Disertación de Maestría
DOI
10.11606/D.11.2010.tde-29112010-093844
Documento
Autor
Nombre completo
Tiago Viana Flor de Santana
Dirección Electrónica
Área de Conocimiento
Fecha de Defensa
Publicación
Piracicaba, 2010
Director
Tribunal
Demetrio, Clarice Garcia Borges (Presidente)
Silveira, Liciana Vaz de Arruda
Título en portugués
As distribuições Kumaraswamy-log-logística e Kumaraswamy-logística
Palabras clave en portugués
Análise de regressão e de correlação
Análise de sobrevivência
Logística.
Resumen en portugués
Título en inglés
Distributions Kumaraswamy-log-logistic and Kumaraswamy-logistic
Palabras clave en inglés
Distributions (Probability)
Logistics.
Regression analysis and correlation
Survival analysis
Resumen en inglés
In this work, are presented two new probability distributions, obtained from two generalization methods of the log-logistic distribution, with two parameters (LL (?, ?)). The first method described in Marshall e Olkin (1997) turns the new distribution, now with three parameters, called modified log-logistic distribution (LLM(v, ?, ?)). This distribution is more flexible, but, does not change the general shape of the failure rate function, as well as the new parameter v, does not influence the calculus of skewness and kurtosis. The second method, uses the class of distributions Kumaraswamy proposed by Cordeiro and Castro (2010). To build the new probability distribution, called Kumaraswamy log-logistic distribution (Kw-LL(a,b,?,?)), which considers two new parameters a and b gaining in the forms of failure rate function, that now, even modeling data where the failure rate function has decreasing and unimodal shape, models the increasing form and the U-shaped. Also, were proposed the distributions modified logistic (LM (v,µ,?)) and Kumaraswamy logistics (Kw-L (a,b,µ,?)) for the variable Y=log(T), where T ~ LLM(v,?,?) in the case of the modified logistic distribution and T ~ Kw-LL (a,b,?,?) in the case of Kw-L distribution, with reparametrization ? =exp(µ) and ? = 1/?. As in the distribution LLM, there is no gain for the shape of the failure rate function of modified logistic distribution and the parameter v does not contribute to the calculation of skewness and kurtosis of the distribution. The location and scale regression models were proposed for both distributions. As illustration, were used two datasets to exemplify the gain of the new distributions Kw-LL and Kw-L compared with the log-logistic and logistic distributions. The first dataset refers to the data of time until soro-reversion of 143 children exposed to HIV through vertical, born in the Hospital of the Medical School of Ribeirão Preto during the period 1995 to 2001, where mothers were not treated. The second dataset refers to the time until the failure of a type of electrical insulating fluid subjected to seven constant voltage levels

ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2010-12-21

ADVERTENCIA: El material descrito abajo se refiere a los trabajos derivados de esta tesis o disertación. El contenido de estos documentos es responsabilidad del autor de la tesis o disertación.
• SANTANA, Tiago Viana Flor de, et al. The Kumaraswamy-Log-Logistic Distribution. Journal of Statistical Theory and Applications [online], 2012, vol. 11, n. 3, p. 265-291. [cited 2012-10-05]. Available from : <http://www.mscs.mu.edu/~jsta/>
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos