp_sl_
34568 

 1 1 77388343 41,40000753 

solcap_snp_sl_
2234 

 1 1 79025804 43,05319029 

solcap_snp_sl_
2440 

 1 1 82377024 57,60635 

solcap_snp_sl_
31775 

 1 1 86869941 76,1079079 

solcap_snp_sl_
14323 

 1 1 87223580 77,59078319 

solcap_snp_sl_
100168 

CL009293.0681 1 1 87430827 78,54911421 

solcap_snp_sl_
4283 

 1 1 88836087 81,47642809 

solcap_snp_sl_
12372 

 2 2 33200863 0 

solcap_snp_sl_
8386 

 2 2 35201344 3,180948923 

solcap_snp_sl_
20325 

 2 2 35260118 3,696973825 

solcap_snp_sl_
8405 

 2 2 35340445 4,22419779 

solcap_snp_sl_
8439 

 2 2 35811913 5,3135172 

solcap_snp_sl_
14951 

 2 2 36144718 6,373840132 

solcap_snp_sl_
8464 

 2 2 36559238 7,444201024 

solcap_snp_sl_
33474 

Le001778_68 2 2 36977097 8,98199211 

solcap_snp_sl_
100784 

SGN.U568794_snp106 2 2 37602239 9,547000951 

solcap_snp_sl_
33636 

 2 2 37825099 11,94146744 

solcap_snp_sl_
36037 

 2 2 38037210 12,57106944 

solcap_snp_sl_
36017 

CL015660.0224 2 2 38073580 12,57106949 

solcap_snp_sl_
66052 

 2 2 38303824 13,10479665 

solcap_snp_sl_
35968 

 2 2 38392687 13,1047967 

solcap_snp_sl_  2 2 38412477 13,10479675 
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35955 

solcap_snp_sl_
25485 

 2 2 39026930 16,79160362 

solcap_snp_sl_
25482 

 2 2 39098574 17,25379231 

solcap_snp_sl_
35798 

 2 2 39141599 17,66738526 

solcap_snp_sl_
25429 

 2 2 39367329 18,14336976 

solcap_snp_sl_
25418 

 2 2 39445254 18,14336981 

solcap_snp_sl_
25405 

 2 2 39606070 20,72890516 

solcap_snp_sl_
100811 

SGN.U574837_snp399 2 2 39718860 20,72890526 

solcap_snp_sl_
13550 

 2 2 39904203 21,18695029 

solcap_snp_sl_
13581 

 2 2 40260152 23,14600218 

solcap_snp_sl_
100718 

S_427 2 2 40326455 23,59645921 

solcap_snp_sl_
100015 

X241_2F_264_241_2b_60_
b 

2 2 40783633 25,90988183 

solcap_snp_sl_
12841 

 2 2 47236494 47,52628332 

solcap_snp_sl_
58447 

 2 2 52079967 62,21594321 

solcap_snp_sl_
9703 

 3 3 2397009 0 

solcap_snp_sl_
23192 

 3 3 4290879 8,680862357 

solcap_snp_sl_
5722 

 3 3 49252201 28,70776118 

solcap_snp_sl_
21685 

 3 3 54291369 37,38732617 

solcap_snp_sl_
19661 

 3 3 NA 45,96125931 

solcap_snp_sl_
7940 

 3 3 56344706 48,30494745 

solcap_snp_sl_
7939 

 3 3 56363081 48,3049475 

solcap_snp_sl_
7919 

 3 3 56797388 49,83155803 

solcap_snp_sl_
15960 

 3 3 57003043 49,83155808 

solcap_snp_sl_
1698 

 4 4 7259196 0 

solcap_snp_sl_
1701 

 4 4 7346350 5,00E-08 

solcap_snp_sl_
6946 

 4 4 32440265 1,00E-07 

solcap_snp_sl_
53149 

 4 4 53798380 8,655333945 

solcap_snp_sl_
24135 

 4 4 53847108 8,655333995 

solcap_snp_sl_
58945 

 4 4 54252326 8,655334045 

solcap_snp_sl_
24606 

 4 4 54364143 9,700764772 

solcap_snp_sl_
24577 

 4 4 54444551 10,46590309 
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solcap_snp_sl_
24575 

