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RESUMO 

Caracterização funcional de efetor de Magnaporthe oryzae (anamorfo: Pyricularia 

oryzae) durante a infecção 

O fungo ascomiceto filamentoso Magnaporthe oryzae (sin. Pyricularia oryzae), 
agente causal da brusone do arroz, representa um desafio crítico à segurança alimentar, por se 
tratar de um patógeno com grandes desafios de manejo. Essa doença é responsável por perdas 
de produção estimadas entre 10–30% do total da produção mundial de arroz. M. oryzae utiliza 
um arsenal sofisticado de efetores para contornar os mecanismos de defesa do hospedeiro e 
invadir com sucesso as células de arroz. Esses efetores são proteínas especializadas que 
interagem com os mecanismos celulares do hospedeiro, manipulando-os para facilitar a 
infecção, colonização e reprodução do patógeno. O objetivo principal deste estudo foi 
fornecer uma revisão abrangente sobre efetores de M. oryzae e ampliar a caracterização do 
efetor Bas83, avaliando seu impacto na sintomatologia da brusone em arroz. Para elucidar o 
papel do efetor Bas83 na dinâmica de infecção e progresso da doença, a pesquisa utilizou a 
cepa tipo selvagem (WT) M. oryzae Guy11. Este estudo empregou uma abordagem dupla em 
manipulação genética, incorporando técnicas de superexpressão e silenciamento gênico 
mediado por RNA de interferência (RNAi). Essas metodologias foram escolhidas 
estrategicamente para proporcionar um entendimento abrangente dos papéis funcionais do 
Bas83 no processo de infecção, oferecendo insights sobre como sua modulação afeta a 
manifestação da doença no arroz. Além disso, o estudo investigou o papel de domínios 
proteicos específicos no Bas83 em ditar a localização e a dinâmica de secreção do efetor 
dentro das células hospedeiras. Isso foi alcançado através de uma abordagem de deleção de 
domínio proteico direcionado, permitindo uma avaliação detalhada de como domínios 
específicos influenciam a distribuição espacial e a atividade funcional do Bas83 no processo 
de interação hospedeiro-patógeno. Este estudo não conseguiu produzir cepas de 
superexpressão Bas83:mRFP, mas gerou com sucesso três cepas com silenciamento notável 
de BAS83 (68%, 69% e 79%). Essas cepas mostraram um impacto direto nos estágios de 
infecção em comparação com a Guy11 WT. Ensaios in planta indicaram que as cepas 
RNAiBas83 apresentaram menores intensidades de doença (2-3) em comparação com a 
Guy11 WT (4-5), confirmando a influência significativa do efetor Bas83 no desenvolvimento 
da brusone. Além disso, os resultados mostram que deleções de domínios na proteína Bas83 
alteram de forma marcante sua localização e secreção no complexo interfacial de biotrofia 
(BIC) de M. oryzae. Enquanto o domínio intacto da proteína Bas83 marcado com mRFP 
acumula-se na região do BIC, deleções como o sinal de secreção (SS) e sequências de 
aminoácidos 22-61, 62-120 e 121-173 bloquearam a secreção no BIC, levando ao acúmulo da 
hifa invasiva. Portanto, o silenciamento do Bas83 afeta significativamente os estágios de 
infecção de M. oryzae e o progresso da doença. Além disso, a deleção de domínios proteicos 
específicos no Bas83 influencia a localização e secreção do efetor através dos BICs. 

Palavras-chave: Magnaporthe oryzae, Efetor Bas83, Proteína, Brusone do arroz 
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ABSTRACT 

Functional characterization of Magnaporthe oryzae (anamorph. Pyricularia oryzae) 

effector during infection 

The filamentous ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae) 
represents a critical challenge to global food security due to its role in causing devastating 
blast diseases in rice. These diseases account for yield losses estimated at 10–30% of total 
global rice production. M. oryzae utilizes a sophisticated arsenal of effectors to circumvent the 
innate immune defenses of the host and successfully invade plant cells. These effectors are 
specialized proteins that interact with the host's cellular mechanisms, manipulating them to 
facilitate infection and proliferation of the pathogen. The primary objective of this study was 
to provide a compreensive review on M. oryzae and to augment the characterization of the M. 
oryzae effector Bas83 and to assess its impact on the symptomatology of rice blast disease. In 
order to elucidate the role of the Bas83 effector in the infection dynamics and progression of 
the blast fungus, the research utilized the M. oryzae Guy11 wild-type (WT) strain. This study 
employed a dual approach in genetic manipulation, incorporating both overexpression and 
RNA interference (RNAi)-mediated gene silencing techniques. These methodologies were 
strategically chosen to provide a comprehensive understanding of Bas83's functional roles 
within the infection process, offering insights into how its modulation affects disease 
manifestation in rice. Additionally, the study investigated the role of specific protein domains 
in Bas83 in dictating the effector's localization and secretion dynamics within host cells. This 
was achieved through a targeted protein domain deletion approach, allowing for a detailed 
assessment of how particular domains influence the spatial distribution and functional activity 
of Bas83 in the host-pathogen interaction process. This study failed to produce Bas83:mRFP 
overexpression strains but successfully generated three strains with notable Bas83 silencing 
(68%, 69%, and 79%). These strains showed a direct impact on infection stages compared to 
the Guy11 WT. In planta assays indicated that RNAiBas83 strains had lower disease scores 
(2-3) versus the Guy11 WT (4-5), confirming Bas83's significant influence on blast disease 
development. Also, the findings show that domain deletions in the Bas83 protein markedly 
alter its localization and secretion into the biotrophic interfacial complex (BIC) of M. oryzae. 
While the intact Bas83 protein tagged with mRFP accumulates into the outlayers of BICs, the 
deletions of the secretion signal (SS) and amino acid sequences 22-61, 62-120, and 121-173 
blocked their secretion into BICs, leading to their accumulation into fungal invasive hyphae. 
In conclusion, the silencing of Bas83 significantly impacts the infection stages of M. oryzae 
and the progression of blast disease. Additionally, the deletion of putative protein domains in 
Bas83 influences the effector's localization and secretion through the BICs. 

