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RESUMO

Resíduos e métodos de diagnósticos em modelos para dados politômicos

Experimentos e estudos observacionais que resultam em dados politômicos nominais ou
ordinais são conduzidos com frequência em diversas áreas de conhecimento, em especial nas ciências
agrárias ou biológicas. O modelo dos logitos generalizados é a alternativa empregada para a análise
desse tipo de dados e com base nele obtidas as conclusões e tomadas de decisão. Na inferência esta-
tística, é muito importante validar um modelo que foi ajustado aos dados por meio de métodos de
diagnósticos com base em resíduos adequados. No entanto, a análise de resíduos e diagnósticos para
modelos associados aos dados politômicos ainda são emergentes na pesquisa científica, constituindo-se
em objeto de pesquisa na área de Estatística. Como a variável categórica politômica é multivariada,
os resíduos ordinários de Pearson e deviance são vetores por indivíduo com distribuição desconhe-
cida, o que gera desafios na visualização e interpretação gráfica. O resíduo quantílico aleatorizado
pode ser utilizado para contornar os problemas com esses resíduos. Entretanto, observa-se que falta
uma investigação da sua performance para a regressão politômica por meio de estudos de simulação.
Como uma alternativa para reduzir a dimensão dos resíduos e estudar outliers este trabalho propõe
empregar as medidas de distâncias Euclidiana e de Mahalanobis, uma vez que não se tem registros
de sua utilização para o caso multinomial. Nesse contexto, as contribuições metodológicas desse tra-
balho são: revisão de resíduos existentes para a classe de modelos associdados aos dados politômicos;
estudo da normalidade dos resíduos quantílicos aleatorizados; proposição do uso das distâncias Eu-
clidiana e de Mahalanobis para reduzir a dimensão dos resíduos ordinários, constituindo-se assim em
um procedimento para o diagnóstico dos modelos dos logitos generalizados, permitindo identificar a
presença de outliers. Duas aplicações ilustram a utilidade do resíduo quantílico aleatorizado e das
medidas de distância. A performance dos métodos propostos foram feitas por meio de estudos de
simulação. Nesses estudos, avaliou-se o desempenho dos resíduos quantílicos aleatorizados para os
dados nominais individuais bem como o uso das distâncias Euclidiana e de Mahalanobis para dados
agrupados. Foram empregadas técnicas gráficas como o gráfico meio-normal e o teste Shapiro-Wilk
para avaliação da normalidade. Sob diferentes cenários, os estudos de simulação demonstraram que
as abordagens são pertinentes para avaliar a bondade do ajuste do modelo dos logitos generalizados
aos dados. Adicionalmente, registra-se que tais estudos são apenas o princípio para uma área de
pesquisa com muitas lacunas a serem preenchidas.

Palavras-chave: Modelo dos logitos generalizados, Resíduo quantílico aleatorizado, Distâncias, Gráfico
meio-normal de probabilidade
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ABSTRACT

Residuals and diagnostic methods in models for polytomous data

Experiments and observational studies that result in polytomous data, nominal or ordinal,
are frequently conducted in different areas of knowledge, especially in the agricultural or biological
sciences. The generalized logit model is the alternative used for the analysis of this type of data and
based on it, conclusions and decision-making are obtained. In statistical inference, it is very important
to validate a model that has been fitted to the data using diagnostic methods based on appropriate
residuals. However, residual analysis and diagnostics for models associated with polytomous response
are still emerging in scientific research, constituting an object of research in the area of Statistics.
As the polytomous categorical variable is multivariate, Pearson’s ordinary residuals and deviance are
vectors per individual with unknown distribution, which creates challenges in graphical visualization
and interpretation. Randomized quantile residuals can be used to circumvent problems. However, it
is observed that there is a lack of an investigation of its performance for the polytomous regression
through simulation studies. As an alternative to reduce the dimension of the residuals and study
outliers, this work proposes to use Euclidean and Mahalanobis distance measures, since there are
no records of their use for the multinomial case. In this context, the methodological contributions
of this work are: review of existing residuals for the class of models associated with polytomous
data; study of the normality of randomized quantile residuals; proposition of using Euclidean and
Mahalanobis distances to reduce the dimension of ordinary residuals, thus constituting a procedure for
the diagnosis of generalized logit models, allowing the identification of the presence of outliers. Two
applications illustrate the utility of the randomized quantile residuals and distance measurements.
The performance of the proposed methods was done through simulation studies. In these studies,
we evaluated the performance of randomized quantile residuals for individual nominal data as well
as the use of Euclidean and Mahalanobis distances for grouped data. Graphic techniques such as
the half-normal plot were used to assess the model and the Shapiro-Wilk test were used to verify
normality of residuals. Under different scenarios, simulation studies have shown that the approaches
are relevant to assess the goodness of fit of the generalized logits model to the data. Additionally, it
is noted that such studies are just the beginning of a research area with many gaps to be filled.

Keywords: Generalized logit models, Randomized quantile residual, Distances, Half-normal plot
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1 INTRODUTION

Response variables that represent categories are frequent in scientific research in the agronomic
and biological areas. Experiments can be carried out with the interest of studying, for example, the
severity of a particular disease in fruits, the level of infestation by pests in a plantation, the classification
of plants, and the food preference of insects, among others. The data resulting from these experiments
are categorized, that is, discrete data referring to a variable response defined through a finite number
of categories (Paulino and Singer, 2006). The categorized variables can be classified according to the
number of categories they have, and those that present more than two possible responses are named
polytomous. According to Agresti (2002), polytomous variables can be distinguished by two types of
measurement scales: nominal (unordered categories) and ordinal (naturally ordered categories).

The statistical models developed for analyzing polytomous data (nominal or ordinal) are based
on the multinomial probability distribution, that belongs to the multi-parametric exponential family.
These models are an extension of the Generalized Linear Models (GLMs), that was proposed by Nelder
and Wedderburn (1972) and described in detail in McCullagh and Nelder (1989). Generalized logit
models are commonly used in studies with a categorical response (polytomous), as Agresti (2002) and
Tutz (2011) are classic references for these models.

When fitting a model to a data set, it is essential to evaluate possible deviations from the
assumptions of this model. The estimates obtained must be resistant to small perturbations both in
the model and in the data to not lead the researcher to inferences and inadequate predictions. In this
context, residual analysis is one of the most important steps in choosing a statistical model, as it allows
to check its assumptions and, consequently, the reliability of the statistical inference based on it (Singer
et al., 2017). In the GLM scenarios, the first references to residuals were throughs Pregibon (1981) with a
focus on logistic regression models (for two response categories), in addition to Pierce and Schafer (1986)
and Williams (1987). However, the extension to the other cases was presented by McCullagh and Nelder
(1989). The GLM residuals are used to explore the adequacy of the fitted model concerning the choice
of variance function, link function, and terms of the linear predictor. In addition, residuals are essential
to indicate the presence of outliers (Cordeiro and Neto, 2004).

In the case of models associated with polytomous categorical response, it is observed that
studies employing techniques based on residual analysis to assess the goodness-of-fit of models to the
data are still emerging. As the variable is multivariate, since each category corresponds to a dimension of
a vector, the ordinary residual, defined as the numerical difference between the observed and fitted values,
is also a vector (Reiter and Kohnen, 2005). This multidimensional residual may not be informative when
used in diagnostic techniques (formal or informal) for model validation, requiring the development of new
residual proposals that began to appear in the literature in the 2000s.

Focusing on the proportional odds model for ordinal data with individual structure, in which an
experimental unit is an individual, Liu et al. (2009) defined the cumulative residuals considering a binary
response (by grouping the categories) and the vector of cumulative residuals for the original response.
As considered in Arbogast and Lin (2005), the authors used the sum of residuals from both approaches
to assess the model’s fit in relation to the covariates of the linear predictor. However, examining the
performance of these residuals on diagnostic plots is not a simple task.

On the other hand, two proposals of one-dimensional residuals can be cited to evaluate the fit
of any models that assume proportional odds. The first refers to the residual defined by Li and Shepherd
(2012) based on the ordinal variable, also having a discrete nature. The second proposal was presented
by Liu and Zhang (2018), who obtained continuous residuals of a continuous variable defined to replace
the original one. Furthermore, Liu and Zhang (2018) showed that the residuals in their approach had
expected patterns in diagnostic plots, unlike the residuals of Li and Shepherd (2012), which displayed
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unusual patterns in the different scenarios in which the model was correctly specified to the data.
For the context of individual nominal data, Cheng et al. (2021) defined a residual vector to

evaluate the fit of discrete models, considering the methodology developed by Liu and Zhang (2018).
As the vector has a continuous multidimensional distribution, the values obtained in each dimension
were evaluated in several plots and diagnostic tests. The authors showed good results to detect nonlinear
covariate and interaction effects for the generalized logit model associated with data with three categories.
However, the bigger the number of categories of the variable response, the greater the dimension of the
residual vector, and the number of values can make it difficult to interpret the behavior of residuals in
plots and diagnostic tests.

The polytomous data can still be in the grouped structure, in which an experimental unit is a
group of individuals, and these are generally arranged in contingency tables. Andersen (1992) used the
leverage measure and Cook’s distance to measure the influence on the estimates of the parameters of the
RC association model (Goodman, 1985) when deleting all observations of a specific cell in the contin-
gency table. In analyzing grouped data in a longitudinal study of toxicological mortality, O’Hara Hines
et al. (1992) applied the measure of local influence to evaluate the effect of small perturbations on the
cumulative model assumptions. Seber and Nyangoma (2000) defined a vector of residuals, so-called pro-
jected residuals, to evaluate log-linear models based on a more complex approach introduced by Cook
and Tsai (1985) in nonlinear theory. The elements of the vector must be approximately distributed by
the standard normal and present a small magnitude referring to a bias term. In the work of Silva (2003),
the residuals were defined to evaluate the generalized logit model with three response categories. As the
model is composed of two equations in terms of logits with different parameters, the author presented
for each of the sub-models the standardized Pearson and deviance residuals, without sign assignment,
using them in diagnostic plots. Furthermore, Gupta et al. (2008) presented Pearson’s residual vector
to evaluate the generalized logit models, with parameters estimated using the minimum phi-divergence
estimator instead of maximum likelihood.

In short, despite the contributions in the development of residuals to evaluate this class of
models, there is still a need to stimulate new methodologies that can help researchers in this important
area. In this context, the main goal and the specific contributions of this present thesis are given below.

1.1 Main goal

The purposes of this work are:

i) To present a review about diagnostic techniques based on the residual analysis for polytomous
categorical data.

ii) To develop diagnostic techniques (formal and informal) based on the residuals analysis for the
models, in which response variable is categorical and polytomous, in particular, nominal nature.

1.2 Specific contributions

The specific contributions of this thesis are:

i) The using the randomized quantile residuals related to the generalized logit model and the demons-
tration that they approximately follow a normal distribution when correctly specified for individual
nominal data, as well as to show the power of the Shapiro-Wilk test for this case by simulation
studies.

ii) The application the Euclidean and Mahalanobis distances to reduce the dimension of the ordinary
residuals for the generalized logit models, as well as the demonstration that these measures, when
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correctly specified for grouped nominal data, can detect outliers using the half-normal plot with a
simulated envelope.

1.3 Organization of thesis

This thesis is organized as follows: this first chapter describes the introduction, with a litera-
ture review of the theoretical framework, objectives and contribution of the work to the scientific area.
The second chapter reviews the residuals associated with the ordinal response, specially the surrogate
residual proposed by Liu and Zhang (2018) for the proportional odds model. As an illustration of this
residual analysis, it was presented a field study with Tambaqui fish, example from literature, to verify
the relationship between the different types of genotypes in the classification of the lesion found in the
liver, in which the response variable is ordinal.

In the third chapter, two proposals are used to verify the assumptions of the generalized logit
model associated with nominal data under simulation studies. For individual nominal data, the per-
formance and distribution of randomized quantile residuals were examined in diagnostic plots and the
normality assessed by the Shapiro-Wilk test. Furthermore, Euclidean and Mahalanobis distances were
proposed to reduce the dimension of the ordinary residuals for the case of grouped data. These measures
were examined through the half-normal plot with a simulated envelope to detect outliers. Two applicati-
ons are presented to illustrate the perform of the proposed diagnostic techniques. Finally, in the fourth
chapter, it is done the final considerations.
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2 ORDINAL DATA AND RESIDUAL ANALYSIS: REVIEW AND APPLICATION

Abstract

Experiments in which the response is ordinal polytomous are often performed in the agricultural
sciences and, often, the cumulative logit models are used to analyze this variable. A particular charac-
teristic is that the polytomous variables are objects of multivariate statistics and the ordinary residual,
associated with the classical models available, is a vector for each individual. Consequently, these resi-
duals are not easily interpreted, and their distribution is unknown. Residual analysis is an essential step
in validating any statistical model, and not performing it can allow a model to incorrectly fit the data,
resulting in erroneous conclusions and inferences. In this context, the work aims to review the residuals
for ordinal data available in the literature, emphasizing the so-called surrogate residuals with continuous
distribution. As a practical application, it is present an experiment carried out with Tambaqui fish of
different types of genotype. The response variable in this study is the severity of the lesions found in the
livers of Tambaquis. The estimation of the parameters was performed using the maximum likelihood.
The selected model by the likelihood ratio test included the proportional odds and fish genotype effect.
According to this model, it was possible to verify in this study that fish with genotype 122 presented a
higher probability of liver lesion classified as irreversible (71, 26%), while Tambaquis with genotype 130
had a higher probability of moderate lesion, 46, 75%. For the model diagnostics, the half-normal plot
and the Kolmogorov-Smirnov test were used to examine the performance of the surrogate residual. The
results obtained provided evidence of the adequacy of the selected model since the residuals did not reveal
patterns or influential points in diagnostic tools.
Keywords: Cumulative logit model; Maximum likelihood; Half-normal plot; Kolmogorov-Smirnov test.

2.1 Introdution

In agricultural sciences, it is common to carry out experiments that result in polytomous data
as a response of interest. These data assume values in a finite set of categories with nominal or ordinal
scale (natural ordering between categories) and have a multinomial distribution regardless of this nature
(Agresti, 2002). The models with the logit link function are the most used in the statistical analysis of
these data. The proportional odds model (McCullagh, 1980) is widely used for the ordinal case with a
smaller number of parameters due to the assumption of proportionality (Tutz, 2011). However, other
alternatives can be considered, such as the cumulative probit model or the Proportional Hazards model
with a complementary log-log link function (Agresti, 2010b). When the proportionality assumption is not
valid, the cumulative logit model (Williams and Grizzle, 1972) can be fitted to the data or the adjacent-
categories logit model, for example (Ananth and Kleinbaum, 1997 and Agresti, 2002). Furthermore, one
can assume another discrete multivariate distribution for the response variable, such as the Dirichlet
distribution, which is the conjugate distribution of the multinomial in Bayesian inference (Ng et al.,
2011).

When selecting a model, it is essential to assess the quality of its fit to the data as well as
to validate its assumptions. The fitted model must describe the observed data well so as not to result
in incorrect inferences. In this context, residual analysis plays an important role in detecting possible
failures resulting from the fit and identifying outliers and/or influential points, becoming an integral part
of any regression problem (Cook and Weisberg, 1982). McCullagh and Nelder (1989) paid substantial
attention to defining residuals for Generalized Linear Models (GLMs), with Pearson and deviance resi-
duals frequently used in the diagnostics of GLMs. However, these residuals do not apply to multinomial
data due to the nature of the response variable. As the polytomous variable is multivariate, the ordinary
residual given by the difference between the observed response and the estimated probability is a vector
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for each individual (Reiter and Kohnen, 2005). Therefore, diagnostic plots of residuals are difficult to
interpret since their distribution is difficult to identify. Furthermore, few papers in the literature involve
types of residuals that help validate models associated with polytomous data, and these are defined, in
particular, for the case in which the response of individual results in only one of the categories.