 4 4 54509967 11,37102051 

solcap_snp_sl_
24665 

 4 4 54693934 12,27645893 

solcap_snp_sl_
24649 

 4 4 54766370 13,08377728 

solcap_snp_sl_
23832 

 5 5 3484061 0 

solcap_snp_sl_
23786 

 5 5 3720272 1,460456297 

solcap_snp_sl_
23756 

 5 5 3871993 4,224369215 

solcap_snp_sl_
48900 

 5 5 3997782 4,92714058 

solcap_snp_sl_
23722 

 5 5 4107281 5,691270592 

solcap_snp_sl_
23712 

 5 5 4178073 5,691270642 

solcap_snp_sl_
29473 

 5 5 4880444 11,69775874 

solcap_snp_sl_
51007 

 5 5 7678832 17,05841924 

solcap_snp_sl_
51015 

 5 5 7858705 17,05841929 

solcap_snp_sl_
51043 

 5 5 7892027 17,05841934 

solcap_snp_sl_
13798 

 5 5 8218805 18,58745608 

solcap_snp_sl_
51094 

 5 5 8414773 19,03337044 

solcap_snp_sl_
51118 

 5 5 9871599 19,46325739 

solcap_snp_sl_
51134 

 5 5 10637662 20,76734653 

solcap_snp_sl_
51148 

 5 5 10883430 20,76734658 

solcap_snp_sl_
51607 

 5 5 20333768 20,76734663 

solcap_snp_sl_
51601 

 5 5 20507268 20,76734668 

solcap_snp_sl_
51573 

 5 5 22470726 20,76734673 

solcap_snp_sl_
51543 

 5 5 23946024 20,76734678 

solcap_snp_sl_
51538 

 5 5 24301659 20,76734683 

solcap_snp_sl_
67774 

 5 5 25595831 20,76734688 

solcap_snp_sl_
100313 

CL015854.0378 5 5 25941163 20,76734693 

solcap_snp_sl_
51281 

 5 5 26425064 22,42775742 

solcap_snp_sl_
52271 

 5 5 31025943 22,42775761 

solcap_snp_sl_
55294 

 5 5 33094734 22,42775766 

solcap_snp_sl_
55302 

 5 5 35539041 22,42775771 

solcap_snp_sl_
55319 

 5 5 38042466 22,42775776 

solcap_snp_sl_
55326 

 5 5 39865339 22,42775781 
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solcap_snp_sl_
55342 

 5 5 41350302 22,42775786 

solcap_snp_sl_
55348 

 5 5 41751153 22,42775791 

solcap_snp_sl_
38800 

 5 5 48268743 22,42775796 

solcap_snp_sl_
69405 

 5 5 51391717 22,42775806 

solcap_snp_sl_
69381 

 5 5 54381103 22,42775811 

solcap_snp_sl_
56076 

 5 5 56372679 22,42775816 

solcap_snp_sl_
100588 

CL017527.0194 5 5 57799911 22,42775821 

solcap_snp_sl_
51459 

 5 5 58434534 23,40758667 

solcap_snp_sl_
41311 

 5 5 58700683 23,88742351 

solcap_snp_sl_
22560 

 5 5 58999871 23,88742356 

solcap_snp_sl_
22563 

 5 5 59204625 23,88742361 

solcap_snp_sl_
22565 

 5 5 59267541 23,88742366 

solcap_snp_sl_
22567 

 5 5 59268343 23,88742371 

solcap_snp_sl_
22572 

 5 5 59470695 23,88742376 

solcap_snp_sl_
16137 

 5 5 60026139 24,56240355 

solcap_snp_sl_
12232 

 5 5 62428315 33,60809612 

solcap_snp_sl_
12233 

 5 5 62443859 33,60809617 

solcap_snp_sl_
12244 

 5 5 62555822 34,07501402 

solcap_snp_sl_
22642 

 5 5 62611025 34,53670138 

solcap_snp_sl_
12285 

 5 5 62800576 36,06236565 

solcap_snp_sl_
222 

 5 5 63365854 43,00253532 

solcap_snp_sl_
231 

 5 5 63496001 43,00253537 

solcap_snp_sl_
37588 

 5 5 63665542 43,53863046 

solcap_snp_sl_
249 

 5 5 63701843 43,53863051 

solcap_snp_sl_
37612 

 5 5 63727587 44,08377588 

solcap_snp_sl_
258 

 5 5 63842577 44,63243203 

solcap_snp_sl_
280 

 5 5 63978111 45,75999253 

solcap_snp_sl_
37689 

 5 5 64061065 45,75999258 

solcap_snp_sl_
308 

 5 5 64293857 49,30917283 

solcap_snp_sl_
37763 

 5 5 64393173 49,82991963 

solcap_snp_sl_
345 

 5 5 64438672 49,82991968 
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solcap_snp_sl_
356 