Keywords: Magnaporte oryzae, Bas83 effector, Protein domain, Rice blast 
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1. GENERAL INTRODUCTION 

Rice (Oryza sativa) is a staple food that is highly important for more than half of the 

world's population, as it is responsible for approximately 19% of the calories consumed daily 

worldwide (Elert, 2014). A meta-analysis projection suggests that the global food demand 

will increase from 35% to 56% between 2010 and 2050, meanwhile, the population at hunger 

risk will dramatically increase in the same period not only because of population growth but 

also because of the undergoing climate changes (van Dijk et al., 2021). Since forecasts 

indicate that the world population and food demand will continue to grow in the upcoming 

years, rice yields should increase by at least 28% in the next decades (Zhu et al., 2022). 

However, the yield rise is threatened by the climate changes such as extreme temperatures 

reported in several countries like Thailand, India, China, and the United States (Arunrat et al., 

2020; Lafferty et al., 2021). 

On the world stage, outside Asia, Brazil is the largest rice producer, with important 

regions for rice cultivation, such as the states of Maranhão in the northeast, Mato Grosso in 

the west, Minas Gerais in the east, and Santa Catarina and Rio Grande do Sul in southern 

Brazil (Sharma, 2010; Schwanck et al., 2015). These last two states are responsible for about 

66% of rice production in Brazil under irrigated areas, reaching the highest yields in the 

country (Singh et al., 2017). Rice yield can be affected by several factors, such as water 

availability, soil fertility, climate, insects, and diseases (Jiang et al., 2020). The crop is mainly 

affected by several diseases caused by bacteria, viruses, and fungi (Dai et al., 2007). 

Among the fungi pathogenic to rice, the causal agent of the blast is the first ranked 

within this group of phytopathogens (Dean et al., 2012). The ascomycete Magnaporthe 

oryzae (anamorphic Pyricularia oryzae) is responsible for causing rice blast. This pathogen is 

an excellent model organism for the investigation of molecular mechanisms of plant-pathogen 

interactions (Pennisi, 2010; Jacob et al., 2017). All plant tissues are subject to infection, but 

the rice panicle is the part that, when attacked, can lead to complete grain loss (Dean et al., 

2012). The most typical yield losses are about 10 - 30%, although epidemics can lead to 

higher impacts (Dean et al., 2012). 

During the interaction with the plant, M. oryzae uses several mechanisms to 

overcome the host barriers. These mechanisms can affect plant tissues to favor infection and 

colonization by the pathogen. The M. oryzae is a pathogen widely studied and known for the 

large number of secondary metabolites it produces, many of which are involved in important 

processes, including the phytotoxin pyriculol, which is linked to the induction of necrotic 
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lesions (Motoyama et al., 2021). Another secondary metabolite produced is melanin, which is 

crucial for the infection process, as it is directly involved with the appressoria melanization 

and it helps standing the high turgor pressure generated by the structure, processes that are 

fundamental for the success of M. oryzae in the interaction with the plant tissue (Motoyama et 

al., 2021). 

In the same way that pathogens have mechanisms to facilitate their infectious process 

in plant tissue and succeed in infection, plants also have mechanisms to recognize pathogens 

and trigger their mechanisms to defend themselves against attacks (Jones and Dangl, 2006). 

Plants have an innate immune system that allow the recognition of molecules released by 

pathogens and enables the battle between plant and pathogen during the interaction (Jones and 

Dangl, 2006). In this battle, the pathogen uses various tools to overcome plant defense, which 

includes the secretion of a large repertory of effector proteins. Effectors are important features 

required for pathogenesis, mainly due to their ability to modulate plant immunity and 

facilitate infection (Macho and Zipfel, 2015). 