For the ordinal case, Liu et al. (2009) presented the vector of cumulative residuals focusing on
validating the proportional odds model with respect to the covariates of the linear predictor. However, it
is not simple to interpret the behavior of these residuals in diagnostic plots, as is the case with residuals
for continuous variables. Li and Shepherd (2012) and Liu and Zhang (2018) defined residuals that
correspond to a single value per individual regardless of the number of categories. While the residual
proposed by Li and Shepherd (2012) is obtained in the discrete space of the original response, in the
approach used Liu and Zhang (2018), a continuous variable replaces the ordinal variable, and the residual
is defined through this new variable. Liu and Zhang (2018) compared the performance of the residuals
so-called surrogate, with those proposed by Li and Shepherd (2012) in the residuals versus covariates plot
and Quantile-Quantile plot (Q-Q plot) to assess the fit of the cumulative probit model with respect to
mean structure, heteroscedasticity, and proportionality. The authors showed that the surrogate residuals
presented expected behaviors in these plots for the model correctly specified to the data. In contrast, the
residuals defined by Li and Shepherd (2012) showed unusual patterns that did not allow concluding in
favor of the correct model.

The aim of this work is to present a review of models and residuals for polytomous ordinal
data, considering the relevance and need for studies and research in this area. As a specific case, we show
the performance of the surrogate residuals to evaluate the cumulative logit model for ordinal response.
As a motivational study and application, it is presented the research carried out with Tambaqui fish
(Colossoma macropomum), in which a type of histopathological alteration was observed in the liver fish.
Therefore, in this study, the response variable is the severity of lesion found in the fish liver (natural
ordering), which was classified as mild, moderate, and irreversible. Also, it is verified the relationship
of the classifications with the different gene expressions of the Tambaquis. This species is a source of
aquatic protein widely consumed in the North region of Brazil and has attracted significant interest from
fish farmers from other countries (Lopes et al., 2016). Given the large production of Tambaqui in the
country, the aquatic environment and the management of these fish must be appropriately controlled to
generate a healthy population, not causing losses in productivity (Correa et al., 2018).

2.2 Models for ordinal response

When the response variable Yi takes on a value in the set {1, 2, . . . , J} for the i-th individual,
i = 1, 2, . . . , n, with the ordered categories 1 < 2 < . . . < J and multinomial distribution, the cumulative
logit models with canonical the link function can be used to describe the functional relationship between
the response and covariates of the study. According to Agresti (2010b), models that consider the natural
order of the response can produce more powerful results than models that ignore ordinality.

2.2.1 Cumulative logit model

The cumulative logit model (Williams and Grizzle, 1972) is a multivariate extension in the
class of generalized linear models used to model the dependence of an ordinal response on discrete or
continuous covariates. This model is defined by:

logit [γij(xi)] = log
[

γij(xi)

1− γij(xi)

]
= αj +

p∑
k=1

βjkxik = αj + β′
jxi, j = 1, . . . , J − 1, (2.1)
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where xi = (xi1, xi2, . . . , xip)
′ is the vector of the p covariates for the i-th individual, βj = (βj1, βj2, . . . , βjp)

′

represents the vector of regression parameters and αj is the intercept, with j = 1, 2, . . . , J − 1. Here,
γij(xi) is the cumulative probability of the individual i until the j-th category, that is, γij(xi) = P (Yi ≤
j|xi) = πi1(xi)+ . . .+πij(xi), j = 1, . . . , J , being πij(xi) = P (Yi ≤ j|xi)−P (Yi ≤ j−1|xi) the probability
of the (marginal) response in the j-th category, more precisely,

πij(xi) =
exp(αj + β′

jxi)

1 + exp(αj + β′
jxi)

−
exp(αj−1 + β′

j−1xi)

1 + exp(αj−1 + β′
j−1xi)

with P (Yi ≤ 0|xi) = 0 and P (Yi ≤ J |xi) = 1.
In the cumulative logit model, the regression parameters are not constant for the j logits, i.e.,

βj can vary according to each response category. The estimation of the parameters of the model (2.1)
is generally performed using the maximum likelihood method, whose likelihood function for the random
sample of size n is given by

L(θ) =
n∏

i=1

{
J∏

j=1

[πij(xi)]
yij

}

=
n∏

i=1

{
J∏

j=1

[P (Yi ≤ j|xi)− P (Yi ≤ j − 1|xi)]
yij

}

=
n∏

i=1

{
J∏

j=1

[
exp(αj+β

′
jxi)

1+exp(αj+β
′
jxi)

− exp(αj−1+β
′
j−1xi)

1+exp(αj−1+β
′
j−1xi)

]yij
}
,

where yij = 1 if the response of individual i, i = 1, . . . , n, belongs to the category j, j = 1, . . . , J , yij = 0

otherwise, with
J∑

j=1

yij = 1 and θ =
(
α1, . . . , αJ−1,β1, . . . ,βJ−1

)′ is the vector with the parameters to

be estimated. It is necessary to use iterative methods such as the Newton-Raphson method to maximize
L and obtain the maximum likelihood estimators of the parameters (Agresti, 2002).

An alternative to model (2.1) is the proportional odds model, which assumes that the effects
of the covariates are the same for each logit j, resulting in a more parsimonious model, that is, with a
smaller number of parameters (Bilder and Loughin, 2014). The proportional odds assumption results in
the simplest fit with easy interpretation, but it should always be carefully verified (Lemos et al., 2015).

2.2.2 Proportional odds model

The simplest model in the class of cumulative logit models involves parallel regressions on
the ordinal scale and assumes equivalent proportions by assuming the same regression parameter for all
categories. This model, called the proportional odds model, was introduced by McCullagh (1980) and
can be expressed by

logit [γij(xi)] = log
[

γij(xi)

1− γij(xi)

]
= αj +

p∑
k=1

βkxik = αj + β′xi, j = 1, . . . , J − 1, (2.2)

where xi = (xi1, xi2, . . . , xip)
′ is the vector of covariates for the individual i, β = (β1, β2, . . . , βp)

′ re-
presents the vector of regression parameters, αj is the intercept, and the last category J as the re-
ference. Here, γij(xi) is the cumulative probability of individual i until the j-th category, that is,
γij(xi) = P (Yi ≤ j|xi) = πi1(xi) + . . . + πij(xi), j = 1, . . . , J . The probabilities πij(xi) are obtained for
the model (2.2) by means of subtractions given by

πij(xi) = P (Yi ≤ j|xi)− P (Yi ≤ j − 1|xi) =
exp(αj + β′xi)

1 + exp(αj + β′xi)
− exp(αj−1 + β′xi)

1 + exp(αj−1 + β′xi)
,

where P (Yi ≤ 0|xi) = 0 and P (Yi ≤ J |xi) = 1.
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As the effects of the covariates are equal, the model assumes that the effects on the logit are
identical for all categories of the response variable. Then, the J−1 logits are shifted only as a function of
the intercept (Bilder and Loughin, 2014). According to Agresti (2007), the maximum likelihood procedure
can be used to estimate the parameters of the model (2.2), with a likelihood function for the random
sample of dimension n described by

L(θ) =
n∏

i=1

{
J∏

j=1

[πij(xi)]
yij

}

=
n∏

i=1

{
J∏

j=1

[P (Yi ≤ j|xi)− P (Yi ≤ j − 1|xi)]
yij

}

=
n∏

i=1

{
J∏

j=1

[
exp(αj+β

′xi)

1+exp(αj+β
′xi)

− exp(αj−1+β
′xi)

1+exp(αj−1+β
′xi)

]yij
}
,

where yij = 1 if the response of individual i, i = 1, . . . , n, belongs to category j e yij = 0 otherwise,

j = 1, . . . , J , with
J∑

j=1

yij = 1 and θ = (α1, . . . , αJ−1,β)
′ representing the vector of parameters. According

to McCullagh (1980), the Newton-Raphson method with Fisher scoring can be used to obtain parameter
estimates, converging rapidly even with poor initial values.

The odds ratio is a very intuitive and used way to interpret the parameters estimated by the
proportional odds model. Consider two subpopulations characterized by vectors x1 and x2, then the
cumulative odds ratio for the two subpopulations is given by

P (Yi ≤ j|x1)/P (Yi > j|x1)

P (Yi ≤ j|x2)/P (Yi > j|x2)
= exp

[
β′(x1 − x2)

]
, j = 1, 2, . . . , J − 1,

where the odds of occurring {Yi ≤ j|xi = x1} is equal to exp[β′(x1 − x2)] times the odds of occurring
{Yi ≤ j|xi = x2}. As stated in Bilder and Loughin (2014), the cumulative odds ratio remains the same
regardless of the category j used, and this is due to the assumption that the effects of the covariates are
the same for all categories.

As the proportional odds model is a particular case of the model (2.1), the proportionality
assumption can be verified through the likelihood ratio test (LRT) with the following hypotheses{

H0 : β′
j = β′, ∀j = 1, 2, . . . , J − 1

H1 : β′
j ̸= β′, ∃ at least a j

and with the statistic of the test given by

Λ = −2 log
[
LH0

LH1

]
∼ χ2

m,

where LH0
is the likelihood function under the null hypothesis H0, i.e., referring to model (2.2) and LH1

is the likelihood function under the alternative hypothesis H1, i.e., referring to model (2.1). Here, Λ
follows an approximate Chi-square distribution, in which the degrees of freedom, m, are obtained by the
difference between the numbers of the parameters under the hypotheses H0 and H1. If the null hypothesis
is not rejected at the 5% significance level, then the proportional odds model can be fitted to the data
(Lemos et al., 2015 and Giolo, 2017).

The proportionality assumption can be verified in two ways: global and individual. Globally,
all model covariates are considered, while individually, it is considered covariate by covariate. In the case
of rejection of the null hypothesis for part of the covariates, that is, some covariates have the property
of proportional odds and others do not, an alternative is the partial proportional odds model (Agresti,
2010b).
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2.2.3 Partial proportional odds model

The proportional odds assumption is not always achieved in practice. A model proposed by
Peterson and Harrell Jr (1990), an extension of the proportional odds model, can be used when part of
the covariates violates this assumption.

Consider the vector xi with the values of p covariates for the i-th individual that present
proportional odds and the vector zi with the values of q (q ≤ p) covariates that do not, so the partial
proportional odds model is given by

logit [γij(xi, zi)] = log
[

γij(xi, zi)
1− γij(xi, zi)

]
= αj + β′xi + ϱ′

jzi, j = 1, . . . , J − 1, (2.3)

where β = (β1, β2, . . . , βp)
′ and ϱj = (ϱj1, ϱj2, . . . , ϱjq)

′ sare the vectors of regression parameters, αj

is the intercept and the last category taken as a reference. Here, the vector ϱj describes the effect of
non-proportionality for each j−th cumulative logit associated with the vector zi. In this model, J − 1

intercepts, p coefficients referring to the vector β, which are independent of the compared categories, and
q(J − 1) coefficients referring to the vector ϱj are estimated. Furthermore, γij(xi, zi) is the cumulative
probability of individual i until the j-th category, i.e., P (Yi ≤ j|xi, zi) = πi1(xi, zi) + . . . + πij(xi, zi),
j = 1, . . . , J , and the probabilities πij(xi, zi) for th model (2.3) are obtained in an analogous way to those
obtained for models (2.1) and (2.2), so

πij(xi, zi) = P (Yi ≤ j|xi, zi)− P (Yi ≤ j − 1|xi, zi)

=
exp(αj+β

′xi+ϱ′
jzi)

1+exp(αj+β
′xi+ϱ′

jzi)
− exp(αj−1+β

′xi+ϱ′
jzi)

1+exp(αj−1+β
′xi+ϱ′

jzi)
,

where P (Yi ≤ 0|xi, zi) = 0 and P (Yi ≤ J |xi, zi) = 1.
The estimation of parameters can also be performed using the maximum likelihood method

for the random sample of size n (Agresti, 2010b). Considering yij = 1 if the response of individual i,

i = 1, . . . , n, belongs the category j, j = 1, . . . , J , yij = 0 otherwise and
J∑

i=1

yij = 1, the estimators of the

model (2.3) can be obtained by maximizing the likelihood function (or its logarithm) given by

L(θ) =
n∏

i=1

{
J∏

j=1

[πij(xi, zi)]yij

}

=
n∏

i=1

{
J∏

j=1

[P (Yi ≤ j|xi, zi)− P (Yi ≤ j − 1|xi, zi)]yij

}

=
n∏

i=1

{
J∏

j=1

[
exp(αj+β

′xi+ϱ′
jzi)

1+exp(αj+β
′xi+γ′

jzi)
− exp(αj−1+β

′xi+ϱ′
jzi)

1+exp(αj−1+β
′xi+ϱ′

jzi)

]yij
}
,

where θ =
(
α1, . . . , αJ−1,β,ϱ1, . . . ,ϱJ−1

)′ corresponds to the vector of parameters to be estimated. The
estimates can be obtained using the step-halving technique in the modified Gauss-Newton algorithm that
ensure, in each iteration, an increase in the likelihood logarithm (Peterson and Harrell Jr, 1990).

The adjacent-categories logit model is also an alternative when the proportionality assumption
is not satisfied. It considers the ratio between the probabilities of successive categories rather than the
cumulative probabilities. Additionally, it is possible to find this model and others for ordinal data in
Ananth and Kleinbaum (1997), Agresti (2002), Agresti (2007), Agresti (2010b), Tutz (2011), Bilder and
Loughin (2014), Giolo (2017), among others.

2.3 Residuals for ordinal data

After fitting a model to the data, it is essential to verify whether its assumptions are satisfied
and identify individuals that may disproportionately interfere with the results obtained. Through an
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analysis of the residuals, it is possible to study the robustness of the fitted model in terms of the various
aspects that involve its formulation and the estimates of its parameters, detecting potential problems,
and improving the fitting process (Souza, 2006).

2.3.1 Ordinary Residual

For the class of models with a polytomous categorical response, the ordinary residual associated
with the i-th individual, i = 1, . . . , n, is a vector J × 1 defined by (Reiter and Kohnen, 2005)

r̂i = yi − π̂i = (yi1 − π̂i1, yi2 − π̂i2, . . . , yiJ − π̂iJ)
′
, (2.4)

where yi = (yi1, yi2, . . . , yiJ)
′ is the observed vector with yij = 1 if the response of the individual i belongs

to the category j and yij = 0 otherwise, π̂i = (π̂i1, π̂i2, . . . , π̂iJ)
′ is the estimated probabilities vector. The

only positive element in this vector pertains to the observed outcome for the individual. This vector may
not be informative in the diagnostic techniques for analyzing residuals since its asymptotic distribution
is unknown.

2.3.2 Cumulative Residual

Specifically for the proportional odds model, defined in section 2.2.2, Liu et al. (2009) presented
the cumulative residuals for a binary response (by collapsing the categories) and the vector of cumulative
residuals considering the original response. For the multivariate case, the vector of cumulative residuals,
J × 1, for each individual is expressed by

r∗i = yi − γi = (yi1 − P (Yi ≤ 1|xi) , yi2 − P (Yi ≤ 2|xi) , . . . , yiJ − P (Yi ≤ J |xi))
′
,

where γi = (P (Yi ≤ 1|xi) , P (Yi ≤ 2|xi) , . . . , P (Yi ≤ J |xi))
′ is the vector of cumulative probabilities for

the i-th individual. The authors used the sum of this residual vector in graphical and numerical methods
to assess the goodness-of-fit of the model. The methods generalize those developed by Arbogast and Lin
(2005) for the logistic regression model with binary responses. However, diagnostic plots associated with
residuals are difficult to interpret.