 5 5 64473025 51,44493518 

solcap_snp_sl_
37808 

 5 5 64555534 51,9570072 

solcap_snp_sl_
37812 

 5 5 64559529 51,95700725 

solcap_snp_sl_
37888 

SGN.U580266_snp391 5 5 64891762 53,40434829 

solcap_snp_sl_
37896 

 5 5 64942752 53,40434834 

solcap_snp_sl_
25660 

 6 6 34651470 0 

solcap_snp_sl_
11340 

 6 6 34879976 0,465075695 

solcap_snp_sl_
27197 

 6 6 38211008 17,84208572 

solcap_snp_sl_
17024 

 6 6 39227663 20,32898817 

solcap_snp_sl_
24258 

 6 6 46260408 50,69711324 

solcap_snp_sl_
22109 

 7 7 1791908 0 

solcap_snp_sl_
68098 

 7 7 2747420 8,939741328 

solcap_snp_sl_
15789 

 7 7 2851544 8,939746328 

solcap_snp_sl_
15785 

 7 7 2859618 8,939751328 

solcap_snp_sl_
22071 

 7 7 3420679 10,88117622 

solcap_snp_sl_
22770 

 7 7 55611190 16,35864344 

solcap_snp_sl_
6372 

 7 7 61024967 39,00656636 

solcap_snp_sl_
6371 

 7 7 61252038 39,49633553 

solcap_snp_sl_
7025 

 7 7 63561726 53,92753817 

solcap_snp_sl_
37097 

 7 7 65087011 59,75009853 

solcap_snp_sl_
7232 

 8 8 49686 0 

solcap_snp_sl_
24383 

 8 8 153948 5,00E-08 

solcap_snp_sl_
14530 

 8 8 2588509 9,71852564 

solcap_snp_sl_
7386 

 8 8 2853687 10,16692743 

solcap_snp_sl_
15757 

 8 8 2862357 10,16692748 

solcap_snp_sl_
7388 

 8 8 2931501 11,15772352 

solcap_snp_sl_
5428 

 8 8 3283178 11,64723457 

solcap_snp_sl_
5431 

 8 8 3418113 12,14209928 

solcap_snp_sl_
5429 

 8 8 3370149 12,14209933 

solcap_snp_sl_
34763 

 8 8 59822463 59,55866057 

solcap_snp_sl_
21473 

 8 8 59906254 59,55866062 
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solcap_snp_sl_
10246 

 8 8 62551945 69,36626256 

solcap_snp_sl_
17500 

 9 9a 489677 0 

solcap_snp_sl_
17481 

 9 9a 628839 0,762761417 

solcap_snp_sl_
28404 

 9 9a 650754 0,762761467 

solcap_snp_sl_
7775 

 9 9a 1241226 1,349612612 

solcap_snp_sl_
14653 

 9 9a 1423898 3,872422178 

solcap_snp_sl_
19983 

 9 9a 1531081 4,373949084 

solcap_snp_sl_
19982 

 9 9a 1532546 4,373949134 

solcap_snp_sl_
12501 

 9 9a 4449418 21,41040411 

solcap_snp_sl_
25721 

 9 9b 65902112 0 

solcap_snp_sl_
69576 

 9 9b 65918843 0 

solcap_snp_sl_
34373 

 10 10 3783034 0 

solcap_snp_sl_
25001 

 10 10 3932012 1,015566379 

solcap_snp_sl_
9598 

 10 10 4054610 1,015571379 

solcap_snp_sl_
9597 

 10 10 4118057 1,015576379 

solcap_snp_sl_
34365 

 10 10 4515296 1,015593344 

solcap_snp_sl_
51313 

 10 10 55081349 4,144395537 

solcap_snp_sl_
24001 

 10 10 55781326 4,144400544 

solcap_snp_sl_
100743 

SGN.U317657_C2_At3g479
30_snp417 

10 10 60135477 19,68060582 

solcap_snp_sl_
21102 

 11 11 4530744 0 

solcap_snp_sl_
21115 

 11 11 4586610 1,00E-07 

solcap_snp_sl_
24970 

 11 11 6618352 6,588224515 

solcap_snp_sl_
24976 

 11 11 6688073 7,053126915 

solcap_snp_sl_
15284 

 11 11 7311473 7,053126965 

solcap_snp_sl_
55212 

 11 11 7723289 7,053127015 

solcap_snp_sl_
6901 

 11 11 8024452 7,675922225 

solcap_snp_sl_
737 

 11 11 9885158 8,968448505 

solcap_snp_sl_
732 

 11 11 10109098 8,968448555 

solcap_snp_sl_
26266 

 11 11 11831866 9,591734022 

solcap_snp_sl_
12406 

 11 11 12013193 9,591734072 

solcap_snp_sl_
676 

 11 11 13022974 10,1689834 
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solcap_snp_sl_
19149 