The confrontation between rice and M. oryzae commences with the adhesion of the 

three-celled asexual M. oryzae spore (conidia) to the leaf cuticle facilitated by an adhesive 

substance known as spore tip mucilage (Figure 1) (Hamer et al. 1988). Subsequent to 

adhesion, germination occurs through the emergence of a polarized germ tube originating 

from one of the apical cells (Hamer et al. 1988). This germ tube extends across the leaf 

surface until it undergoes differentiation into an appressorium, a dome-shaped infection 

structure (Ryder and Talbot, 2015). The formation of an appressorium is essential for 

initiating plant infection, as it empowers the fungus to physically breach the cuticle of the 

plant host (Cruz-Mireles at al., 2021). Later, a high turgor pressure (reaching up to 8.0 MPa) 

is generetad within the appressorium, facilitating the penetration peg to rupture the host cell 

cuticle (de Jong et al., 1997). This marks the onset of primary hyphae development within the 

initially invaded cell, establishing an intimate biotrophic association (Fernandez and Orth, 

2018). Then, the primary hyphae differentiates into invasive hyphae (IH) being surrounded by 

the extra-invasive hyphal membrane (EIHM) that separetes IH from the rice cytoplasm 

(Kankanala et al., 2007; Wilson, 2021). The extra-invasive hyphal membrane matrix (EIHM 

matrix) forms between the EIHM and the M. oryzae cell wall (Kankanala et al., 2007; Wilson, 

2021). During the colonisation, the IH continues to grow and once it fills the first invaded 

cell, the IH moves to the adjacent uninfected cells through plasmodesmata (Kankanala et al., 

2007; Martin-Urdiroz et al. 2016; Wilson, 2021). Rice blast lesions become visible 96-144 

hours after infection, and optimal humidity conditions are essential for sporulation (Talbot, 
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2003, Wilson, 2021). Subsequently, M. oryzae spores disseminate to healthy plants, 

completing the rice blast fungus life cycle (Talbot, 2003). 
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Figure 1. Life cycle of the rice blast fungus Magnaporthe oryzae. The cycle begins with the 
conidium surface attachment facilitated by the spore tip mucilage (adhesion), progressing to 
germination after 2 hours. 4-6h hours post inoculation (hpi), the germ tube starts to swell and 
develops a melanized appressorium. By 24-28 hpi, the spore undergoes autophagy, and the 
penetration peg breaches the leaf cuticle to reach the underlying epidermal cells (penetration). 
Then, penetration peg differentiates into a filamentous primary hyphae, subsequently 
transitioning into an invasive hyphae (IH). The extra-invasive hyphal membrane (EIHM) 
serves to separe the IH from the rice cytoplasm, creating the EIHM matrix between the M. 
oryzae cell wall and EIHM. Apoplastic effectors (¨) can be find in the EIHM matrix, while 
the cytoplasmic effectors (•) are secreted through the biotrophy interfacial complex (BIC). IH 
moves to the adjacent cells 48 hpi and news BICs are generated, continuing the infection 
process (colonisation). Between 96-144 hpi, rice blast lesions become visible on the leaf 
surface, and the dispersal of new conidia concludes the life cycle (reproduction). 
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M. oryzae effectors are secreted via two mechanisms. Apoplastic effectors are 

released into the EIHM matrix via the conventional endoplasmic reticulum (ER)-Golgi 

pathway, while cytoplasmic effectors follow an unconventional secretion pathway utilizing 

the biotrophy interfacial complex (BIC) (Giraldo et al., 2013). For M. oryzae, especially, there 

are numerous examples of effectors already studied. Mentlak et al (2012) demonstrated that 

M. oryzae was able to overcome the first line of defense in rice plants by secreting an effector 

called LysM Protein1 (Slp1), which accumulates at the interface between the fungal cell wall 

and the plant's plasma membrane, suppressing the response chitin-induced immunity. Chen et 

al (2013) demonstrated that five effectors (MoCDIP1-MoCDIP5) from M. oryzae were able to 

induce cell death. On the other hand, effectors have been showed to be capable of suppressing 

host cell death and possibly involved with the biotrophic phase of the pathogen (Dong et al., 

2015). During the biotrophic phase of M. oryzae, various effector proteins can be secreted to 

helping to suppress the immune system, which can alter the host's physiology (Were, 2018). 

Also, M. oryzae proteins were identified as biotrophy-associated secreted (BAS) proteins, 

which are up-regulated and secreted in the earlier moments of infection in the biotrophic 

phase. Some BAS proteins remain outside the host cells in the apoplastic space, while others 

can be translocated within the cytoplasm of the host's living cells and move simplastic in the 

near cells (Mosquera et al., 2009; Khang et al., 2010). However, the way in which BAS 

proteins act in mediating the virulence of M. oryzae remains unknown in many cases. 

Recently, a new membrane-associated candidate effector, named Bas83, which localizes at 

BIC, EIHM, and plasma membrane of vesicles, has been under characterization (Oliveira-

Garcia et al., 2023). The evidence suggests that the rice plasma membrane may be a target to 

M. oryzae effectors. 

Numerous studies have shown the M. oryzae  effectors repertoire used to manipulate 

the host defense system and succesfully invade the plant tissue. Recently, Yan et al. (2023) 

demonstrated major changes in fungal gene expression during host infection, reporting 546 M. 