2.3.3 LS Residual

Considering the models that assume the assumption of proportionality for the regression para-
meters, Li and Shepherd (2012) proposed a residual that is a single value per individual, regardless of the
number of ordered categories. This residual, called LS, is obtained by the difference between two cumu-
lative probabilities, and the authors examined several properties to apply it to the available diagnostic
tools. The residual associated with an individual considering the model 2.2 is obtained by

RLS
i = P (Yi < j|xi)− P (Yi > j|xi)

= P (Yi ≤ j − 1|xi)− [1− P (Yi ≤ j|xi)]

= P (Yi ≤ j − 1|xi) + P (Yi ≤ j|xi)− 1,

with its value varying in the numeric interval of [−1, 1]. The Q-Q plot of this residual is obtained
compared to the theoretical quantiles of a Uniform distribution in [−1, 1]. However, the residual is
defined on the discrete space of the response variable, and its conditional distribution can vary according
to the covariates. These facts make it difficult to analyze the residuals in diagnostic plots since they do
not produce the expected patterns. According to Liu and Zhang (2018), the use of this residual is limited
to verifying its zero mean under the correct model.
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2.3.4 Surrogate Residual

The residual defined by Liu and Zhang (2018) is also a single value per individual for the
models that assumes the proportional odds. Consider the model (2.2) and a latent variable given by
Zi = −β’xi + εi, i = 1, 2, . . . , n, where ε1, . . . , εn is a random sample of the variable ε which follows a
standard logistic distribution, ε ∼ log(0, 1), with probability density function and cumulative distribution
function, respectively, given by

g (u) =
e−u

(1 + e−u)
2 e G(u) =

eu

1 + eu
,

where u ∈ R. The mean and variance of ε are E (ε) = 0 and Var (ε) = π2

3 , respectively.
The concept of latent variable induces a joint distribution of the variables Yi and Zi determined

by Yi = j if αj−1 < Zi ≤ αj , j = 1, 2, . . . , J , with −∞ = α0 < α1 < . . . < αJ−1 < αJ = ∞. Thus,
the marginal distribution of the ordinal variable Yi is the same as the distribution specified by the model
(2.2). The authors defined a continuous variable Si based on the conditional distribution of Zi given
Yi, i.e., Si follows a truncated distribution of Zi in the interval (αj−1;αj) given Yi = j. Therefore, the
surrogate residual is obtained by the difference between the surrogate variable and its expected value,
with the expression given by

RS
i = Si − E0(Si|xi) = Si − E(Zi|xi) = Si + β’xi −

+∞∫
−∞

udG(u) (2.5)

where E(.) denotes the mean. If the model (2.1) is specified correctly, the variable Si follows the same
distribution of Zi and the residual RS

i , which is also a continuous variable, has the following properties:

i) E
(
RS

i |xi

)
= 0;

ii) Var
(
RS

i |xi

)
= π2

3 , a constant does not depend on xi;

iii) Reference distribution: Independent of xi, the empirical distribution of RS
i approximates of the

standard logistic distribution, that is, RS
i ∼ G (.).

These properties allow an analysis of residuals in practically all existing diagnostic tools for
continuous variables (Liu and Zhang, 2018). As the residuals are obtained by random sampling, diagnostic
plots may vary from one sample to another (especially for small samples). The authors presented a
bootstrap algorithm for the residual (2.5) similar to the bootstrap algorithm used in linear regression
proposed by Efron (1979) to account for the variability of conditional sampling. It consists of repeatedly
resampling the observed data, generating new data sets, and finding characteristics of interest in the
population studied.

The algorithm for obtaining the b-th bootstrap replication of surrogate residuals, b = 1, 2, . . . , B,
is given in two steps (Liu and Zhang, 2018):

1) Generate a bootstrap sample of size n through sampling with replacement of the original data and
the corresponding covariates, i.e., {(x∗

1b, Y
∗
1b) , (x∗

2b, Y
∗
2b) , . . . , (x∗

nb, Y
∗
nb)}.

2) Using the bootstrap sample obtained in step 1, perform the conditional sampling procedure presen-
ted in this section to generate a sample of the surrogate residuals given by RS∗

1b , R
S∗

2b , . . . R
S∗

nb .

Thus, it is possible to examine the discrepancy between the empirical bootstrap distributions
and the reference distribution (standard logistic). As the bootstrap samples are drawn independently,
the behavior of B × n surrogate residuals is examined in the plot of residuals versus covariate (or fitted
values), while the median of the B bootstrap distributions is examined in the Q-Q plot.
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2.4 Diagnostic techniques

Several diagnostic techniques based on residual analysis can assess the goodness-of-fit of a
statistical model. These can be informal through residual plots or formal when using tests. The tests
provide a p-value referring to a tested hypothesis. At the same time, the graphical representation is
an important exploratory diagnostic feature that can reveal which components of the model were not
correctly specified.

When fitting a linear regression model, the Shapiro-Wilk test (Shapiro and Wilk, 1965) is
generally used to verify the normality assumption of residuals. On the other hand, the Kolmogorov-
Smirnov test (Kolmogorov, 1933) is a widely known test that considers continuous models other than the
linear regression model. Through this test, it is possible to examine the degree of agreement between
the empirical distribution function of the residuals concerning the theoretical distribution function of
reference (Dufour et al., 1998). In addition, a simple way to visualize the shape of the residual distribution
is through a histogram, making it possible to compare the result obtained with the shape of the normal
distribution or any other distribution.

Consider R1, R2, . . . , Rn a random sample of residuals with empirical distribution function
Qn(c;R1, R2, . . . , Rn) and G(c) the theoretical distribution function of reference. The hypotheses of the
Kolmogorov-Smirnov test are given by{

H0 : Qn(c;R1, R2, . . . , Rn) = G(c), ∀c ∈ (−∞; +∞)

H1 : Qn(c;R1, R2, . . . , Rn) ̸= G(c), ∃ at least a c

and test statistic
Tn(R1, R2, . . . , Rn) ≡ n1/2dKS (Qn, G) ,

where dKS (Qn, G) = sup
c∈R

|Qn(c;R1, R2, . . . , Rn) − G(c)| corresponds to the largest vertical difference

between the two distribution functions. For a significance level α = 5%, the H0 is rejected if the statistic
Tn exceeds the quantile value of 1−α as given by the table of quantiles for the Kolmogorov test statistic.
In case of non-rejection of the null hypothesis, R1, R2, . . . , Rn is a random sample from the theoretical
distribution function.

Although goodness-of-fit tests provide a p-value that indicates how strong the evidence (ob-
served data) is against the null hypothesis, they may fail in certain circumstances, for example, when
the sample size is small. Generally, graphical techniques can be more informative, providing a better
diagnostics of model adequacy than hypothesis testing (Moral et al., 2017). Among the different types
of diagnostic plots, some principals are (Paula, 2013; Faraway, 2016; Moral et al., 2017; among others):

i) Residuals versus covariates: indicates whether the systematic part was incorrectly specified, with
the need to include higher-order terms or transform the quantitative covariates into the linear
predictor. The expected pattern of this plot is a zero-centered distribution of residuals with constant
amplitude;

ii) Residuals versus fitted values: the behavior of the residuals in this plot must be the same as
described in item (i) for a well-fitted model. This plot can reveal the existence of heterogeneity of
variance in addition to outliers;

iii) Normal and half-normal plots: they are widely used for the diagnostics of the model, being possible
to detect outliers and identify failures in the specification of the link function or distribution of the
random component. The residuals should follow approximately a straight line with a slope of 45º
for a well-fitted model.
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Under the normality assumption, the normal plot of the residuals against the expected sorted
values of the standard normal distribution, which is approximated by

Φ−1

[
(i− 3/8)

n+ 1/4

]
,

while in the half-normal plot, the absolute values of the residuals (even with unknown distribution) are
compared concerning the expected order statistics of the half-normal distribution, obtained by

Φ−1

[
(i+ n− 1/8)

2n+ 1/2

]
,

where Φ−1 is the standard normal distribution function, with i = 1, . . . , n and n corresponding to the
sample size. However, the interpretation of the behavior of the points in these plots can be subjective,
and it is difficult to point out other causes for unavoidable irregularities. To assist in visual analysis,
Atkinson (1985) proposed adding a simulated envelope to these plots. So, it is possible to observe the
proportion of points within the envelope and decide whether the observed residuals are consistent with
the fitted model. Generally, there is evidence of a good fit when the number of points outside the envelope
equals or less than 5%.

In addition, it is important to examine the existence of one or more points poorly fitted by
the model (do not follow the same pattern as the others) and may cause a significant impact on some
characteristics of interest, such as the parameter estimate or the corresponding standard error (Singer
et al., 2017). A simple technique introduced by Cook (Cook, 1977) that can be used is the deletion, which
measures the impact on the fit of the model by considering all the individuals with the fit when deleting
a particular individual from the sample.

Consider θ̂ and θ̂(i) the estimated maximum likelihood vectors from the sample with all indivi-
duals and the sample without individual i, respectively. An indicator of the influence of i-th individual
can be calculated by θ̂ − θ̂(i). If the estimates differ substantially, the individual can be considered
influential. A measure that also can be used and verifies the distance between the two likelihoods is the
likelihood displacement, being given by

LDi = 2
[
l(θ̂)− l(θ̂(i))

]
,

where l(θ̂) and l(θ̂(i)) are, respectively, the likelihood logarithms of the parameters obtained from the
sample with all points and the sample without the i-th individual. When it is not possible to obtain
an analytical form for LDi, it is necessary for an approximation method. Details about the measure
of influence are covered in Cook and Weisberg (1982), McCullagh and Nelder (1989), Turkman and
Silva (2000), Paula (2013), among others. It is highlighted that a point should only be excluded as a
last alternative after several attempts to accommodate it in the fit, such as through transformations or
including covariates (Silva, 2003).

2.5 Material and Methods

2.5.1 Material

As an application, it is considered the data from the experiment conducted by Marques (2018)
regarding the histopathological alterations found in the livers of Tambaqui fish (Colossoma macropomum)
at the Biofish-Aquicultura farm based in Porto Velho-RO from January 2015 to October 2016. In this
experimental study, juvenile fish were anesthetized and marked using a microchip in the ventral portion
(Figure 2.1), applying Methylene Blue to the inserted site to prevent infection. After recovering from
anesthesia, the Tambaquis were managed in an excavated pond with approximately 600m2 of water,
where they received the same food three times a day. In the end, the fish were fasted for 24 hours,
collected with a trawl, and anesthetized when transported to water tanks for slaughter.
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Figure 2.1. Microchip inserted in the juvenile of Tambaqui in a study carried out by Marques (2018)
at the Biofish-Aquicultura farm.

The pituitary gland was collected for gene expression analysis, placed in a stabilizing solu-
tion (RNAlater), and stored at -80ºC until the moment of RNA extraction. With the DNA Analyzer
4300 equipment, two different types of genotypes, 122 and 130, were obtained. Small organ fragments
were collected and properly stored for the liver histopathology analysis at the Laboratory of Ecology
of Reproduction and Recruitment of Marine Organisms, Oceanographic Institut, USP/SP. The histo-
pathological alterations were photomicrographed, Figure 2.2, and ordered according to the severity of the
lesions, being classified as mild, moderate, and irreversible. Images of the lesions were obtained using the
AXIOSKOP-ZEIS photomicroscope.

Figure 2.2. Morphology of the liver tissue of the Tambaqui fish with the histopathological alterations in
the experiment carried out by Marques (2018) at the Biofish-Aquicultura farm. A- Ductal hypertrophy
(black arrows); B- Hemosiderosis; C- Cholestasis (black arrows); D- Focal necrosis (blue arrow) and
Congestion of vessels and sinusoids (black arrows).

The author made available 21 data from fish with genotype 122 and 21 from fish with genotype
130, totaling a sample of size equal to 42, in which was verified the relationship between the severity of
lesions with the different gene expressions of Tambaqui. According to Marques (2018), the liver needs to
function properly for a healthy fish population.
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2.5.2 Methods

In this application, the response represents the histopathological alteration obtained in the liver
of the fish associated with a different genotype, and the degree of severity of the lesions (from less to more
severe) depends on this classification. Then, the variable response Yi, i = 1, 2, . . . , 42, has an ordinal scale
assuming values in the set {1, 2, 3}, i.e., Yi = j represents the response of the i-individual in the category
j, j = 1, 2, 3, where 1-mild, 2-moderate, 3-irreversible with 1 < 2 < 3. In this context, the corresponding
observed vector is yi = (yi1, yi2, yi3)

′, where yij = 1 if the response referring to the fish i belongs to the
category j and yij = 0, otherwise. The genotype covariate is a factor, being incorporated into the model
through the dummy variable.

First, to test the proportionality, the likelihood ratio test described in section 2.2.2 will be used
considering the model with the main effect given by

logit [γij(xi)] = log
[

γij(xi)

1− γij(xi)

]
= αj + βjxi, j = 1, 2 (2.6)

where αj is the intercept, βj is the parameter associated with the genotype effect on the j-th logit. Here,
the third category is used as a reference. Using the standard parameterization, xi = 0 for the i-th fish
with genotype 122 and xi = 1 for fish i with genotype 130.

If the proportionality condition is not violated, proportional odds are assumed. Otherwise, the
model (2.6) is used to proceed with selecting the linear predictor. Under the proportionality assumption,
the sequential proportional odds models are expressed by

Model 1 - Null:

logit [γij(xi)] = log
[

γij(xi)

1− γij(xi)

]
= αj , j = 1, 2

Model 2 - Genotype effect:

logit [γij(xi)] = log
[

γij(xi)

1− γij(xi)

]
= αj + βxi, j = 1, 2.

The likelihood ratio test (LRT) is used to select the structure of the linear predictor, verifying
if there is an effect of genotype in the classification of severity found in the Tambaqui liver, that is, if
H0 : β = 0 is true or false. The test statistic is given by

Λ = −2
[
lH0(α̂)− lH1(α̂, β̂),

]
where lH0

(α̂) is the logarithm of the null model likelihood function and lH1
(α̂, β̂) is the logarithm of

likelihood function of the model with genotype effect, with expressions given by

lH0
(α̂) =

42∑
i=1

3∑
j=1

yij log
(

exp(α̂j)

1 + exp(α̂j)
− exp(α̂j−1)

1 + exp(α̂j−1)

)
and

lH1(α̂, β̂) =

42∑
i=1

3∑
j=1

yij log
(

exp(α̂j + β̂xi)

1 + exp(α̂j + β̂xi)
− exp(α̂j−1 + β̂xi)

1 + exp(α̂j−1 + β̂xi)

)
,

with α̂ = (α̂1, α̂2)
′. The estimates of the parameters of models (1) and (2) are obtained by the maximum

likelihood procedure as described in the review chapter, section 2.2.2. The null model has only the
intercept effect (2 parameters), and model 2 takes into account the intercept and genotype effect (3
parameters) under the null hypothesis has Λ ∼ χ2

1.
Once the genotype effect is significant, confidence intervals (CIs) are constructed for the estima-

ted probabilities for each response category and comparisons between observed and estimated proportions.
In this way, simultaneous confidence intervals of 100(1− α)% are given by (see May and Johnson, 1997)
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π̂ij(xi)±
√
χ2
(α,l) × π̂ij(xi)× [1− π̂ij(xi)], j = 1, 2, 3

where χ2
(α,l) is the point from a chi-square distribution with l = J−1 = 2 degrees of freedom and α = 0, 05

is the significance level. The estimated probabilities are expressed by

π̂i1(xi) =
exp(α̂1 + β̂xi)

1 + exp(α̂1 + β̂xi)
,

π̂i2(xi) =
exp(α̂2 + β̂xi)

1 + exp(α̂2 + β̂xi)
− exp(α̂1 + β̂xi)

1 + exp(α̂1 + β̂xi)
,

and
π̂i3(xi) = 1− π̂i1(xi)− π̂i2(xi).

Next step, for the fitted model validation, the surrogate residuals are used as described in section
2.3.4. Thus, with the data and the model, the conditional distribution of Zi ∈ (α̂j−1; α̂j) given Yi = j is
obtained by substituting the parameter estimates α̂j ’s and β̂ where the latent variable is Zi = −β̂xi + εi

and εi ∼ Log(0, 1). A random sample si, i = 1, 2, . . . , 42, is obtained from this distribution, and the i-th
surrogate residual is given by

r̂i = si + β̂xi −
∫ +∞

−∞
udG(u).