 11 11 49787007 20,82129667 

solcap_snp_sl_
14075 

 11 11 50076293 20,82129672 

solcap_snp_sl_
100695 

Le014880s_88 11 11 51621630 28,41795444 

solcap_snp_sl_
17703 

 12 12 107882 0 

solcap_snp_sl_
1572 

 12 12 4080943 20,01170496 

solcap_snp_sl_
22748 

 12 12 59842648 43,90511686 

solcap_snp_sl_
3112 

 12 12 60847191 45,36338537 

solcap_snp_sl_
19345 

 12 12 61458568 45,36338542 

solcap_snp_sl_
12856 

 12 12 62630479 56,63020933 

solcap_snp_sl_
31973 

 12 12 63926751 69,08018491 

solcap_snp_sl_
12646 

 12 12 64080252 69,08018496 

solcap_snp_sl_
25007 

 12 12 64291758 71,60059207 

solcap_snp_sl_
19393 

 12 12 65668574 77,03878095 

solcap_snp_sl_
6526 

  12 12 66315373 78,87276432 
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Supplementary Table S3 Gene effects estimations on Testcross population, and normalized and best genotype 
adjusted (BGA) scoring for markers detected within the yield QTL intervals on chromosome 5 
aPhase adjustment was applied to match the QTL signal by multiplying the gene effects by -1.  For these markers, a 
negative number gives the best phenotypic value; bSingle marker analysis (SMA) and composite interval mapping 
(CIM). 

 
 
 
 
 
 
 
 
 
 
 

Marker Genotype 
Actual 

estimate 
Normalized BGA Gene action 

Detection 
intervalb 

solcap_snp_sl
_12232 

-1 -0,6241 -1,608090698 -1,008090698 

Overdominace SMA 0 0,1521 0,391909302 0,991909302 

1 -0,2235 -0,575882505 0,024117495 

solcap_snp_sl
_12233 

-1 -0,6241 -1,608090698 -1,008090698 

Overdominace SMA 0 0,1521 0,391909302 0,991909302 

1 -0,2235 -0,575882505 0,024117495 

solcap_snp_sl
_12244 

-1 -0,6967 -1,537120794 -0,997120794 

Overdominace SMA 0 0,2098 0,462879206 1,002879206 

1 -0,2235 -0,49310535 0,04689465 

solcap_snp_sl
_22642 

-1 -0,6967 -1,192366935 -0,992366935 

Dominance SMA 0 0,1368 0,234126305 0,434126305 

1 0,4719 0,807633065 1,007633065 

solcap_snp_sl
_12285 

-1 -0,6967 -1,192366935 -0,992366935 

Dominance 
SMA and 

CIM 
0 0,1368 0,234126305 0,434126305 

1 0,4719 0,807633065 1,007633065 

solcap_snp_sl
_231a 

-1 0,2235 0,729081716 0,489081716 

Overdominace 
SMA and 

CIM 
0 -0,2355 -0,768227043 -1,008227043 

1 0,3776 1,231772957 0,991772957 

solcap_snp_sl
_37588a 

-1 0,2235 0,729081716 0,479081716 

Overdominace 
SMA and 

CIM 
0 -0,2355 -0,768227043 -1,018227043 

1 0,3776 1,231772957 0,981772957 

solcap_snp_sl
_37763a 

-1 0,27351 1,054801388 0,784801388 

Overdominace SMA 0 -0,1907 -0,735441573 -1,005441573 

1 0,3279 1,264558427 0,994558427 

solcap_snp_sl
_345a 

-1 0,2735 0,844135802 0,674135802 

Overdominace SMA 0 -0,2704 -0,834567901 -1,004567901 

1 0,3776 1,165432099 0,995432099 

solcap_snp_sl
_356a 

-1 0,2735 0,844135802 0,674135802 

Overdominace SMA 0 -0,2704 -0,834567901 -1,004567901 

1 0,3776 1,165432099 0,995432099 
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Supplementary Table S3 Gene effects estimations on Testcross population, and normalized and best genotype  
Adjusted (BGA) scoring  for markers detected within the fruit size QTL interval on chromosome 5. 
 

Marker Genotype Actual estimate Normalized BGA Gene action Intervalb 

solcap_snp
_sl_23832 

-1 -3,3159 -1,5014603 -0,9914603 

Dominance 
SMA and 

CIM 
0 0,7275 0,329416559 0,839416559 

1 1,101 0,4985397 1,0085397 

     
    

solcap_snp
_sl_23786 

-1 0,1703 0,057580471 -0,452419529 

Overdominance 
SMA and 

CIM 
0 -1,4372 -0,485934542 -0,995934542 

1 4,478 1,514065458 1,004065458 

     
    

solcap_snp
_sl_23722a 

-1 -1,7637 -1,121732494 -1,001732494 

Overdominance SMA 0 1,3809 0,878267506 0,998267506 

1 0,2629 0,167207276 0,287207276 
aPhase adjustment was applied to match the QTL signal by multiplying the gene effects by -1.  For these 
markers, a negative number gives the best phenotypic value; bSingle marker analysis (SMA) and composite 
interval mapping (CIM). 

  

 