oryzae protein genes, of which 32 use the BIC to target the cytoplasm of rice cells. Also, Li et 

al. (2023) identified 16 M. oryzae genes that are up- or down-regulated during early infection 

processes and cause cell death BAX-mediated supression, indicating its potential association 

to pathogenicity. Given all the scientific advancements in this field and the information 

available thus far, the importance of effectors for pathogens is undeniable, particularly as a 

mechanism to overcome plant defense barriers (Zhang et al., 2022). Despite the progress in 

research, M. oryzae remains one of the most significant pathogens affecting rice cultivation, 

causing substantial losses in global rice production (Savary et al., 2019). The ongoing 
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research efforts, coupled with the pursuit of practical applications based on the acquired 

information, have the potential to mitigate the losses caused by this pathogen. In an effort to 

enhance comprehension of the rice blast disease and its effectors, this work aimed to: 

• Dissect the role of  M. oryzae efectors and their relation to plant susceptibility, 

providing a compreensive review to guide future studies on rice blast disease 

(Chapter 2); 

• Characterize a plasma membrane-associated effector Bas83 during M. oryzae infection 

through overexpression and RNAi silencing approaches (Chapter 3); 

• Describe how the deletion of putative protein domains impact M. oryzae  Bas83 

effector secretion (Chapter 4). 
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2. Magnaporthe oryzae EFFECTORS AND PLANT SUSCEPTIBILITY 

Abstract 

The filamentous fungus Magnaporthe oryzae is responsible for rice blast, the most 
devastating disease affecting cultivated rice globally. In its quest to infect plants, M. oryzae 
employs a diverse array of effector proteins. These effector molecules function to inhibit the 
defensive responses of plants, modulate various cellular mechanisms, and promote the 
proliferation of pathogens. Certain effectors are secreted by appressoria before the penetration 
of the host occurs, whereas others amass in the apoplast or infiltrate living plant cells, where 
they are localized in particular subcellular structures. During the progression of plant 
infection, the blast fungus develops a specialized interfacial structure known as the biotrophic 
interfacial complex (BIC). This complex is believed to be instrumental in the translocation of 
effector proteins into plant cells, underscoring its vital role in the infection process. This 
review delves into recent advancements in the cell biology of M. oryzae-host interactions, 
demonstrating how a deeper understanding of the deployment and delivery of M. oryzae 
effector proteins into plant cells has led to breakthroughs in disease control, contributing to 
the comprehension of pathogen invasion and host susceptibility. 
 
Keywords: host susceptibility, effector proteins, Pyricularia oryzae, biotrophic phase, 
biotrophic interfacial complex, effector secretion, rice blast. 
 

2.1. Introduction 

The ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae) represents a 

significant threat to global food security due to its role in causing devastating rice blast 

disease (Savary et al. 2019). In rice, it accounts for approximately 10–30% of worldwide yield 

losses (Dean et al., 2012). Understanding the fungal strategies for host colonization is 

paramount for effective blast disease management. M. oryzae navigates through two primary 

layers of plant immunity for successful infection (Oliveira-Garcia and Valent, 2015). The first 

layer involves the plant’s pattern recognition receptors (PRRs) on the cell surface, which 

detect pathogen-associated molecular patterns (PAMPs), triggering PAMP-triggered 

immunity (PTI) (Jones & Dangl, 2006). The second layer comprises host resistance (R) 

proteins that recognize specific pathogen AVR (avirulence)-effectors, leading to effector-

triggered immunity (ETI) (Jones & Dangl, 2006). To overcome these defenses, M. oryzae 

deploys a suite of effectors that circumvent or suppress these immune systems and manipulate 

host cellular processes to its benefit (Yan et al., 2023). These effectors demonstrate 

substantial genetic diversity, indicative of an ongoing evolutionary arms race characterized by 

continual adaptation and counter-adaptation between the host and the pathogen (Anderson et 

al., 2010). 
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Recent high-resolution transcriptional profiling studies have revealed extensive 

changes in the gene expression of the rice blast fungus M. oryzae during plant infection, 

highlighting a larger-than-anticipated repertoire of at least 548 effector-encoding genes 

crucial for blast disease development (Yan et al., 2023). This comprehensive analysis 

identified significant shifts in genes related to metabolism, cell signaling, and transcriptional 

regulation, with a focus on the co-regulated expression of effector genes. These effectors, 

showing temporal expression patterns and structural similarities without sequence homology, 

play a vital role in disease progression. A novel forward-genetic screen has further pinpointed 

RGS1 as a key modulator of effector gene expression, suggesting its dual role in 

appressorium development and pre-infection effector repression (Tang et al., 2023). Despite 

advances in understanding the regulation of effector genes, the functions of most effectors 

remain elusive. Future large-scale screenings are essential to identify effector targets within 

the host, providing insights into their role in suppressing host immunity and facilitating rapid 

pathogen colonization (Oliveira-Garcia and Valent, 2015). 