Once obtained the residuals, it is possible to compare their empirical distribution function
graphically with the standard logistic distribution function. Also, the bootstrap algorithm described in
section 2.3.4 is used with 10 replications because of the sample size. The informal and formal techniques
to evaluate the residual performance are the following: a) histogram, b) half-normal plot, c) the plot of
residuals versus covariates, and c) the Kolmogorov-Smirnov test as described in section 2.4.

The analysis and estimation of model parameters were performed by the clm(.) function of
the ordinal package (Christensen, 2013) and the resids(.) function of the sure package (Greenwell
et al., 2018) to obtain the surrogate residuals. The ks.test(.) function of the dgof package (Arnold and
Emerson, 2011) was used to obtain the p-value of the Kolmogorov Smirnov test. Finally, the hnp(.)
function is used for the half-normal plot with a simulated envelope, implemented in the hnp package
(Moral et al., 2017). All are available in the R software (R Core Team, 2020).

2.6 Results

Initially, an exploratory analysis was carried out to describe the fish data set. The frequencies
of mild, moderate, and irreversible lesions were obtained for each type of genotype (Figure 2.3), in which
one can observe the differences according to classifications. The liver alteration classified as irreversible
had a higher frequency in fish with genotype 122 than in fish with genotype 130. On the other hand, fish
with genotype 130 had higher frequencies of mild and moderate lesions than fish with genotype 122.
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Figure 2.3. Frequencies of mild, moderate, and irreversible lesions in the liver of Tambaquis by type of
genotype (122 and 130) in the study carried out by Marques (2018) at the Biofish-Aquicultura farm.

Then the cumulative logit and proportional odds models were fitted to test proportionality. It
was verified evidence in favor of the proportional odds model by the LRT (p-value = 0.8667). Afterward,
the sequential proportional odds models were fitted and compared using the LRT as well. The model
that considers the genotype effect was selected (p-value= 0.02714). Based on this result, it is concluded
that the type of genotype contributes to explaining the lesion classification in the liver of the Tambaqui
fish in the study carried out by Marques (2018).

The estimated parameters and standard errors for the model with genotype effect are presented
in Table 2.1.

Table 2.1. Estimated regression parameters of the proportional odds model with the effect of genotype
selected for analysis Tambaqui in a study carried out by Marques (2018).

Parameter Estimate Standard error
α1 (intercept 1) -3.1289 0.6989
α2 (intercept 2) -0.9079 0.4811
β (Genotype 133) 1.3779 0.6437

The expressions in terms of the cumulative logits for the proportional odds model with genotype
effect are expressed by

log
[

γ1(x)

1− γ1(x)

]
= −3.1289 + 1.3779x and log

[
γ2(x)

1− γ2(x)

]
= −0.9079 + 1.3779x.

The interpretation of the estimated parameter is generally performed through the odds ratios.
The estimate of the genotype effect parameter is 1.3779 (Table 2.1), which indicates a tendency towards
classification in the less severe categories in fish with genotype 130, as observed in the exploratory analysis.
Therefore, the odds of the lesion being classified as mild (in relation to moderate or irreversible) in fish
with genotype 130 was approximately 3.97 times the odds of being classified in fish with genotype 122.
The same conclusions can be obtained considering the odds of the lesion being classified as mild or
moderate in relation to irreversible, which occurs due to the proportionality assumption assumed by the
model.

The predicted probabilities for each response category in the different types of genotype, with
their respective confidence intervals, are presented in Table 2.2. Fish with genotype 122 showed irre-
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versible liver alteration with a probability of 71.26%, while for fish with genotype 130, this occurs with
a probability of 38.46%. Therefore, fish with genotype 122 tend to have more severe liver lesions than
fish with genotype 130. As shown in Table 2.2, the confidence interval has greater amplitude due to the
relatively small sample size.

Table 2.2. Estimated probabilities and 95% confidence intervals (in parentheses) in each of the response
categories for fish with genotypes 122 and 130 were obtained by fitting the proportional odds model with
the genotype effect.

Genotype Category
mild moderate irreversible

122 4.19% 24.55% 71.26%
(1.10%; 14.69%) (11.87%; 44.02%) (49.13%; 86.42%)

130 14.79% 46.75% 38.46%
(5.41%; 34.49%) (29.22%; 65.12%) (20.94%; 59.59%)

The observed and estimated proportions by genotype can be seen in Figure 2.4. Visually, the
values are close to each other, showing that the proportional odds model includes the genotype effect is
reasonable for describing the proportions of lesions observed in the study conducted by Marques (2018).
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Figure 2.4. Observed proportions for the mild, moderate, and irreversible lesions and proportions
estimated by proportional odds model with genotype effect in the study of Marques (2018).

The validation of the model assumptions was verified by the surrogate residuals analysis using
bootstrap replications due to the sample size. Observing the histogram, Figure 2.5, the residual distribu-
tion presented a shape similar to the standard logistic distribution, which is symmetrical, similar to the
normal distribution but with heavier tails. The values for mean and variance were approximately 0.002

and 3.176, respectively. Furthermore, the p-value of the Kolmogorov-Smirnov test was approximately
0.729, which indicates in favor of the hypothesis that the surrogate residuals follow a standard logistic
distribution.
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Figure 2.5. Histogram of surrogate residuals related to the proportional odds fitted model (genotype
effect) to the fish data in the study of Marques (2018)

The half-normal plot with a simulated envelope for the surrogate residuals was presented in
Figure 2.6. There is evidence that the observed data are a plausible realization of the fitted model since
no systematic deviation pattern was observed with all the points inside the envelope. Thus, the model
with the genotype effect can be used to analyze the data.
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Figure 2.6. Half-normal plot with a simulated envelope for the surrogate residuals to assess the fit of
the model with genotype effect in the study of Marques (2018).

As in this model, a covariate is a factor, using the plot of residuals versus covariate is inappro-
priate. The boxplot of residuals was obtained for each genotype (Figure 2.7), which revealed medians
of residuals close to zero. In addition, the residual distributions present symmetrical tendency, similar
variability, and the presence of outliers per genotype.
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Figure 2.7. Boxplot of surrogate residuals per genotype to assess the proportional odds fitted model to
the fish data in the study of Marques (2018).

The large residuals in the Figure 2.7 refer to individual #32 for genotype 122 and to individuals
#8, #13, and #15 for genotype 130. The model was fitted without these individuals to assess the impact
on the estimates of model parameters. The parameter estimates and the related standard errors, in
parentheses, are shown in Table 2.3.

Table 2.3. Estimated Parameters of proportional odds model with genotype effect by excluding the
individual #32 for genotype 122 and the individuals #8, #13 and #15 for genotype 130 the fish data.

Individual Parameters
α1 α2 β

Complete sample -3,1289 -0,9079 1,3779
(0, 6989) (0, 4811) (0, 6437)

Excluding #32 -3,0651 -0,8391 1.3105
(0, 7003) (0, 4857) (0, 6467)

Excluding #8 -3,0358 -0,9137 1,3142
(0, 6928) (0, 4806) (0, 6485)

Excluding #13 -3,3315 -0,8971 1,2675
(0, 7532) (0, 4822) (0, 6501)

Excluding #15 -3,3315 -0,8971 1,2675
(0, 7532) (0, 4822) (0, 6501)

The variations between the estimated parameters (and the standard errors) were not dispropor-
tionate with the exclusion of individuals by genotype from the sample (Table 2.3), indicating that these
points do not have a high influence on the fit. Thus, the entire inference based on the complete sample
remains valid, and the choice of another model could lead to inadequate conclusions. Finally, the results
were satisfactory, contributing to the validation of the model that provided a good fit for the data.

2.7 Conclusion

The paper describes an introduction to residuals analysis with ordinal data through a method
that uses a continuous variable that replaces the original response, allowing to obtain unique residuals by
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individuals. The surrogate residuals have similar properties to ordinary residuals for a continuous response
and they can be used in virtually all available diagnostic tools, as illustrated in the practical application.
The residuals were informative, not detecting violations of the assumptions of the model selected to
describe the fish data. As the residuals are obtained by conditional sampling, it is recommended to use
the Bootstrap algorithm in small samples to control the sampling error that can lead to a variation in
the patterns of residuals. The limitation of this approach is that the residual is defined only for models
that present a valid proportional odds assumption, not covering the entire class of models for ordinal
data. Furthermore, these univariate residuals are not defined for nominal data or the different data
structure from the individual one. These issues present challenges in the diagnostics for different models
with distinct data structures. Future studies can be carried out to improve the analysis of residuals in
polytomous data, stimulating the methodological development in this important area whose tools are still
limited.
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Appendix

################################################################
# R code #
################################################################
#Fish data
#ord ina l v a r i ab l e
rm( l i s t=l s ( a l l=TRUE) )
# I n s t a l l i n g the packages
l i b r a r y ( o rd i na l ) ; l i b r a r y (hnp ) ; l i b r a r y ( ggp lot2 ) ; l i b r a r y ( sure ) ;
l i b r a r y ( gr idExtra ) ; l i b r a r y ( dgof )
#########################################################################
mydata<−read . csv (” f i s h . csv ” , head=TRUE, sep =”;” , dec=” ,”) #read ing data
mydata$genotype<−as . f a c t o r (mydata$genotype ) #cova r i a t e
mydata$resp<−as . ordered ( as . f a c t o r ( mydata$resp ) ) #ord i na l re sponse
attach (mydata )
summary(mydata )
head (mydata )
##########################################################################
#Exploratory ana l y s i s
l e v e l s ( mydata$genotype)<−c (” Genotype 122” ,”Genotype 130”)
l e v e l s ( mydata$resp)<−c (”Mild ” , ” Moderate ” , ” I r r e v e r s i b l e ”)
ggp lot (mydata , aes ( x = resp , f i l l = resp ) ) +
geom_bar ( width=0.3 , show . legend = FALSE) + face t_gr id ( . ~ genotype)+
ylab ( ’ Frequency ’)+ xlab (” Category ”)
###########################################################################
#Models
mod <− clm ( resp~genotype , data=mydata ) # MOP
#Likehood r a t i o t e s t
nominal_test (mod)
#or
mod1 <− clm ( resp~genotype , nominal=~genotype , data=mydata ) # MLC
anova (mod,mod1)
###########################################################################
#Likehood r a t i o t e s t to s e l e c t l i n e a r p r ed i c t o r o f s e qu en t i a l p r opo r t i ona l
odds models
mod0 <− clm ( resp ~1 , data=mydata )
anova (mod0 ,mod)
#Deviances
tab <− with (mydata , t ab l e ( genotype , re sp ) )
p i . hat <− tab/rowSums( tab )
( logvero_modc <− sum( tab ∗ i f e l s e ( p i . hat > 0 , l og ( p i . hat ) , 0 ) ) )
logvero_mod0 <− mod0$logLik
( Deviance0 <− −2 ∗ ( logvero_mod0 − logvero_modc ) )
logvero_mod <− mod$logLik
( Deviance1 <− −2 ∗ ( logvero_mod − logvero_modc ) )
###########################################################################
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#Wald CI 95% f o r :
#parameters
param<−c o e f f i c i e n t s (mod) #c o e f f i c i e n t s o f parameters
c on f i n t (mod, type = ”Wald”)
# and the est imated p r o b a b i l i t i e s
drop<−expand . g r id ( genotype=l e v e l s ( mydata$genotype ) )
CIprob<−pred i c t (mod, newdat=drop , se . f i t=TRUE, i n t e r v a l = T)
#odds r a t i o
exp(−param [ 3 ] )
###########################################################################
#observed ver sus est imated p r o b a l i t i e s p l o t
tab <− with (mydata , t ab l e ( genotype , re sp ) ) #frequency
prob<−round ( prop . t ab l e ( tab , margin = 1 ) , 2 ) ; prob #observed p r o b a b i l i t i e s
p1<−as . vec to r ( t ( prob ) )
probs<−as . vec to r ( t ( p r ed i c t (mod, newdat=drop ) $ f i t ) ) #est imated p r o b a b i l i t i e s
p rob f i na l <−data . frame ( genotype=rep ( ( 1 : 2 ) , each=3, t imes =2) ,

re sponse=rep ( ( 1 : 3 ) , t imes=4))
da ta f i na l <−cbind ( p rob f ina l , proba=c ( probs , p1 ) , t i po=rep ( c (” Estimated ” ,
”Observed ” ) , each=6))
data f ina l$genotype<−as . f a c t o r ( da ta f ina l $genotype )
da ta f i na l $ r e spon s e <−as . f a c t o r ( da t a f i n a l $ r e spon s e )
l e v e l s ( da t a f i n a l $ r e spon s e)<−c (”Mild ” ,”Moderate ” ,” I r r e v e r s i b l e ”)
l e v e l s ( da ta f ina l $genotype)<−c (”Genotype 122” , ”Genotype 130”)
ggp lot ( da ta f i na l , aes ( x=response , y=proba , co l our=t ipo ) ) +

geom_point ( s i z e =3) + face t_gr id ( . ~ genotype ) +
xlim (”Mild ” ,”Moderate ” ,” I r r e v e r s i b l e ”)+
xlab ( ’\ n Response Category \n’)+ ylab ( ’ Proport ion \n’)+
scale_colour_manual (name=”” , breaks=c ( ’ Estimated ’ , ’ Observed ’ ) ,

va lue s=c ( ’ blue ’ , ’ red ’))+ theme ( legend . p o s i t i o n=”top ”)
###########################################################################
#hnp us ing sur roga t e r e s i d u a l s
res_sure<−r e s i d s (mod, nsim = 10) #to obta in the r e s i d u a l s
#ha l f−normal p l o t with s imulated enve lope
hnp( res_sure , p r i n t=T, ylab=”Surrogate Res idua l s ” , s c a l e = T)
#QQ plo t
qq_sure <− autop lo t . clm (mod, nsim = 10 , what = ”qq ” ) ; qq_sure
#The func t i on to obta in the boots t rap sample
nsim<−10 # number o f r e p l i c a t i o n s
n . obs<−mod$nobs #sample s i z e
boot . r e s <− boot . index <− matrix ( nrow = n . obs , nco l = nsim )
f o r ( i in seq_len ( nsim ) ) {

boot . index [ , i ] <− sample (n . obs , r ep l a c e = TRUE)
mr<− mod$y [ boot . index [ , i ] ]
boot . r e s [ , i ] <− r e s i d s (mod, y = y [ boot . index [ , i ] ] , mean . re sponse = mr)

}
x_orig<−as . vec to r ( boot . index )
xboots<−vector ( )
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f o r ( i in 1 : l ength ( x_orig ) ) {
i f ( x_orig [ i ]<=21){

xboots [ i ]<−”130”
} e l s e {

xboots [ i ]<−”122”
}

}
yboots<−as . vec to r ( boot . r e s )
mydataboots<−data . frame ( xboots , yboots )
attach (mydataboots )
#p−value o f Kolmogorov−Smirnov Test f o r boots t rap r e s i d u a l s
ks . t e s t ( yboots , ” p l o g i s ”) $p . va lue
#mean and standad dev i a t i on o f boots t rap r e s i d u a l s
mean( yboots ) ; sd ( yboots )^2
#Boxplot dos r e s í duo s com 10 rep boots t rap
( p10 <− ggp lot (mydataboots , aes ( x =xboots , y = yboots ))+ labs (x = ”Genotype ” ,
y = ” Surrogate r e s i d u a l s ”)+ geom_boxplot ( aes ( f i l l =xboots ))+
gu ides ( f i l l =FALSE) )
#to obta in the o u t l i e r s per genotype
out <− ggplot_bui ld ( p10 ) [ [ ” data ” ] ] [ [ 1 ] ] [ [ ” o u t l i e r s ” ] ]
g122 . out<−as . vec to r ( out [ [ 1 ] ] )
g130 . out<−as . vec to r ( out [ [ 2 ] ] )
ind_boots<−match ( c ( g122 . out , g130 . out ) , yboots )
ind_orig<−x_orig [ ind_boots ]
out_f<−rep (NA, l ength ( x_orig ) )
f o r ( i in 1 : l ength ( x_orig ) ){

f o r ( j in 1 : l ength ( ind_orig ) ) {
i f ( i==ind_boots [ j ] ) { out_f [ i ]<−ind_orig [ j ] }}}

