• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.11.2013.tde-22082013-154605
Documento
Autor
Nome completo
Thiago Gentil Ramires
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2013
Orientador
Banca examinadora
Ortega, Edwin Moises Marcos (Presidente)
Lemonte, Artur José
Vivanco, Mario Javier Ferrua
Título em português
A distribuição beta semi-normal generalizada geométrica
Palavras-chave em português
Análise de sobrevivência
Distribuição beta semi-normal generalizada geométrica
Modelos locação-escala
Resumo em português
Com o avanço tecnológico aprimorado, diferentes comportamentos do tempo de vida vem sendo estudados, e com isso é necessário a criação de novos modelos, muitas vezes mais complexos, para melhor ajuste e inferência sobre a população em estudo. A distribuição beta semi-normal generalizada é útil para modelagem de tempos de vida, e com isso propomos neste trabalho uma distribuição mais ampla chamada distribuição beta semi-normal generalizada geométrica, cuja função de risco pode assumir as formas crescente, decrescente, forma de banheira ou modal. A função densidade da nova distribuição é escrita como uma combinação linear da função densidade da distribuição beta semi-normal generalizada, sendo assim, algumas importantes propriedades da nova distribuição foram obtidas, como: momentos, assimetria, curtose, função geradora de momentos, desvios médios, função quantíl e curvas de Lorenz e de Bonferroni. Para a estimação dos parâmetros, é utilizado o método de máxima verossimilhança. Também foi proposto no trabalho, o novo modelo de regressão baseado na distribuição beta semi-normal generalizada geométrica, os quais podem ser muito úteis em análise de dados reais por serem mais flexíveis.
Título em inglês
The beta generalized half-normal geométric distribution
Palavras-chave em inglês
Location-scale models
Survival analysis
The beta generalized half-normal geometric distribution
Resumo em inglês
Due to the technological improved advances, different behaviors of the lifetime has been studied and for this reason, it is necessary to create new statistical models, many times more complex, for the better fit and inferences about the population under study. The beta generalized half-normal distribution is useful for modeling lifetime data, and in this sense, we propose, in this work, a wider distribution called the geometric beta generalized half-normal distribution in which the hazard function takes the forms increasing, decreasing, bathtub and unimodal. The density function of the new distribution can be written as a linear combination of the beta generalized half-normal densities, and thereby, some properties of the new distribution can be obtained such as the moments, skewness, kurtosis, moment generating function, mean deviations, quantile function and Lorenz and Bonferroni curves. For the estimation of the parameters, we use the maximum likelihood method considering the presence of censored data. We also propose a new regression model based on the geometric beta generalized half-normal distribution, which can be very useful in the analysis of real data due to their flexibility.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-09-03
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.