A substantial portion of our existing knowledge regarding fungal effector function is 

derived from targeted mutagenesis and live cell imaging techniques (Jones and Khang, 2018; 

Sakulkoo et al., 2018). Live-cell imaging investigations have revealed that fungal effectors are 

either dispatched to the apoplast—the interstitial space between the fungal cell wall and the 

host plasma membrane—or directed to the host cell cytoplasm during infection (Mosquera et 

al., 2009). Apoplastic effectors fulfill a protective function by concealing pathogens from host 

detection, neutralizing host enzymes, or intercepting molecules poised to activate extracellular 

immune receptors (Zhang and Zu, 2014; Lo Presti et al., 2015). In contrast, cytoplasmic 

effectors, once secreted into the plant cell cytoplasm, target specific intracellular 

compartments to undermine host immunity (Zhang and Xu, 2014). This review delves into the 

latest understanding of the pathways and mechanisms governing the delivery of effectors and 

their role in inducing susceptibility during the biotrophic phase of M. oryzae infection. It 

underscores the critical importance of comprehensive effector characterization, highlighting 

its indispensable role in the development of innovative and effective strategies for the 

management and control of blast disease. 
 

2.2. Conclusion and Outlook 

The persistent threat of rice blast disease to global rice agriculture, now exacerbated 

by the emerging and global spread of wheat blast disease, underscores the urgent need for 
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novel control methodologies (Latorre et al., 2023). This urgency is heightened by the genomic 

dynamism and rapid evolutionary adaptation of M. oryzae in natural environments. An in-

depth understanding of the processes involved in the production, deployment, and action of 

effectors is crucial for the development of rice varieties that are resistant to blast disease over 

the long term (Oliveira-Garcia and Valent, 2015). Although a vast array of putative effectors 

has been identified in M. oryzae (Mosquera et al., 2009; Yan et al., 2023), detailed molecular 

characterization of the interactions between these effectors and their host targets is still sparse. 

This gap highlights the imperative to identify and understand effector targets to fully elucidate 

the strategies employed by M. oryzae to undermine plant immune systems. Key to this 

understanding is the elucidation of the mechanisms underlying the translocation and release of 

cytoplasmic effectors into host cells. For example, deciphering how the Bas83 effector 

interacts with the EIHM may provide significant insights into the function of the BIC. The 

recent application of gene-editing technology to discover rice mutants that confer blast 

resistance is particularly significant (Sha et al., 2023). Taken together, these recent 

advancements highlight the importance of comprehensively understanding the effector 

biology in the M. oryzae-rice interaction to develop innovative and sustainable strategies for 

managing this fungal pathogen. 
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3. FUNCTIONAL CHARACTERIZATION OF THE PLASMA MEMBRANE-

ASSOCIATED EFFECTOR BAS83 OF THE RICE BLAST PATHOGEN 

Magnaporthe oryzae 

Abstract 

Rice (Oryza sativa) serves as a fundamental dietary component for more than half the global 
population, supplying crucial nutrients and energy. The rice fields are at risk from a fungal 
disease caused by the fungus Magnaporthe oryzae. The blast pathogen can cause up to 30% in 
yield losses annually. Plants have evolved complex defense mechanisms to protect themselves 
against pathogens. Conversely, M. oryzae secretes effectors to circumvent plant immunity and 
successfully invade rice cells. Then, this study aimed to enhance the characterization of the M. 
oryzae effector Bas83 and its influence on rice blast symptoms. To elucidate the function of 
the Bas83 effector in infection dynamics and disease progression of blast fungus, the study 
utilized the M. oryzae Guy11 wild-type (WT) strain and employed dual genetic manipulation 
techniques: overexpression and RNA interference (RNAi)-based gene silencing. In this study 
we were unable to generate Bas83:mRFP overexpression strains. However, we successfully 
generated three strains with substantial Bas83 silencing (68%, 69%, and 79%) and 
demonstrated that this effector directly impacts the infection stages of the RNAiBas83 strains 
compared to the Guy11 WT. Additionally, in planta assays revealed that the RNAiBas83 
strains exhibited lower disease scores (2-3) compared to the Guy11 WT (4-5), confirming that 
the Bas83 effector significantly impacts the development of blast disease. In conclusion, 
Bas83 plays a significant role in influencing the infection process and progression of blast 
disease in rice. Future studies, particularly those achieving success in Bas83 knockout or gene 
deletion, could offer a more in-depth understanding of Bas83's role in these infection 
processes. 
 
Keywords: effector protein, plant immunity, infection, Oryza sativa, Pyricularia oryzae 
 

3.1. Introduction 

Rice (Oryza sativa) is a staple food for over half of the world's population, providing 

essential nutrients and calories (Fukagawa and Ziska, 2019). Its global significance in 

agriculture and food security makes understanding and addressing threats to its cultivation 

vital (Rezvi et al., 2023). Like other crops, rice suffers from diseases caused by fungi, viruses, 

nematodes, and bacteria, resulting in significant annual yield losses worldwide (Savary et al., 

2019). Rice blast, a fungal disease caused by the hemibiotrophic ascomycete Magnaporthe 

oryzae, is one of the most significant threats to rice crop producers, resulting in yearly yield 

losses of up to 30% (Talbot, 2003). Symptoms caused by M. oryzae can be found on the leaf, 

panicle, and other parts of the plants (Ashkani et al., 2015). Blast symptoms on leaves 

typically present as extended, diamond-shaped lesions, featuring a brown or reddish-brown 

border with a gray or white center (Ashkani et al., 2015). 
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Plants have evolved intricate defense mechanisms to protect against pathogens (Kaur 

et al., 2022). Plant immunity involves both constitutive defenses and inducible responses 

triggered by the recognition of pathogen-associated molecular patterns (PAMPs) (Jones and 

Dangl, 2006). These defense mechanisms are crucial for maintaining crop health. Fungal 

effectors play a pivotal role in the interaction between pathogens and plants. These molecules 

enable fungi like M. oryzae to manipulate host cellular processes, subverting plant defenses 

and facilitating successful infection (Stergiopoulos and de Wit, 2009).  