#Boxplot with the i n d i v i d u a l s that corresponds the o u t l i e r s per genotype
( p10+ geom_text ( aes ( l a b e l=out_f ) , na . rm=TRUE, nudge_y=0.05 , h ju s t =−0.5))

#Histogram with 10 r e p l i c a t e s boots t rap
ggp lot (mydataboots , aes ( x=yboots ) ) + geom_histogram ( binwidth=1,
f i l l =”#69b3a2 ” , c o l o r=”blue ”)+ylab (” Frequenqcy ”)
+xlab (” Surrogate Res idua l s ”) +stat_funct ion ( fun = func t i on (x )
d l o g i s (x , 0 ,1)∗ l ength ( yboots ) , c o l o r = ” red ” , s i z e = 1)
###########################################################################
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3 NOMINAL DATA AND DIAGNOSTICS BASED ON RANDOMIZED QUANTILE
RESIDUALS AND DISTANCE MEASURES

Abstract

Nominal variables are of interest in research in many areas of knowledge. Depending on the
study objective, these data can be obtained from experiments with an individual or grouped structure.
The generalized logit model is commonly used to relate the potential effects of covariates on response.
After fitting a multi-categorical model, one of the challenges is the definition of an appropriate residual
and choosing diagnostic techniques, which are still under development in the scientific area. As the
response variable is multivariate, the ordinary residual is a vector for each individual with asymptotic
distribution generally unknown. The definition of an appropriate residual enables the correct analysis in
diagnostic tools. In this context, this work assesses the normality of the randomized quantile residual
associated with the individual nominal data and proposes to identify the presence of outliers through
Euclidean and Mahalanobis distances by reducing the ordinary residual dimension associated with the
grouped data. These methodologies were used in diagnostic techniques for assessing the generalized logit
models through simulation studies, whose results attest to the good performance of their application.
Two data sets of literature were presented to illustrate these methods. The parameters estimation was
performed via maximum likelihood, and the residuals and the values of distances were analyzed via a
half-normal plot and Shapiro-Wilk test. Overall, it was possible to check the model assumptions, which
provided evidence that the observed data were plausible realizations of the fitted models.
Keywords: Generalized logit model; Maximum likelihood; Half-normal plot; Shapiro-Wilk test.

3.1 Introdution

Nominal polytomous variables are defined by a finite set of categories (more than two), being of
interest in experiments in several scientific areas such as agricultural, biological, and others. For example,
in agricultural sciences, experiments are designed in which the experimental unit is an individual (a plant,
an insect, or an animal), recording the categorized response. However, practical situations are not rare
in which the experimental unit is composed of a fixed group of individuals, such as a stall with animals,
a cage with insects, or a plant with its branches, among others, for these cases are considered categorized
data terms a grouped structure.

The generalized logit model is frequently used for the statistical analysis of nominal data with
individual or grouped structures, simultaneously describing the relationship between the probabilities for
all pairs of response categories with the covariates of the study (Agresti, 2002). On the other hand, the
assumptions of the fitted model must be verified to validate the statistical inference, being the residual
analysis fundamental in this process. So, the first step is the definition of an appropriate residual that
can be used in formal (tests) and informal (graphs) diagnostic techniques to assess the goodness-of-fit and
model assumptions. According to Feng et al. (2020), residuals are essential in identifying discrepancies
between the model and the data, detecting outliers and influential points. However, the analysis of
residuals is a challenge for the multinomial case. As the response variable is multivariate, the ordinary
residual defined by the difference between the observed response and the estimated probability is a vector
for each individual, with a dimension defined by the number of categories. This residual has an asymptotic
distribution unknown, making it difficult to interpret in diagnostic graphs (Reiter and Kohnen, 2005). In
addition, deviance and Pearson statistics are quantitative measures widely used to test the goodness-of-fit
of generalized linear models (GLMs). Still, they can only be applied to multinomial data in the grouped
structure and with restrictions on the sample size (Tutz, 2011).
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In this context, it is important to find or adapt techniques to overcome these limitations and
could be considered some alternatives for diagnostics in these cases. The first is to reduce the number
of categories (grouping into two) and perform residual analysis for the logistic regression model, whose
techniques are consolidated in the statistical literature (Pregibon, 1981, Landwehr et al., 1984, Hossain
and Islam, 2003, among others). However, grouping categories leads to the loss of information, changing
the original questions of scientific research. Another alternative would be to fit the generalized logit
model separately and define residuals for each sub-model, applying them to the different diagnostic tools.
Silva (2003) presented deviance residuals without sign assignment and the Pearson residuals for the
generalized logit sub-models with three categories, examining their performance in the plots of residuals
versus predicted probabilities and from residuals versus the order of observations. However, the maximum
likelihood estimates from the separate fit differ from those obtained in simultaneous fit, and their standard
errors tend to be larger (Agresti, 2002).

Continuing within this framework, Cheng et al. (2021) defined a continuous residual vector for
the individual nominal case based on the methodology of Liu and Zhang (2018), in which a uni-dimensional
residual was described to individual ordinal data. The residuals were evaluated in the different dimen-
sions for diagnosing the generalized logit model with three categories. The authors also presented the
deviance and Pearson residuals vectors for comparison in some scenarios. These exhibited nearly parallel
curves in the residuals versus covariate plots, while the continuous residuals showed expected patterns
for the correct model. However, if the number of categories increases, the residual dimension increases,
and the number of values can make it difficult to interpret both residuals and diagnostics.

On the other hand, for nominal data with grouped structure, Seber and Nyangoma (2000)
defined a vector of residuals with basis on so-called projected residuals presented by Cook and Tsai
(1985) in the nonlinear regression. The authors examined their proximity to the normal distribution
and the magnitude of bias term associated with each residual to assess the fit of the log-linear model in
examples from genetics and psychology. Furthermore, the Pearson residual vector was presented by Gupta
et al. (2008) to detect influential points in the fit of the generalized logit model, whose parameters were
estimated using the minimum phi-divergence estimator. However, these methodologies require theoretical
development and are not implemented in statistical software.

A residual defined for a broad class of models that can be easily implemented in statistical
software is the randomized quantile residual (Dunn and Smyth, 1996), an alternative for diagnostics
associated with generalized logit models. Even so, a lack of investigation of its performance through
simulation studies is observed for polytomous regression models. This residual for discrete data is an
extension of the quantile residual to continuous data, in which randomization between two consecutive
distribution functions has been introduced to produce continuous residuals. Randomized quantile resi-
duals follow an approximately normal distribution if the estimated parameters are consistent, but it is
important to investigate their properties in small sample sizes (Pereira, 2019). Feng et al. (2020) inves-
tigated the randomized quantile residuals for count data by comparing them with Pearson and deviance
residuals. Through simulation studies, the authors concluded that the randomized quantile residuals are
better approximated by the standard normal distribution than the others, detecting a lack of fit in the
Shapiro-Wilk test and diagnostic plots for models associated with the data.

Another alternative is to propose distance metrics, such as Euclidean and Mahalanobis, to
reduce the dimension of the ordinary residual for the diagnostics of generalized logit models. These
metrics are widespread in the literature on Multivariate Analysis, calculating how far two individuals are
in the original variable space in different analyses, for example, principal components, cluster analysis, and
others (Johnson and Wichern, 2007). In the context of diagnostics, it is observed that these distances
have already been used to detect outliers in linear regression (Hadi et al., 2009 and Ghorbani, 2019).
However, there are no records of their use in models for nominal data.
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In this chapter, the objectives are to assess the normality of randomized quantile residual and
propose using Euclidean and Mahalanobis distances to reduce the dimension of ordinary residual in the
diagnosis of generalized logit models associated with nominal data with both structures, individual and
grouped. More specifically, it conducts simulation studies to (1) demonstrate that the randomized quantile
residuals approximately follow a standard normal distribution for the correctly specified generalized logit
model to the individual nominal data, examining them by the Shapiro-Wilk test, and (2) examine the
performance of the values resulting from reducing the dimension of the ordinary residual by distance
measures under the half-normal plot to detect outliers in the diagnosis of the generalized logit model in
grouped data analysis.

The sections are organized as follows. The review of models and residuals for nominal poly-
tomous data are presented in Section 3.2. The definition of the randomized quantile residual and the
distance metrics (Euclidean and Mahalanobis) are presented in Sections 3.3 and 3.4, respectively. Section
4.3 presents the framework based on randomized quantile residuals and distances for nominal responses,
which are the contributions of this chapter. The simulation studies and results are presented in Section
4.5. Two applications from literature to illustrate the methodologies and their results are presented in
Section 4.5. Finally, the conclusion is presented in section 3.8.

3.2 Review of models and residuals for nominal polytomous data

Statistical models are based on the probability distribution of the response variable, with the
multinomial distribution being assumed for polytomous data (nominal or ordinal). The set of assumpti-
ons, response distribution, and covariates (linear predictor structure) are essential in defining the model,
influencing the construction of residuals, and applying diagnostic techniques.

3.2.1 Multinomial Distribution

Let it be a multinomial trial, that is, an experiment that admits J possible and mutually
exclusive outcomes, whose probabilities are denoted by π1, π2, ..., πJ such that 0 ≤ πj ≤ 1, j = 1, 2, ..., J ,

and
J∑

j=1

πj = 1.

Consider m identical and independent trials, which means that the probabilities of occurrence
of the results are constant for each trial and that the result obtained in one trial does not interfere with
the result of the other. Taking the random variable Yj , which represents the number of times the index
j was observed in m trials, then the random vector Y = (Y1, . . . , YJ)

′ follows a multinomial distribution
with parameters m and π = (π1, . . . , πJ)

′, Y ∼ Multi(m,π), and probability mass function given by

f (y;π) = P (Y1 = y1, Y2 = y2, ..., YJ = yJ ;m;π) =
m!

y1!y2!...yJ !
πy1

1 πy2

2 ...πyJ

J ,

where yj ∈ {0, 1, . . . ,m} and
J∑

j=1

yj = m.

For the category j the result yj has mean and variance given by E(Yj) = mπj e Var(Yj) =

mπj(1 − πj), respectively. Furthermore, the covariance between yj and yk, ∀j ̸= k, j, k = 1, . . . , J , is
obtained by Cov(Yj , Yk) = −mπjπk, and that the marginal distribution of each yj is binomial.

The multinomial distribution belongs to the canonical multiparametric exponential family, with
a vector of canonical parameters θ = [log(π1), . . . , log(πJ)]

′ and canonical statistics T = (Y1, . . . , YJ)
′.

However, the minimum representation of the exponential family is obtained considering the vectors θ =[
log
(

π1

πJ

)
, . . . , log

(
πJ−1

πJ

)]′
and T = (Y1, . . . , YJ−1)

′, both of dimension J − 1, due to the restriction
J∑

j=1

πj = 1, which results in the multiparametric exponential family with dimension J − 1 expressed in
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the following form

f(y;θ) = m!

y1! . . . yJ !
exp

J−1∑
j=1

θjyj − b(θ)

 ,

where θj = log
(

πj

πJ

)
, j = 1, . . . , J − 1, and b(θ) = m log

(
1 +

J−1∑
j=1

eθj

)
.

According to Agresti (2007), the multinomial distribution is the most used in the class of
generalized models for polytomous responses.

3.2.2 Nominal data structures

To present the notation of individual data, consider the response of an individual i, i =

1, 2 . . . , n, in one of the J categories. Let the indicator random variable Yij = 1 if the response of

individual i is in category j, j = 1, 2, . . . , J , and Yij = 0 otherwise, with
J∑

j=1

Yij = 1. Then, the ran-

dom vector referring to the individual i given by Yi = (Yi1, . . . , YiJ)
′ has a multinomial distribution,

Yi ∼ Multi(1,πi), with probability vector πi = E(Yi) = (πi1, . . . , πiJ)
′ where

J∑
j=1

πij = 1.

In the case of grouped data, let be the i-th experimental unit, i = 1, 2 . . . , n, composed of a
group of individuals with a fixed size equal to mi. The random variable given by Yij represents the

number of times category j was observed in mi individuals, with
J∑

j=1

Yij = mi. Then, the random vector

Yi = (Yi1, . . . , YiJ)
′ follows a multinomial distribution, Yi ∼ Multi(mi,πi), with parameters mi and

πi = (πi1, . . . , πiJ)
′. These data are usually arranged in a contingency table that, generically, can be

represented by Table 3.1, in which the counts observed in the cells are represented by yij , i = 1, 2, ..., n

and j = 1, 2, ..., J .

Table 3.1. Example of a generic contingency table with n experimental units and J response categories

Experimental unit (i) Response categories (j) Total
1 2 3 ... J

1 y11 y12 y13 ... y1J m1

2 y21 y22 y23 ... n2J m2

... ... ... ... ... ... ...
n yn1 yn2 yn3 ... ynJ mn

3.2.3 Generalized logit model

Consider a random sample of dimension n where for each experimental unit i, i = 1, 2, . . . , n,
is associated with a vector of covariates over the nominal response. The model, which compares each
category with one chosen as a reference, is defined as

logit [πij(xi)] = log
[
πij(xi)

πiJ(xi)

]
= αj +

p∑
k=1

βjkxik = αj + β′
jxi, j = 1, . . . , J − 1, (3.1)

where J is the number of categories, πj(xi) is the probability of response of individual i in the j-th
category, xi = (xi1, xi2, . . . , xip)

′ is the vector of p covariates, βj = (βj1, βj2, . . . , βjp)
′ represents the

parameter vector, and αj is the intercept. According to Agresti (2002), the covariates can be quantitative,
factors (using dummy variables) or both.

The equations that express the model directly in terms of the probabilities are

πij(xi) =
exp

(
αj + β′

jxi

)
1 +

J−1∑
j=1

exp
(
αj + β′

jxi

) , j = 1, . . . , J − 1,
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and the probability for the reference category in the form

πiJ(xi) = 1−
[
πi1(xi) + . . .+ πi(J−1)(xi)

]
=

1

1 +
J−1∑
j=1

exp
(
αj + β′

jxi

) .
Generally, the first or last category is chosen as a reference, but this choice can be arbitrary,

depending on the convenience of the researcher (Tang et al., 2012). Furthermore, the effects, βj , vary
by response category, which implies that the effects of covariates may vary according to the response
category being compared to the reference category (Bilder and Loughin, 2014).

Through the maximum likelihood method, the estimation of the parameters of the model (3.1)
can be performed. The fit consists of maximizing the probability πij(xi) to simultaneously satisfy the
J − 1 equations that specify the model. First, consider the data with individual structure with the

observed vector yi = (yi1, . . . , yiJ) satisfying
J∑

j=1

yij = 1 and mean E(Yij |xi) = πij(xi), j = 1, 2, . . . , J .

Moreover, yiJ = 1 −

(
J−1∑
j=1

yij

)
and πiJ(xi) = 1 −

(
J−1∑
j=1

πij(xi)

)
, then the logarithm of the likelihood

function is given by

l = log
n∏

i=1


J∏

j=1

[πij (xi)]
yij

 = log
n∏

i=1


J−1∏
j=1

[πij (xi)]
yij [πiJ (xi)]

yiJ

.

Using yiJ there is

l = log
n∏

i=1


J−1∏
j=1

[πij (xi)]
yij [πiJ (xi)]

1−
∑J−1

j=1 yij


=

n∑
i=1

{
J−1∑
j=1

yij log [πij (xi)] +

(
1−

J−1∑
j=1

yij

)
log [πiJ (xi)]

}

=
n∑

i=1

{
J−1∑
j=1

yij log
[
πij(xi)
πiJ (xi)

]
+ log [πiJ (xi)]

}
.

