• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.11.2004.tde-25032004-141721
Documento
Autor
Nombre completo
Juliana Garcia Cespedes
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Piracicaba, 2003
Director
Tribunal
Leandro, Roseli Aparecida (Presidente)
Achcar, Jorge Alberto
Demetrio, Clarice Garcia Borges
Título en portugués
Eficiência de produção: um enfoque Bayesiano.
Palabras clave en portugués
eficiência econômica
inferência bayesiana
Resumen en portugués
O uso de fronteira de produ¸c˜ ao estoc´ astica com m´ ultiplos produtos tem despertado um interesse especial em ´areas da economia que defrontam-se com o problema de quantificar a eficiˆencia t´ecnica de firmas. Na estat´ýstica cl´ assica, quando se defronta com firmas que possuem v´arios produtos, as fun¸c˜ oes custo ou demanda s˜ ao mais utilizadas para calcular essa eficiˆencia, mas isso requer uma quantidade maior de informa¸c˜ oes sobre os dados, al´em das quantidades de insumos e produtos, tamb´em s˜ ao necess´ arios seus pre¸cos e custos. Quando existem apenas informa¸c˜ oes sobre os insumos (x) e os produtos (y) h´a a necessidade de se trabalhar com a fun¸c˜ ao de produ¸c˜ ao e a inexistˆencia de estat´ýsticas suficientes para alguns parˆ ametros tornam a an´alise d´ýficil. A abordagem Bayesiana pode se tornar uma ferramenta muito ´ util para esse caso, pois ´e poss´ývel obter uma amostra da distribui¸ c˜ ao de probabilidade dos parˆ ametros do modelo, possibilitando a obten¸c˜ ao de resumos de interesse. Para obter as amostras dessas distribui¸ c˜ oes m´etodos Monte Carlo com cadeias de Markov, tais como, amostrador de Gibbs, Metropolis-Hastings e "Slice sampling" s˜ ao utilizados.
Título en inglés
Production efficiency: a bayesian approach.
Palabras clave en inglés
bayesian inference
economic efficiency
Resumen en inglés
The use of stochastic production frontier with multiple-outputs has been waking up a special interest in areas of the economy that are confronted with the problem of quantifying the technical efficiency of firms. In the classic statistics, when it is confronted with firms that possess several outputs, cost or profit functions are more used to calculate that efficiency, but that requests an amount larger of information about data set, besides the amounts of inputs and outputs, are also necessary your prices and costs. When just exist information on inputs (x) and outputs (y) there is need to work with the production function and the lack of enough statistics for some parameters turn the difficult analysis. Bayesian approach can become a useful tool for that case, because is possible to obtain a sample of the distribution of probability of the parameters of the model, making possible the obtaining of summaries of interest. To obtain samples of those distributions methods Markov chains Monte Carlo, that is, Gibbs sampling, Metropolis-Hastings and Slice sampling are used.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
juliana.pdf (767.43 Kbytes)
Fecha de Publicación
2004-03-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.