Despite advancements in live-cell imaging, molecular biology, and effector 

investigation, the functional characterization of most reported M. oryzae effectors remains 

incomplete (Liu et al., 2023).  A variety of effectors from M. oryzae have been delineated and 

studied., such as avirulent effectors (AVR-Pita, AVR-Piz-t, AVR-CO39AVR-Pia, AVR-

Pik/km/kp, AVR-Pib, AvrPi9, Pwl1, Pwl2, ACE1 and AVRPi54), secreted proteins (Slp1, 

MC69 and Msp1) and biotrophy-associated secreted proteins (BAS1, BAS2, BAS3, BAS4, 

BAS83 and BAS107) (Fernandez and Orth, 2018; Oliveira-Garcia et al., 2023). BAS83, for 

example, was identified as a unique M. oryzae efector gene upregulated 36-fold during 

biotrophic invasion (Mosquera et al., 2009). 

M. oryzae effectors are secreted using two distinct protein secretion pathways 

(Giraldo etal., 2013). Live-cell imaging of fluorescently-labelled effectors has shown that 

apoplastic effectors, such as Bas4, Bas113, and Slp1, are held within the extra-invasive 

hyphal matrix (EIHMx) (Kankanala et al., 2007; Masquera et al., 2009; Mentlak et al., 2012). 

This matrix constitutes the enclosed apoplastic compartment formed between the EIHM and 

the cell wall of the invasive hyphae (IH). On the other hand, cytoplasmic effectors, including 

Pwl2, Bas1, and Bas107, primarily accumulate within a plant-derived structure surrounded by 

the extra-invasive hyphal membrane (EIHM), known as the biotrophic interfacial complex 

(BIC), and subsequently translocate through the EIHM into the rice cytoplasm (Khang et al., 

2010; Park et al., 2012; Giraldo et al., 2013; Giraldo and Valent, 2013). 

The first two IH cells are linked to the translocation of cytoplasmic effectors 

(Kankanala et al., 2007; Khang et al., 2010). These effectors are secreted through a 

specialized Golgi-independent secretion system that exhibits insensitivity to brefeldin A 

(Giraldo et al., 2013). Recently, a live-cell imaging study demonstrated the colocalization of a 

M. oryzae effector (Bas83) with the rice plasma membrane (Oliveira-Garcia et al., 2023). This 

study provide evidence that the translocation of cytoplasmic effectors is mediated clathrin-

mediated encocytosis in BICs (Oliveira-Garcia et al., 2023). Bas83 effector is suggested to 
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recruit plant membrane promoting the dynamic formation of vesicle-like membranous 

effector compartments that package effector proteins (Oliveira-Garcia et al., 2023).  

Understanding how fungal effectors specifically impact the defense mechanisms of 

rice is crucial for developing effective strategies against rice blast disease. Fungal effectors 

can interfere with plant signaling pathways, suppressing immune responses, and promoting 

pathogenicity (Koeck et al., 2011). This study aimed to enhance the characterization of the M. 

oryzae effector Bas83 and its influence on rice blast symptoms. 

 

3.2. Conclusion 

The present study encountered limitations in characterizing the role of Bas83 

overexpression in the infection process of M. oryzae. However, we successfully generated 

three strains exhibiting RNAi-mediated Bas83 silencing (with a minimum silencing efficiency 

of 68%) and utilized these to elucidate the significant role of the Bas83 effector in pathogen 

infection. This study demonstrates the influence of RNAiBas83 silencing on the infection 

stages of M. oryzae. Additionally, it was observed that the RNAiBas83 strains deviated from 

the standard infection pattern exhibited by the M. oryzae Guy11 wild-type and resulted in less 

severe rice blast symptoms. Further insights into Bas83's role in infection could be gleaned 

from future studies, particularly if strategies to achieve Bas83 knockout or gene deletion are 

successful.  
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4. DELETION OF PROTEIN DOMAINS AFFECTS LOCALIZATION AND 

SECRETION OF THE M. oryzae BAS83 EFFECTOR VIA THE BIOTROPHIC 

INTERFACIAL COMPLEX 

Abstract 

This study delves into the pathogenicity mechanisms of the rice blast fungus Magnaporthe 
oryzae, a significant agricultural pathogen causing extensive yield losses. M. oryzae employs 
a suite of secreted effectors to suppress host defenses and facilitate infection. These include 
apoplastic and cytoplasmic effectors, with distinct localizations and functions. Notable among 
these are the biotrophy-associated secreted (BAS) proteins, with varying localizations such as 
the biotrophic interfacial complex (BIC), extracellular invasive hyphal membrane (EIHM), 
and cell wall crossing points, playing crucial roles in host-pathogen interactions. Recent 
discoveries in effector biology, such as the association of Bas83 to host membranes, highlight 
the complexity of M. oryzae's invasion strategies. This study was conducted to elucidate the 
role of the Bas83 protein domain in determining the effector's localization and secretion 
dynamics within host cells. To achieve this, a protein domain deletion strategy was utilized, 
employing a double-joint PCR methodology to create various constructs. These constructs 
were designed to represent five distinct scenarios: the full-length protein domain, deletion of 
the secretion signal (SS), and deletions spanning amino acid residues 22 to 61, 62 to 120, and 
121 to 173, respectively. This approach allowed for a detailed analysis of the functional 
contributions of specific amino acid sequences within the Bas83 protein domain. The Guy-11 
wild-type (WT) strains of M. oryzae were genetically transformed with the various Bas83 
domain deletion constructs. These modified strains were then inoculated into YT-16 rice leaf 
sheaths, a cultivar known for its susceptibility to rice blast. Post-inoculation, the inoculated 
leaf sections were examined using confocal microscopy. This allowed for detailed 
observations of the cellular localization and secretion patterns of the mRFP-tagged Bas83 
protein within the rice tissue. The results indicate that deletions within the protein domain 
significantly affect the localization and secretion of Bas83 in M. oryzae BICs. The intact 
Bas83 protein domain, when tagged with mRFP, accumulates preferencialy inside and around 
BICs. In contrast, deletions such as the secretion signal (SS), amino acid sequences 22-61, 62-
120, and 121-173 blocks of their secretion into BICs, leading to their accumulation in the 
cytoplasm of fungal invasive hyphae. This altered distribution underscores the essential role 
of the Bas83 protein's domain structure in directing its proper localization and subsequent 
functional activity in the pathogenesis process. 
 
Keywords: Magnaporthe oryzae, rice blast, effector protein, secretion, Double-Joint PCR 
 

4.1. Introduction 

The rice blast fungus, Magnaporthe oryzae (syn. Pyricularia oryzae), is responsible 

for one of the most destructive diseases in rice fields worldwide (Wilson and Talbot, 2009). 

This hemibiotrophic ascomycete causes a 6% annual yield loss and up to 30% during 

outbreaks (Wilson and Talbot, 2009; Savary et al., 2019). M. oryzae can infect rice plants at 

all stages of development, spreading in the fields by its asexual conidia (Huang et al. 2022a). 
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Once the three-celled conidium lands on the leaf surface, it attaches via spore tip mucilage, 

germinates, and initiates the infection process (Martin-Urdiroz et al., 2016). This process 

starts with the formation of a melanized appressorium, which generates high turgor pressure 

(up to 8 MPa) (Howard et al., 1991; Howard and Valent, 1996). The rice epidermis is then 

penetrated using physical force by a penetration peg, a result of this high turgor pressure, 

leading to host invasion (Martin-Urdiroz et al., 2016). The primary hyphae differentiate into 

bulbous invasive hyphae that fills the first invaded cell and move cell to cell via 

plasmodesmata (Kankanala et al., 2007). 

In order to successfully invade the host tissue, M. oryzae possesses a variety of 

effectors that help it enter and establish infection by suppressing defense mechanisms 

(Oliveira-Garcia and Valent, 2015). Effectors are described as small secreted proteins that 

target the host receptors or defense-signaling mechanisms to inhibit immune responses (Wei 

et al., 2023). M. oryzae uses two distinct effectors secretion system to mediate host invasion 

(Giraldo et al., 2013). Apoplastic effectors are known to remain outside the host cell, 

dispersed and retained in the Extracellular Invasive Hyphal Membrane (EIHM), which 

outlines the entire Invasive Hyphae (IH) (Giraldo et al., 2013). On the other hand, 

cytoplasmic effectors accumulate in the biotrophic interfacial complex (BIC) and translocate 

across the Extracellular Invasive Hyphal Membrane (EIHM) into the cytoplasm of living cells 

(Khang et al., 2010; Giraldo et al., 2013). Certain cytoplasmic effectors demonstrate the 

capability to migrate to adjacent host cells, a mechanism hypothesized to facilitate preparatory 

steps for subsequent colonization phases (Khang et al., 2010). 

The investigation of biotrophy-associated secreted proteins (BAS) began over a 

decade ago (Mosquera et al., 2009). These proteins can be found in both the cytoplasm and 

the apoplast (Mosquera et al., 2009). Like other well-known avirulence effectors, Bas1 and 

Bas2 predominantly accumulate in the BIC (Mosquera et al., 2009). Bas4 and Bas113 are 

recognized as apoplastic effectors that localize at the EIHM matrix following their secretion 

onto the external surface of the M. oryzae hyphae (Mosquera et al., 2009; Giraldo et al., 

2013). In contrast, Bas3 displays a unique localization pattern, predominantly situated near 

cell wall junctions, which implies its role in the fungal infection processes of adjacent cells 

(Mosquera et al., 2009). Additionally, Bas170, identified as a cytoplasmic effector, has been 

observed to accumulate beneath the appressoria and in rice cell nuclei prior to the penetration 

by M. oryzae (Oliveira-Garcia et al., 2023). This accumulation underscores the initiation of 

the plant-pathogen interaction before the host is penetrated. Recently, the Bas83 cytoplasmic 

effector has been discovered to recruit host membranes and localize at membranous 
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compartments (Oliveira-Garcia et al., 2023). It is hypothesized that this recruitment of plant 

membranes facilitates rapid membrane turnover in the BICs (Oliveira-Garcia et al., 2023). 

Despite recent advances, numerous questions remain unresolved and warrant further 

investigation. 

Most effectors proteins possess functional domains, which can significantly 

influence their roles and functions in the processes of infection and colonization (Dean, 2011). 

Importantly, most of the fungal effectors do not contain conserved protein domains, which 

challenges effector function characterizations and protein domain studies (Huang et al., 

2022b). Effector domains can influence gene repression or activation by interfering in the 

chromatin (Frietze and Farnham, 2011). In M. oryzae, the MIF-like domain has garnered 

attention for its potential impact on cellular differentiation and virulence, as investigated by 

Galli et al. (2023). This domain acts as a regulator of fungal virulence, modulating the balance 

between biotrophic and necrotrophic phases during host infection. Additionally, it plays a role 

in down-regulating the necrotrophic stage and inhibiting rice cell death (Galli et al., 2023). 

The MoMIF1 domain in M. oryzae is positioned towards the middle of the protein sequence, 

which spans a total length of 392 amino acids. Specifically, the MIF domain is located 

between positions 164 and 277 base pairs (Galli et al., 2023). Additionally, the deletion of 

MoAA91 in M. oryzae has been shown to result in delayed appressorium formation and 

reduced virulence, underscoring its role in suppressing host defense (Li et al., 2020). This 

suppression occurs through the inhibition of the rice receptor CEBiP, which is involved in 

chitin-triggered immunity. MoAA91, secreted during appressorium development, comprises a 

signal peptide (1-19 amino acids), a Glyco_hydro_61 domain (20-235 amino acids), and a C-

terminal chitin-binding domain (504-556 amino acids) (Li et al., 2020). Recent deletion 

assays, as reported by Gao et al. (2019), have highlighted the significance of specific domains 

for the complete functionality of MoGrp1. These studies demonstrate that these domains 

influence both the nuclear localization and the biological functions of the protein. 

In this study, we investigate the Bas83 cytoplasmic effector, which is hypothesized 

to recruit plant membranes, thereby facilitating the formation of membranous compartments. 

To understand the impact of its protein domain on localization and secretion into living rice 

cells, we employed a protein domain deletion strategy. 
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4.2. Conclusion 

The deletion of specific domains within the Bas83 protein critically influences its 

localization and secretion. Specifically, the removal of the secretion signal or any segment of 

the amino acid sequence hinders the accumulation of the Bas83 effector in the biotrophic 

interfacial complex (BIC) of M. oryzae. As a result of such deletions, the effector protein 

remains distributed within other hyphal structures of the fungus but fails to localize in the 

BIC, which is the pivotal site for its secretion into the cytoplasm of rice cells. This altered 

distribution underscores the essential role of the Bas83 protein's domain structure in directing 

its proper localization and subsequent functional activity in the pathogenesis process. 
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5. FINAL CONSIDERATIONS 

The comprehensive study of M. oryzae, particularly focusing on the Bas83 effector, 

has significantly advanced our understanding of the molecular interactions underlying rice 

blast disease, a major threat to global rice agriculture. Our findings demonstrate that Bas83 

plays a critical role in the infection process of M. oryzae, as evidenced by RNAi-mediated 

Bas83 silencing in three strains, which led to a deviation from the typical infection pattern and 

reduced severity of rice blast symptoms. This suggests that Bas83 is crucial to the pathogen's 

ability to infect host plants effectively. Moreover, the study has revealed that the specific 

domain structure of Bas83 is crucial for its correct localization to the biotrophic interfacial 

complex (BIC), a key site for effector delivery into host cells. Deletions within Bas83's 

domain structure hinder its accumulation at the BIC, thereby disrupting its functional role in 

the pathogenesis process. This finding underscores the importance of effector domain 

structures in the disease mechanism of rice blast. 

The urgency of addressing rice blast disease is further highlighted by the dynamic 

genomic nature and rapid evolutionary adaptation of M. oryzae. In this context, the 

application of gene-editing technologies, such as the discovery of rice mutants conferring 

blast resistance, offers promising avenues for developing durable disease management 

strategies. 

In summary, this research not only elucidates the fundamental role of the Bas83 

effector in the pathogenesis of rice blast disease but also highlights the potential of targeted 

molecular interventions in developing long-term disease resistance strategies. This study sets 

a precedent for future research aimed at a deeper understanding of Bas83 effector biology and 

its application in managing significant plant pathogens like M. oryzae. 

These insights, coupled with the application of gene-editing technologies, pave the 

way for developing novel, long-term control strategies against rice and wheat blast diseases, 

addressing a critical need in global food security. Future research should continue to focus on 

effector biology and host-pathogen interactions to fully exploit these strategies for sustainable 

disease management. 
 