In the last expression the log
[
πij(xi)
πiJ (xi)

]
is replaced by αj + β′

jxi related to the first term and
πiJ(xi) =

1

1+
J−1∑
j=1

exp(αj+β
′
jxi)

the second term so that

l =
n∑

i=1

{
J−1∑
j=1

yij
(
αj + β′

jxi

)
+ log

[
1/(1 +

J−1∑
j=1

exp(αj + β′
jxi))

]}
;

=
n∑

i=1

{
J−1∑
j=1

yij
(
αj + β′

jxi

)
− log

[
1 +

J−1∑
j=1

exp(αj + β′
jxi)

]}
.

To maximize l and obtain the maximum likelihood estimates of the parameters, it is necessary to use
iterative methods, which can be done using the Newton-Raphson method, for example (Agresti, 2007).

Now, considering the grouped data where the observed vector yi = (yi1, . . . , yiJ) satisfies
J∑

j=1

yij = mi with mean E(Yij |xi) = miπij(xi), j = 1, . . . , J , there is the likelihood function given by

L =

n∏
i=1

 mi!

yi1! . . . yiJ !

J∏
j=1

π
yij

ij (xi)

,

and the logarithm of the likelihood function by

l∗ =
n∑

i=1

{
J∑

j=1

yij log [πij (xi)] + log
[

mi!
yi1!...yiJ !

]}

=
n∑

i=1

{
J−1∑
j=1

yij log [πij (xi)] + yiJ log [πiJ (xi)] + log
[

mi!
yi1!...yiJ !

]}
.



40

Replacing yiJ = mi −

(
J−1∑
j=1

yij

)
in the last expression above there is

l∗ =
n∑

i=1

{
J−1∑
j=1

yij log [πij (xi)] +

(
mi −

J−1∑
j=1

yij

)
log [πiJ (xi)] + log

[
mi!

yi1!...yiJ !

]}

=
n∑

i=1

{
J−1∑
j=1

yij log [πij (xi)] +mi log [πiJ (xi)]−
J−1∑
j=1

yij log [πiJ (xi)] + log
[

mi!
yi1!...yiJ !

]}

=
n∑

i=1

{
J−1∑
j=1

yij log
[
πij(xi)
πiJ (xi)

]
+mi log [πiJ (xi)] + log

[
mi!

yi1!...yiJ !

]}
.

Finally, log
[
πij(xi)
πiJ (xi)

]
is replaced by αj + β′

jxi and πiJ(xi) = 1

1+
J−1∑
j=1

exp(αj+β
′
jxi)

in the expression above

such that

l∗ =
n∑

i=1

{
J−1∑
j=1

yij(αj + β′
jxi) +mi log

[
1/(1 +

J−1∑
j=1

exp(αj + β′
jxi))

]
+ log

[
mi!

yi1!...yiJ !

]}

=
n∑

i=1

{
J−1∑
j=1

yij(αj + β′
jxi)−mi log

[
1 +

J−1∑
j=1

exp(αj + β′
jxi)

]
+ log

[
mi!

yi1!...yiJ !

]}
.

An iterative method such as the Newton-Raphson method can be used to maximize l∗ and
obtain the maximum likelihood estimates (Tutz, 2011).

3.2.4 Residuals associated with models for nominal categorized data

According to Nobre and Singer (2007), it is essential to verify the robustness of the estimates
obtained from the fit, based on the statistical model under analysis, to describe the observed data
well, leading the researcher to reliable inferences and predictions. An important step performed for
the diagnostics of a model is the analysis of residuals. Residuals are used to validate the assumptions of
a model and detect outliers or influential points. In this way, they can be used as tools that constitute
the selection of a model.

3.2.4.1 Residuals for individual data

The ordinary residual, which measures the deviations between the observed values and the
predicted probabilities, for the model (3.1) is a vector with dimension J×1 per individual i, i = 1, 2, . . . , n,
given by (Reiter and Kohnen, 2005)

r̂i = yi − π̂i = (yi1 − π̂i1, yi2 − π̂i2, . . . , yiJ − π̂iJ)
′
,

where yi = (yi1, yi2, . . . , yiJ)
′ is the observed vector with yij = 1 if the response of individual i belongs to

the category j and yij = 0, otherwise and πi = (π̂i1, π̂i2, . . . , π̂iJ)
′ is the vector of predicted probabilities.

This residual does not follow a normal distribution, and when used in diagnostic plots, it may not be
informative, generating great visual difficulties and interpretation.

The Pearson and deviance residuals for the model (3.1) ) are given, respectively, by the vectors
rPi =

[
rPi1, r

P
i2, . . . , r

P
iJ

]′ and rDi =
[
rDi1, r

D
i2, . . . , r

D
iJ

]′, whose elements are obtained by (Cheng et al., 2021)

rPij =
(yij − π̂ij)√
π̂ij(1− π̂ij)

and
rDij = I (yij − π̂ij)

√
2 [(yij − 1) log (1− π̂ij)− yij log (π̂ij)]
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where j = 1, 2, . . . , J , and with the indicator function I (yij − π̂ij) = 1 if yij − π̂ij > 0 and −1, otherwise.
These definitions are extensions of the Pearson and deviance residuals used to assess the fit of the logistic
regression model.

The residual proposed by Cheng et al. (2021) is based on the methodology presented by Liu
and Zhang (2018) in defining a continuous variable to replace the original and the surrogate residuals
obtained from this new variable. Let a continuous random vector per individual, Ui, J-dimensional that
corresponds to a deterministic part (linear predictor structure of the model (3.1)) and a random part,
with elements given by

Uij = αj + β′
jxi + εij ,

where εi1, . . . , εiJ are mutually independent with standard Gumbel distribution, i = 1, 2, . . . , n e j =

1, 2, . . . , J . The distribution of the random part depends on the link function used in the model, being
assumed as another one for a different link function.

Consider now the joint distribution between the original response variable and the continuous
variable established by Yij = 1, the response of individual i belongs to category j, if and only if Uij >

Uij′ , ∀j ̸= j′, with j, j′ = 1, 2, . . . , J . The continuous random vector Si is defined following the conditional
distribution of Ui = (Ui1, . . . , UiJ) given the observed vector yi = (yi1, yi2, . . . , yiJ)

′, more specifically,
Si ∼ Ui|(yi, xi) using the region Uij > Uij′ . Then, the vector of surrogate residuals is expressed as

Ri = Si − E0(Si|xi) = Si − βjx′
i − E(εi) (3.2)

where E(.) denotes mean and εi = (εi1, . . . , εiJ)
′ follows the J-dimensional standard Gumbel distribution.

If the model (3.1) is specified correctly, the random vector Si follows the same distribution as Ui and the
residual, which is also a continuous vector, has the following properties (Cheng et al., 2021):

i) Zero mean vector: E(Ri|xi) = 0.

ii) Constant variance matrix: Var(Ri|xi) = Var(εi).

iii) The random vector Ri, independent from xi, follows the J-dimensional standard Gumbel distribu-
tion.

For small samples, the authors used the bootstrap method presented in Liu and Zhang (2018)
to obtain the empirical distributions of residuals by resampling. Furthermore, the vector of surrogate
residuals was normalized since the standard Gumbel distribution is positive skew and can lead to a biased
inference if the skewness is not considered.

3.2.4.2 Residuals for grouped data

The J-dimensional ordinary residual vector for the model (3.1) per experimental unit i, i =
1, 2, . . . , n, is obtained by (Tutz, 2011)

r̂i =
yi −mi × π̂i

mi

=
1

mi
(yi1 −miπ̂i1, yi2 −miπ̂i2, . . . , yiJ −miπ̂iJ)

′
,

where yi = (yi1, yi2, . . . , yiJ)
′ is the observed vector with the counts in the j-th category, yij , for the

experimental unit i and fixed size mi such that
J∑

j=1

yij = mi and π̂i = (π̂i1, π̂i2, . . . , π̂iJ)
′ is the vector of

predicted probabilities.
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The vector of Pearson residuals J-dimensional is given by rPi =
[
rPi1, r

P
i2, . . . , r

P
iJ

]′ with elements
obtained as follows (Tutz, 2011)

rPij =
(yij −miπ̂ij)√
miπ̂ij(1− π̂ij)

where i = 1, 2, . . . , n and j = 1, 2, . . . , J .

3.3 Randomized quantile residual

The quantile residual was proposed by Dunn and Smyth (1996) for situations with a continuous
variable and extended to situations with a discrete variable. For a continuous response, yi, the quantile
residual is defined by

rQi = Φ−1
{
F (yi; θ̂i, ϕ̂)

}
, i = 1, . . . , n,

where Φ−1 is the cumulative distribution function (CDF) of the standard normal distribution, F (yi; θ̂i, ϕ̂)

is the CDF associated with response variable, θ̂i is the maximum likelihood estimate of the parameter θi
and the dispersion parameter is ϕ̂.

On the other hand, if the response yi is discrete, a more general definition of randomized quantile
residuals is necessary. The idea is to introduce randomization through a uniform random component in
the CDF for each individual. Thus, the randomized quantile residual is obtained by

rQi = Φ−1 {F (ui)} , i = 1, . . . , n,

where ui represents a uniform random variable between ai = limy→yi
F (y; θ̂i, ϕ̂) and bi = F (yi; θ̂i, ϕ̂).

Then, these residuals also follow an approximately normal distribution.
The quantile residuals can be used for a broad class of regression models, being easy to compute

in statistical software. However, they have received little attention in the literature as model diagnostic
tools until recently. For example, Klar and Meintanis (2012) used the standardized quantile residuals in
goodness-of-fit tests for generalized linear models with inverse Gaussian and gamma variables. In their
study, these residuals showed to follow an approximately standard normal distribution. Pereira (2019)
investigated the performance of the quantile residual for diagnostics of the beta regression model and
demonstrated that this residual is better approximated by the standard normal distribution than other
residuals in several scenarios. Furthermore, Feng et al. (2020) used the standardized randomized quantile
residuals to examine the fit of models to count data, including the zero-inflated model, and obtained
satisfactory results.

One issue that may raise concern is the fluctuation of the randomized quantile residuals due to
the randomization introduced to obtain the continuous residuals (Feng et al., 2020). Dunn and Smyth
(1996) recommended producing the residuals multiple times, ensuring that discrepancies do not occur
due to randomization.

3.4 Distances

Consider having n individuals denoted by the random vectors zi = (zi1, zi2, . . . , ziq)
′, i =

1, 2, . . . , n. Each individual is represented by a point in q-dimensional space, with each dimension repre-
senting a variable (Sharma, 1996). As an example, we can mention the data presented by Johnson and
Wichern (2007) about 25 lizards Cophosaurus texanus, in which measurements were obtained for each
individual regarding the three variables: weight (or mass), in grams, snout-vent length (SVL) and hind
limb span (HLS), both in millimeters. The scatterplot in R3 for the variables in this example can be seen
in Figure 3.1.
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Figure 3.1. Scatter plot of lizard data in three-dimensional space (HLS, mass, SVL) presented in
Johnson and Wichern (2007) p. 19.

The distance measures can quantify how far two individuals are by a scalar, measuring their
proximity. The Euclidean and Mahalanobis distances are widely known in multivariate statistics and
can be calculated in the original space of the response variable (Maesschalck et al., 2000). While the
Euclidean distance is simple to calculate and interpret, the Mahalanobis distance has an invariant scale
and takes into account the correlation in the data since it is calculated using the inverse of the covariance
matrix of the set of interest. In addition, they are widely used in various classification techniques, in
cluster analysis as well as to detect outliers, especially in the context of linear regression models (see
Zelterman (2015) and Kannan and Manoj (2015)).

To measure the distance between an individual i and an individual t, the Euclidean distance is
defined by

dEit =
√

(zi − zt)′(zi − zt) =

√√√√ q∑
k=1

(zik − ztk),

where z.k is the k-th variable, with k = 1, 2, . . . , q, and i, t = 1, 2, . . . , n. According to Zelterman (2015),
this measure is the most popular to calculate the distance between individuals in q-dimensional space.
On the other hand, if the individuals are correlated, the covariance or correlation between them must be
considered when calculating the distance (Sharma, 1996). In this case, one can obtain the Mahalanobis
distance expressed by

d2it = (zi − zt)′C−1(zi − zt),

where C−1 is the covariance matrix with dimension q×q. In the case where C = I, with I representing the
identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If C is a diagonal matrix,
then the distance results in the standardized Euclidean distance (Johnson and Wichern, 2007).

The Euclidean distance results in quicker calculations than the Mahalanobis distance, but
considering the correlation is an important factor given its frequent observation in practice (Ghorbani,
2019). However, Maesschalck et al. (2000) reported that some issues must be observed in the Mahalanobis
distance, such as a large number of variables that can lead to a singular covariance matrix and the sample
size that must be greater than the number of variables.
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3.5 Methods

This section describes the methodological procedures for analyzing residuals and diagnostics as-
sociated with the generalized logit models for nominal polytomous data, distinguishing the experimental
designs with individual and grouped structures. The randomized quantile residual is described for indi-
vidual data. In this way, the normality of this residual can be assessed in simulation studies to validate
the generalized logit model, an application not found in the literature. In addition, a new methodology is
presented to reduce the dimension of ordinary residuals associated with grouped data through Euclidean
and Mahalanobis distances as a diagnostic tool to detect outliers. In this context, the steps to carry out
are:

i) Fit the generalized logit model presented in section 3.2.3 with different linear predictors in motiva-
tion and simulation studies.

ii) Carry out the selection of variables that will form the linear predictor of the model through the
likelihood ratio test. Considering two nested models, M0 and M1, given by

M0 : log
[
πij(xi)

πiJ(xi)

]
= αj and M1 : log

[
πij(xi)

πiJ(xi)

]
= αj + β′

jxi, j = 1, . . . , J − 1.

where xi = (xi1, xi2, . . . , xip)
′ is the vector of p covariates, βj = (βj1, βj2, . . . , βjp)

′ is the vector of
regression parameters, and αj is the intercept.

The hypotheses to be tested are{
H0 : βj = 0, ∀j = 1, . . . , J − 1

H1 : ∃ j |βj ̸= 0

and the test statistic

Λ = −2 log
[
LH0

LH1

]
= 2 log(LH1)− 2 log(LH0) ∼ χ2

(m),

where LH0
is the likelihood function associated with the model M0, LH1

is the likelihood function
associated with the model M1 (with the variable(s) under investigation) and m is the difference in
parameters between the two models. The null hypothesis is rejected at the 5% significance level
when Λ > χ2

(m).

The Akaike Information Criterion (AIC) (Akaike, 1974) can also be used in the model selection
stage, discriminating the models by the different linear predictors. The model with the smallest
distance from the probabilistic process that generated the data will be the best, that is, the linear
predictor with the lowest AIC will be the one indicated. Thus, the AIC is defined by

AIC = −2l̂p + 2p,

where l̂p is the logarithm of the likelihood function and p is the number of model parameters under
search.

The 100(1 − α)% confidence intervals (CIs) can be constructed for the parameters, and these are
given by (Agresti, 2002)

α̂j ± z(1−α/2) ×
√
V̂ar(α̂j)

and
β̂j1 ± z(1−α/2) ×

√
V̂ar(β̂j1), . . . , β̂jp ± z(1−α/2) ×

√
V̂ar(β̂jp)

where j = 1, 2, . . . , J − 1, α = 0, 05 is the significance level, and z is the quantile of the normal
distribution.
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iii) For diagnostics of the generalized logit model, the methodologies present in the residual analysis
are:

1) Obtain the standardized randomized quantile residuals for the individual data considering the
cumulative distribution function (CDF), F (yi; π̂i, ϕ̂), for the response vector yi given the vector
xi, i = 1, 2, . . . , n. The CDF for multinomial distribution was presented by Levin (1981) using its
representation as a conditional distribution of independent Poisson random variables given a fixed
sum. For a small number of categories, J , the multinomial CDF is as easy to compute (exactly) as
the convolution of J truncated Poisson random variables.

