• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.11.2012.tde-23032012-092433
Documento
Autor
Nome completo
Fernanda Bührer Rizzato
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2011
Orientador
Banca examinadora
Demetrio, Clarice Garcia Borges (Presidente)
Candolo, Cecilia
Leandro, Roseli Aparecida
Savian, Taciana Villela
Vieira, Afrânio Márcio Corrêa
Título em português
Modelos para análise de dados discretos longitudinais com superdispersão
Palavras-chave em português
Análise de dados longitudinais
Distribuição de Bernoulli
Distribuição de Poisson
Inferência Bayesiana
Modelos lineares generalizados
Modelos mistos
Resumo em português
Dados longitudinais na forma de contagens e na forma binária são muito comuns, os quais, frequentemente, podem ser analisados por distribuições de Poisson e de Bernoulli, respectivamente, pertencentes à família exponencial. Duas das principais limitações para modelar esse tipo de dados são: (1) a ocorrência de superdispersão, ou seja, quando a variabilidade dos dados não é adequadamente descrita pelos modelos, que muitas vezes apresentam uma relação pré-estabelecida entre a média e a variância, e (2) a correlação existente entre medidas realizadas repetidas vezes na mesma unidade experimental. Uma forma de acomodar a superdispersão é pela utilização das distribuições binomial negativa e beta binomial, ou seja, pela inclusão de um efeito aleatório com distribuição gama quando se considera dados provenientes de contagens e um efeito aleatório com distribuição beta quando se considera dados binários, ambos introduzidos de forma multiplicativa. Para acomodar a correlação entre as medidas realizadas no mesmo indivíduo podem-se incluir efeitos aleat órios com distribuição normal no preditor linear. Esses situações podem ocorrer separada ou simultaneamente. Molenberghs et al. (2010) propuseram modelos que generalizam os modelos lineares generalizados mistos Poisson-normal e Bernoulli-normal, incorporando aos mesmos a superdispersão. Esses modelos foram formulados e ajustados aos dados, usando-se o método da máxima verossimilhança. Entretanto, para um modelo de efeitos aleatórios, é natural pensar em uma abordagem Bayesiana. Neste trabalho, são apresentados modelos Bayesianos hierárquicos para dados longitudinais, na forma de contagens e binários que apresentam superdispersão. A análise Bayesiana hierárquica é baseada no método de Monte Carlo com Cadeias de Markov (MCMC) e para implementação computacional utilizou-se o software WinBUGS. A metodologia para dados na forma de contagens é usada para a análise de dados de um ensaio clínico em pacientes epilépticos e a metodologia para dados binários é usada para a análise de dados de um ensaio clínico para tratamento de dermatite.
Título em inglês
Models for analysis of longitudinal discrete data in the presence of overdispersion
Palavras-chave em inglês
Bayesian inference
Bernoulli distribution
Generalized linear models
Longitudinal data
Mixed models
Poisson distribution
Resumo em inglês
Longitudinal count and binary data are very common, which often can be analyzed by Poisson and Bernoulli distributions, respectively, members of the exponential family. Two of the main limitations to model this data are: (1) the occurrence of overdispersion, i.e., the phenomenon whereby variability in the data is not adequately captured by the model, and (2) the accommodation of data hierarchies owing to, for example, repeatedly measuring the outcome on the same subject. One way of accommodating overdispersion is by using the negative-binomial and beta-binomial distributions, in other words, by the inclusion of a random, gamma-distributed eect when considering count data and a random, beta-distributed eect when considering binary data, both introduced by multiplication. To accommodate the correlation between measurements made in the same individual one can include normal random eects in the linear predictor. These situations can occur separately or simultaneously. Molenberghs et al. (2010) proposed models that simultaneously generalizes the generalized linear mixed models Poisson-normal and Bernoulli-normal, incorporating the overdispersion. These models were formulated and tted to the data using maximum likelihood estimation. However, these models lend themselves naturally to a Bayesian approach as well. In this paper, we present Bayesian hierarchical models for longitudinal count and binary data in the presence of overdispersion. A hierarchical Bayesian analysis is based in the Monte Carlo Markov Chain methods (MCMC) and the software WinBUGS is used for the computational implementation. The methodology for count data is used to analyse a dataset from a clinical trial in epileptic patients and the methodology for binary data is used to analyse a dataset from a clinical trial in toenail infection named onychomycosis.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
errata.pdf (29.99 Kbytes)
Data de Publicação
2012-04-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.