Let the estimated parameter given by π̂i = (π̂i1(xi), π̂i2(xi), . . . , π̂iJ(xi))
′, and ϕ is the dispersion

parameter that does not depend on xi. Consider the probability mass function f(yi; π̂i, ϕ̂), cor-
responding the response of individual i in category j, yij = 1, and yij = 0 otherwise. Then, the
estimated cumulative distribution function for individual i is

F ∗(yi, ui; π̂i, ϕ̂) = F (yi−; π̂i, ϕ̂) + ui × f(yi; π̂i, ϕ̂),

where F (yi−; π̂i, ϕ̂) is the CDF for the vector yi− that receives zero in the place of observed
category by the vector yi and one in the other categories. Also, ui is a random variable with
uniform distribution of parameters (0, 1), and using ϕ̂ = 1.

The randomized quantile residual for a polytomous response yi is given by

rQi = Φ−1[F ∗(yi, ui; π̂i, ϕ̂)],

where Φ−1 is the quantile function of the standard normal distribution. Thus, this resultant residual
is a single value for each i, approximating a normal distribution if the model is specified correctly.

In this work, the randomized quantile residuals were standardized, being obtained by

rSi =
rQi − r̄Q

SrQ
,

where r̄Q = n−1
n∑

i=1

rQi and S2
rQ = (n− 1)

−1
n∑

i=1

(
rQi − r̄Q

)2
are respectively the mean and the

variance of residuals.

2) Reduce the vector dimension of ordinary residuals associated with the grouped data through
Euclidean and Mahalanobis distances. Consider the vector of ordinary residuals for the experimental
unit i, described in section 3.2.4.2, with the zero mean vector E(ri|xi) = 0 of dimension J under
the assumption that the model is specified correctly. Then, the expressions using Euclidean and
Mahalanobis distances in multinomial regression are expressed, respectively, by

dMi =
√
(ri − 0)′(ri − 0) =

√∑J

j=1
r2ij , j = 1, 2, . . . , J

and
d2Mi = (ri − 0)′C−1

i (ri − 0) = r′iC−1
i ri,

where Ci, with dimension J × J , is the covariance matrix of the residuals for the experimental unit
i, i = 1, . . . , n, i.e.,

Ci =


Var(ri1) Cov(ri1, ri2) . . . Cov(ri1, riJ)

Cov(ri2, ri1) Var(ri2) . . . Cov(ri2, riJ)
...

... . . . ...
Cov(riJ , ri1) Cov(riJ , ri2) . . . Var(riJ)

 .
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iv) Once the randomized quantile residuals and distance measures are defined, formal (tests) and
informal (plots) techniques are employed for diagnostics.

A powerful and widely known test for detecting deviations from normality due to asymmetry or
kurtosis (or both) is the test of Shapiro and Wilk (1965). Consider the standardized randomized
quantile residuals described in the step (iii) of this section given by rSi , i = 1, . . . , n, and sorted by
rS(1) < rS(2) < . . . < rS(n). The hypotheses to be tested are{

H0 : rSi ∼ N(0, 1)

H1 : rSi does not follow N(0, 1)

with test statistic

SW =

(
n∑

i=1

air
S
(i)

)2

n∑
i=1

(
rSi − r̄Si

)2
where r̄Si is the residual mean and (a1, a2, . . . , an) =

m′V−1

(m′V−1V−1m)1/2
, with m = (m1,m2, . . . ,mn)

′

denoting the vector of expected values of the order statistics of the standard normal distribution
and V is the covariance matrix n × n. Initially, the test was restricted to a sample size up to
50, but Royston (1995) provided an algorithm with an improved approximation to the weights ai,
i = 1, 2, . . . , n, which can be used for any sample with size between 3 and 5000.

Considering informal techniques, one can first visualize the distribution of residuals through a
histogram, comparing its shape with that of the normal distribution. In the plot of residuals
versus fitted values, it is possible to observe the existence of variance heterogeneity or the presence
of outliers. The expected pattern in this plot is the zero-centered distribution of residuals with
constant amplitude (Faraway, 2016).

In the half-normal plot, the performance of the residuals and the distance measures show whether
the observed data are a plausible realization of the fitted model. The absolute values of a given
diagnostic measure (residuals or distances) are compared in relation to the expected order statistics
of the half-normal distribution obtained by

Φ−1

[
(i+ n− 1/8)

2n+ 1/2

]
,

where Φ−1 is the standard normal distribution function, with i = 1, . . . , n and n the sample size.
Atkinson (1985) proposed adding simulated envelopes obtained through computer simulations to
the plot to simplify the interpretation. The steps to build the envelope are(Moral et al., 2017):
1) Fit the model and obtain the sorted absolute values of a diagnostic measure, d(i); 2) Using the
fitted model, simulate 99 samples for the response variable; 3) Fit the model for each simulated
sample, obtaining the absolute and sorted values of the diagnostic measure, d∗t(i), t = 1, . . . , 99 and
i = 1, . . . , n; 4) For each set, calculate the percentiles 2, 5%, 50%, 97, 5%; 5) Plot these percentiles
and the d(i) of the original sample against the order statistics of the half-normal distribution. Then,
a considerable proportion of points outside the envelope indicates that the model is not suitable for
analyzing the data, being a satisfactory fit when the number of points outside the envelope is equal
to or less than 5%.

v) Finally, simulation studies are developed to evaluate the performance of the described procedures.

3.6 Simulation studies

A simulation study was developed to evaluate the performance of standardized quantile re-
siduals and distance measures in diagnostic techniques (formal and informal) in relation to the correct
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specification of the linear predictor structure. The generalized logit models with three response categories
for individual and grouped structures and two linear predictor structures define the simulation scenarios.
The first mean structure has the effect of a continuous covariate. In contrast, in the second, the model
has the effect of two covariates, one being continuous and the other a factor.

3.6.1 Models and scenarios

Eight scenarios are considered, obtained by combining two linear predictor structures, nominal
polytomous data in individual structure with sample size n = 100 and nominal data in grouped structure
with group dimensions (m = 5, 10 e 15) and sample size n = 50. For each scenario, 1000 data sets were
simulated. In the scenario of the linear predictor structure of model 1 (continuous covariate), the response
variable was simulated from the generalized logit model expressed by

log
(
πij

πi1

)
= αj + βjxi, j = 2, 3,

for which it was assumed that X ∼ N (0, 1); α2 = 1, 38 and α3 = 3, 51 for the intercepts; β2 = −2, 7 and
β3 = −5, 11 for the regression parameters, i = 1, 2, . . . , n. The first category was set as the reference.
The model probabilities are expressed by

πi2(xi) =
exp(α2 + β2xi)

1 + exp(α2 + β2xi) + exp(α3 + β3xi)
,

πi3(xi) =
exp(α3 + β3xi)

1 + exp(α2 + β2xi) + exp(α3 + β3xi)

and
πi1(xi) = 1− πi2(xi)− πi3(xi).

In the scenario with the linear predictor structure of model 2 (continuous and factor covariates),
the response variable was simulated using a generalized logit model given by

log
(
πij

πi1

)
= αj + βj1xi1 + βj2xi2, j = 2, 3, (3.3)

for which the first category was defined as the reference, α2 = 1, 38 and α3 = 3, 51 for the intercepts;
β21 = −2, 7, β22 = 1, 35, β31 = −5, 11 and β32 = 2, 49 for the regression parameters , Xi1 ∼ N (0, 1) is
the continuous covariate and Xi2 is a factor with 2 levels, “control” and “treatment” considered in the
model through the dummy variable, respectively. Furthermore, the probabilities for the model are

πi2(xi1, xi2) =
exp(α2 + β21xi1 + β22xi2)

1 + exp(α2 + β21xi1 + β22xi2) + exp(α3 + β31xi1 + β32xi2)
,

πi3(xi1, xi2) =
exp(α3 + β31xi1 + β32xi2)

1 + exp(α2 + β21xi1 + β22xi2) + exp(α3 + β31xi1 + β32xi2)

and
πi1(xi1, xi2) = 1− πi2(xi1, xi2)− πi3(xi1, xi2).

In cases where individual data are considered, that is, yij = 1 if the outcome of individual i
belongs the category j, j = 1, 2, 3, and yij = 0, otherwise, i = 1, 2, . . . , 100. The randomized quantile
residual of yi = (yi1, yi2, yi3)

′ is expressed by

rQi = Φ−1[F ∗(yi, ui; π̂i, ϕ̂)],
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where F ∗(yi, ui; π̂i, ϕ̂) is the estimated cumulative distribution function for the observed response, with
estimated mean π̂i = (π̂i1, π̂i2, π̂i3)

′, ui ∼ U(0, 1) and ϕ̂ = 1. In addition, Φ−1 represents the quantile
function of the normal standard distribution. Thus, standardized randomized quantile residuals are
obtained from

rSi =
rQi − r̄Q

SrQ
,

where r̄Q and S2
rQ are the mean and variance of the residuals, respectively.

Now, in the case of grouped data, the vector of ordinary residuals r̂i = (r̂i1, r̂i2, r̂i3)
′, i =

1, 2, . . . , 50, is given by

r̂i =
yi −miπ̂i

mi
=

(
yi1 −mi × π̂i1

mi
,
yi2 −mi × π̂i2

mi
,
yi3 −mi × π̂i3

mi

)′

where y = (y1, y2, y3)
′ represents the vector with the counts in relation to the categories observed in the

group, with mi = yi1 + yi2 + yi3, π̂i = (π̂i1, π̂i2, π̂i3)
′ is the vector of predicted probabilities. Then, the

Euclidean and Mahalanobis distances are defined, respectively, by

dMi =
√

r̂′ir̂i

and
d2Mi = r̂′iĈ−1

i r̂i,

where Ĉi, with dimension 3× 3, is the covariance matrix of residuals, that is,

Ĉi =

 V̂ar(r̂i1) ˆCov(r̂i1, r̂i2) ˆCov(r̂i1, r̂i3)
ˆCov(r̂i2, r̂i1) V̂ar(r̂i2) ˆCov(r̂i2, r̂i3)
ˆCov(r̂i3, r̂i1) ˆCov(r̂i3, r̂i2) V̂ar(r̂i3)

 .

Finally, to fit the models, the multinom(.) function was used of the nnet package (Ripley and
Venables, 2016). The dmultinom(.) function from the stats package and the pmultinom(.) function
from the pmultinom package (Davis, 2018) were used to create the function to obtain the standardized
randomized quantile residuals for the proposed scenarios available in the appendix. The calculation of
Euclidean and Mahalanobis distances were performed, respectively, through the dist(.) and mahalano-
bis(.) functions of the stats package (R Core Team, 2020). For diagnostic techniques, the p-value of the
Shapiro-Wilk test was obtained by shapiro.test(.) function of the stats package (R Core Team, 2020) and
the half-normal plot with simulated envelope was obtained by hnp(.) function of the hnp package (Moral
et al., 2017) implemented for a series of generalized models and extensions. All functions are available in
R software (R Core Team, 2020).

3.6.2 Results

This section presents the results of the scenarios considered in this work. First, the normality
of the randomized quantile residuals for the correct and null models was evaluated using the Shapiro-
Wilk test. The p-values obtained in the 1000 simulations were plotted on the histogram to visually
understand the distribution of these values. By doing this, it was possible to distinguish the variation in
the distribution of p-values about their measurements, such as amplitude, symmetry, and position around
the central value. Thereafter, the values obtained from distances were evaluated in the half-normal plot
with a simulated envelope. Then, boxplots were used to explore the distribution of the number of points
outside the envelope obtained in the simulations using this approach. This way, it was possible to compare
the correct and null models regarding the number of points outside the envelope (median, dispersion, and
outliers) and compare the distances.
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3.6.2.1 Simulation results for randomized quantile residual

Firstly, it is considered the results referring to model 1 compared to the null model (intercept
effect) for the individual data based on the 1000 simulations. The histograms of the p-values of the
Shapiro-Wilk test under model 1 and the null model are presented in Figure 3.2. The p-values under the
null model, Figure 3.2(a), show a positively skewed distribution with a mode close to zero. Conversely,
the p-values under model 1, Figure 3.2(b), are practically a uniform pattern. Thus, the normality of
residuals was rejected by the test (p-value< 0, 05) in most simulations considering the null model. This
fact did not occur for the correct model being possible to conclude that the standardized randomized
quantile residuals performed well in this simulation scenario.
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Figure 3.2. Histograms of p-values (Shapiro-Wilk test) for the standardized randomized quantile resi-
duals in the 1000 simulations under (a) null model (intercept effect) (b) model 1 (continuous covariate).

The Shapiro-Wilk test rejected the hypothesis of normality of the residuals in only 40 of 1000
simulations with the p-value mean of 0, 483 for model 1. On the other hand, the Shapiro-Wilk test rejected
the hypothesis of residual normality for the null model in 866 simulations with a mean of p-values equal
to 0, 025.

Now, it is presented the performance results of the standardized randomized quantile residuals
for model 2 (continuous and factor covariates) compared to the null model (intercept effect only) for
the individual data. The histograms in 3.3 refer to the p-values resulting from the Shapiro-Wilk test to
examine the normality of residuals under the models. The p-values of the Shapiro-Wilk test for model 2
present a relatively uniform distribution, Figure 3.3(b), while the p-values for the null model are clustered
close to zero, Figure 3.2(a).

When fitting the null model, the Shapiro-Wilk test rejected the hypothesis of normality of the
residuals in 927 of 1000 simulations and presented a mean of p-values equal to 0, 015. In comparison, the
Shapiro-Wilk test rejected the normality assumption of the residuals in only 57 simulations for model 2,
with a mean of p-values equal to 0, 462.
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Figure 3.3. Histograms of p-values (Shapiro-Wilk test) for the standardized randomized quantile resi-
duals in the 1000 simulations under (a) null model (intercept effect) (b) model 2 (continuous and factor
covariates).

3.6.2.2 Simulation results for distance measures

The results for the grouped data in which m = 15 were chosen to display since the values were
similar for m = 5 and m = 10, indicating that the group dimension did not represent a source of variation
in the Euclidean and Mahalanobis distance measures, particularly in this study.

It was possible to distinguish model 1 from the null model in the developed studies by the half-
normal plot with simulated envelopes for the values of Euclidean and Mahalanobis distances considering
a grouped structure of the data. The boxplots, Figure 3.4, refer to the numbers of points outside the
envelope obtained in the 1000 simulations for each model using the distance measures.
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Figure 3.4. Boxplots of the number of points outside the simulated envelope of model 1 (continuous
covariate) and null model (intercept effect) referring to (a) Euclidean and (b) Mahalanobis distances.

The median of points outside the envelope (%) is less than five for model 1, considering both
distances. This fact did not occur for the null model. Also, the distribution of these values within each
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level appears to be symmetric and has approximately the same variability (small one) (Figures 3.4(a) and
3.4(b)). Therefore, most of the time, model 1 was adequate to describe the data based on a half-normal
plot compared to the null model in this scenario. The results of the descriptive statistics for the null
model and model 1 based on the 1000 simulations are displayed in Table 3.2

Table 3.2. Descriptive statistics referring to the number (nº) of points outside the simulated envelope for
the null and 1 models, fitted to the simulated grouped data, considering the Euclidean and Mahalanobis
distances.

Distance Model Descriptive Nº of points outside

Euclidean

Null
Mean 99.314
Standard deviation 1.286
Outliers 12

1
Mean 2.992
Standard deviation 5.423
Outliers 82

Mahalanobis

Null
Mean 35.480
Standard deviation 8.095
Outliers 3

1
Mean 4.014
Standard deviation 6.006
Outliers 73

The results in Table 3.2 confirm that model 1 describes well the observed data in this simulation
study. The outliers for model 1 in both distances reflect a vast departure from the behavior of most of
the points. That is, the points outside the envelope far above 5%. For the null model, the outliers did
not change the fact that the number of points outside was more than 5% in practically all simulations
(except for one point). Then, the null model was unsuitable for the data. It is also observed that the
Euclidean distance presented the highest number of outliers.

Similar conclusions can be observed for the scenario under model 2 for grouped data with 1000
simulations, given that the median of points outside the envelope (%) is less than five for model 2 and
more than five for the null model at both distances, Figures 3.5(a) and 3.5(b).
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Figure 3.5. Boxplots of the number of points outside the simulated envelope of model 2 (continuous
and factor covariates) and null model (intercept effect) referring to (a) Euclidean and (b) Mahalanobis
distances.
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The results of descriptive statistics for model 2 and the null model, Table 3.3, confirm the
obtained conclusions using Euclidean and Mahalanobis distances. In addition, the Euclidean distance
again presents more number of outliers.

Table 3.3. Descriptive statistics referring to the number (nº) of points outside the simulated envelope
for the null model and model 2, fitted to the simulated grouped data, considering the Euclidean and
Mahalanobis distances.

Distance Model Descriptive Nº of points outside

Euclidean

Null
Mean 99.456
Standard deviation 1.167
Outliers 215

2
Mean 2.824
Standard deviation 5.663
Outliers 82

Mahalanobis

Null
Mean 58.484
Standard deviation 7.422
Outliers 16

2
Mean 3.766
Standard deviation 6.077
Outliers 54

When analyzing the simulation results of the scenarios, it is verified that the standardized
randomized quantile residuals demonstrated to follow approximately a standard normal distribution under
the correct specification of the model by the Shapiro-Wilk normality test. The proposed methodology
for reducing the dimension of the ordinary residuals vector by Euclidean and Mahalanobis distance
measures was also satisfactory, identifying the correct model through the half-normal plot with a simulated
envelope. These results indicated that standardized randomized quantile residuals (for individual data)
and distances (for grouped data) work reasonably well to detect the correct specification of linear predictor
structure in the model: continuous covariate or continuous and factor covariates, contributing to the
validation step in this study.

3.7 Applications

In this section, two studies of motivation available in the literature are considered to illustrate
the procedures presented in sections 3.5 and 3.6.

3.7.1 Application Study 1 - Wine Classification

This first illustration of the procedures refers to a data set from a study carried out by Forina
et al. (1988), which became known in the literature involving classification techniques (Jing et al., 2010,
Ahammed and Abedin, 2018, among others). In this study, a chemical analysis was carried out at the
Institute of Pharmaceutical and Food Analysis and Technologies about 178 wines from three cultivars
from the Liguria region in Italy, whose objective was to classify the different cultivars. The response
variable represents the type of cultivar, assuming values in the set {1, 2, 3}. In the analysis, the amounts
of 13 chemical constituents of each cultivar were determined, among which are magnesium and phenols
that can be considered good indicators of the wine origin (Kallithraka et al., 2001). Further details as well
as the dataset are available in the package ralltle.data (Graham, 2011) of the software R (R Core Team,
2020).

First, an exploratory analysis was carried out to know the behavior of the data. The wine
counts in each of the response categories can be seen in Figure 3.6. The majority of wines belong to
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cultivar 2 with 71 wines, while the number of wines that belong to cultivar 1 is 59, and cultivar 3 is equal
to 48.
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Figure 3.6. Frequencies of wines derived from cultivars 1, 2 and 3 in the study carried out by Forina
et al. (1988)

In the selection step of the linear predictor, the covariates phenols and magnesium are considered
in the generalized logit model, with the sequential models tested through the likelihood ratio test (LRT),
Table 3.4.

Table 3.4. Selection result of the linear predictor between the sequential models through the likelihood
ratio test for wine data in the study of Forina et al. (1988)

Model Linear predictor Comparation LRT ̸= ∗df. p-value
1 (Null) Intercept - - - -

2 Phenols Model 1 × Model 2 123.983 2 < 0.01
3 Magnesium + Phenols Model 2 × Model 3 13.146 2 < 0.01
4 Magnesium*Phenols Model 3 × Model 4 1.251 2 0.535

∗df. - degrees of freedom

According to the results of Table 3.4, model 3 is selected to describe the wine data at a sig-
nificance level of 5%, so the wine classification depends on the phenols and magnesium covariates. The
Akaike Information Criterion (AIC) can be used to compare models, where the lowest value indicates a
more parsimonious fit. The AIC values for models 1, 2, 3 and 4 are, respectively, 390.63; 270.65; 261.50
and 264.25. The lowest AIC value was for model 3, but this measure does not verify the goodness-of-fit
of the model or validate the assumption of response variable distribution.

The estimates, standard errors, as well as 95 % confidence intervals (CI) of the model parameters
with the effects of phenols and magnesium, are presented in Table 3.5.



54

Table 3.5. Parameters estimates of generalized logit model with phenols and magnesium effects selected
in the wine data analysis in the study of Forina et al. (1988).

Parameters Estimate Standard error CI
2.5% 97.5%

Intercept 2 11.986 2.160 7.752 16.219
Intercept 3 14.180 2.674 8.938 19.422
Phenols 2 -2.438 0.527 -3.471 -1.407
Magnesium 2 -0.056 0.017 -0.089 -0.021
Phenols 3 -5.486 0.762 -6.978 -3.993
Magnesium 3 -0.021 0.020 -0.061 0.018

The estimated classifications of wine by model 3 were obtained for each of the cultivars and
calculated their proportions. It is possible to verify the observed and estimated proportions of wines for
each cultivar in Figure 3.7, in which there are visual indications that the estimated values are close to
the observed ones, evidencing that the model is well fitted.
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Figure 3.7. Observed and estimated proportions of wines in each cultivar by model 3 in the study of
Forina et al. (1988).

In the residual analysis, the histogram of the standardized randomized quantile residuals, Figure
3.8, visually has a shape similar to the standard normal distribution. The p-value of the Shapiro-Wilk
test is approximately 0.167, which indicates in favor of the hypothesis that the standardized randomized
quantile residuals follow a standard normal distribution. These residuals presented mean 0 and variance
1 because of standardization, while skewness and kurtosis were equal to 0.28 and 2.76, respectively. These
values are relatively close to those expected for the normal distribution, which has skewness equal to 0
and kurtosis with a value equal to 3.

The half-normal plot with a simulated envelope for the standardized randomized quantile re-
siduals is showing at (Figure 3.9 (a)), it can be concluded that there is evidence that the model fits the
data well since no point is outside the envelope. The scatterplot of residuals versus fitted values can be
observed in Figure 3.9 (b), in which residuals vary mainly between -2 and 2 and no pattern is evident,
which suggests a good fit of model 3 (phenols and magnesium effects) to the data.
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Figure 3.8. Histogram of standardized randomized quantile residuals to assess the goodness-of-fit of
generalized logit model with phenols and magnesium effects selected in the wine data analysis in the
study of Forina et al. (1988).
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Figure 3.9. a) Half-normal plot with a simulated envelope (confidence level = 95%) of the standardized
randomized quantile residuals and b) Residuals versus fitted values plot to model 3 in the wine data
analysis in the study of Forina et al. (1988).

3.7.2 Application Study 2 - Preference for the student program of high school students

The data set for this application refers to the choice made by high school students among
different programs. This sample of 200 individuals was available in 2013 by the statistical consulting
group at the University of California at Los Angeles (UCLA), being used by Molina et al. (2015) and
Abonazel and Farghali (2018) in studies involving the estimation of model parameters for polytomous
data. Furthermore, it is widely used as an example in statistical software packages for multinomial
regression (Dalzell and Reiter, 2018). The response variable is the choice by a program, assuming values
in the set {1− academic, 2− general, 3− vocational}. Among the 11 covariates available in this study are
socioeconomic status, gender, and scores in specific subjects (mathematics, social studies, and writing,
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among others). This data set can be obtained by accessing the internet site in UCLA (2021). For
the present application, the covariate considered is the math score of the student, corresponding to the
continuous covariate. Then, the data were organized in a grouped structure with a sample size equal to
40, Table 3.6, for which it was verified whether the mathematics scores contributed to the decision of the
new students between the different programs.

Table 3.6. Contingency table obtained from data set of UCLA
(2021) - frequencies of program choices (Academic, General, and
Vocational) using math scores of high school students

Score Math
Student Program

Total
Academic General Vocation

33 0 0 1 1
35 1 0 0 1
37 0 0 1 1
38 0 1 1 2
39 2 0 4 6
40 0 0 10 10
41 2 2 3 7
42 5 1 1 7
43 3 4 0 7
44 1 1 2 4
45 1 4 3 8
46 4 1 3 8
47 0 0 3 3
48 1 4 0 5
49 3 6 1 10
50 1 5 1 7
51 0 5 3 8
52 1 2 3 6
53 0 5 2 7
54 3 6 1 10
55 2 2 1 5
56 3 2 2 7
57 4 7 2 13
58 3 3 0 6
59 0 2 0 2
60 2 3 0 5
61 2 5 0 7
62 0 4 0 4
63 1 4 0 5
64 0 5 0 5
65 0 3 0 3
66 0 3 1 4
67 0 2 0 2
68 0 1 0 1

Continued on next page
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69 0 2 0 2
70 0 1 0 1
71 0 4 0 4
72 0 3 0 3
73 0 1 0 1
75 0 1 1 2

Total 45 105 50 200

Through the exploratory analysis, it was possible to verify the behavior of this data set, which
presents variability in the choices of programs using the math scores of students, as shown in Figure
3.10. The general program presents a major occurrence, being practically predominant among the new
students who obtained scores higher than 58, while the students with scores lower than 42 (except for a
score of 35) and a score equal to 47 present more frequency in the vocational program. Finally, higher
frequencies concerning the academic program refer to scores equal to 35, 42, 46, and 56.
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Figure 3.10. Histogram of relative frequencies to academic, general, and vocational program choices by
math grades in high school students data obtained from UCLA (2021).

Considering the null hypothesis that the program choice made by high school students is inde-
pendent of the score in mathematics, the likelihood ratio test compares the null model (intercept effect)
with model 1, which considers the effect of the continuous covariate. Model 1 was selected to describe
the data at a 5% significance level (LRT = 51, 965 and p-value < 0.01). Model 1 also presented a lower
AIC (182.81) than the null model (230.77), which shows a better fit. Based on this result, it is concluded
that the score in mathematics is significant in the program choice made by the new students in the data
available by UCLA (2021).

The estimates, standard errors, as well as 95 % confidence intervals (CI) of model 1 with the
math score effect are presented in Table 3.7.
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Table 3.7. Parameter estimates of model 1 with the effects of the score in mathematics selected for the
analysis of data from high school students available in UCLA (2021).

Parameter Estimate Standard error CI
2.5% 97.5%

Intercept 2 -4.055 1.218 -6.443 -1.668
Intercept 3 3.136 1.362 0.466 5.806
Math score 2 0.092 0.023 0.047 0.137
Math score 3 -0.062 0.028 -0.118 -0.008

Thus, the expressions in logits terms for the model 1 are given by

log
[
π2(x)
π1(x)

]
= −4.055 + 0.0928x and log

[
π3(x)
π1(x)

]
= 3.136− 0.062x.

em where x represents the continuous covariate (math score).
It was used the sorted absolute values of the diagnostic measures given by the Euclidean and

Mahalanobis distances to detect the presence of outliers. The behavior of these values in the half-normal
plot with a simulated envelope is presented in Figures 3.11 and 3.12.

The values of Euclidean distance (Figure 3.11) for model 1 are mainly inside the simulated
envelope (one point outside), indicating that this model satisfactorily fitted the data.
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Figure 3.11. Half-normal plot with a simulated envelope (confidence level = 95%) of Euclidean distance
points for model with math score effect for the data available in UCLA (2021).

In the same way, the half-normal plot of the Mahalanobis distance points (Figure 3.12) of the
math score-effect model showed evidence that this model is adequate for analyzing the data, with no
points outside the simulated envelope.
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Figure 3.12. Half-normal plot with a simulated envelope (confidence level = 95%) of Mahalanobis
distance points for model with math score effect for the data available in UCLA (2021).

3.8 Conclusion

In this chapter, the standardized randomized quantile residuals and the reduction of the ordi-
nary residuals using distance measures were obtained to perform the diagnostics of the generalized logit
model for nominal data with individual and grouped structures. These residuals and the proposed distan-
ces presented good performance in assessing the goodness-of-fit of the model with continuous covariate
or continuous and factor covariates, particular situations that can occur in many areas of knowledge.
This approach allows evaluating the simultaneous fit of the model in the different data structures with
a moderate sample size. Studies under a small sample size are necessary to assess the fit of the model,
which could lead to sampling uncertainty in the residuals and a singular matrix for Mahalanobis distance.
Also, future simulations studies can be done to check the normality of randomized quantile residuals for
the grouped data structure. Based on the applications, the obtained results revealed non-violation in
model assumptions or outliers by the half-normal plot with a simulated envelope, the plot of residuals
versus fitted values, and the Shapiro-Wilk test. In this way, the randomized quantile residuals and the
distances can be potential alternatives to evaluate the fit of the generalized logit models.
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Appendix

###########################################################################
#R code
###########################################################################
#This s c r i p t i s f o r the s imu la t i on s with cont inuous cova r i a t e in the model
( analogue way to cont inuous and f a c t o r c ova r i a t e s )
############################################################################
rm( l i s t=l s ( a l l=TRUE) )
r e qu i r e ( nnet ) #Fit g en e r a l i z e d l o g i t Model
r e qu i r e (hnp) #ha l f−normal p l o t us ing enve lope s imu la t i on
r e qu i r e ( pmultinom ) #Calcu la te cd f o f mult inomial d i s t
r e qu i r e ( s t a t s ) #To obta in Mahalanobis and Eucl idean Distance
r e qu i r e ( ggp lot2 ) ; r e qu i r e ( dplyr ) ; r e qu i r e ( t i dy r ) ; r e qu i r e (moments )
###########################################################################
#RQRs f o r mult inomial case :
#RQR fo r c o r r e c t model
RQR. r <− func t i on (m, y , pred . r ){

n<−nrow (y )
r e s . quan t i l e . r<−vector ( )
f o r ( i in 1 : n ) {

i f ( y [ i ,1]==1 && y [ i ,2]==0 && y [ i ,3]==0){
r e s . quan t i l e . r [ i ] <− qnorm( pmultinom ( upper=c (y [ i ,1 ] −1 ,m,m) , s i z e = m,
probs=pred . r [ i , ] , method=”exact ”)+
dmultinom (y [ i , ] , s i z e = m, pred . r [ i , ] ) ∗ r un i f ( 1 ) )
} e l s e i f ( y [ i ,1]==0 && y [ i ,2]==1 && y [ i ,3]==0){

r e s . quan t i l e . r [ i ] <− qnorm( pmultinom ( upper=c (m, y [ i ,2 ] −1 ,m) , s i z e = m,
probs=pred . r [ i , ] , method=”exact ”)+
dmultinom (y [ i , ] , s i z e = m, pred . r [ i , ] ) ∗ r un i f ( 1 ) )
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} e l s e ( y [ i ,1]==0 && y [ i ,2]==0 && y [ i ,3]==1){
r e s . quan t i l e . r [ i ] <− qnorm( pmultinom ( upper=c (m,m, y [ i ,3 ] −1) , s i z e = m,
probs=pred . r [ i , ] , method=”exact ”)+
dmultinom (y [ i , ] , s i z e = m, pred . r [ i , ] ) ∗ r un i f ( 1 ) )

}}
return ( r e s . quan t i l e . r )
}

#RQR fo r nu l l model
RQR.w <− func t i on (m, y , pred .w){

n<−nrow (y )
r e s . quan t i l e .w<−vector ( )
f o r ( i in 1 : n ) {

i f ( y [ i ,1]==1 && y [ i ,2]==0 && y [ i ,3]==0){
r e s . quan t i l e .w[ i ] <− qnorm( pmultinom ( upper=c (y [ i ,1 ] −1 ,m,m) , s i z e = m,
probs=pred .w[ i , ] , method=”exact ”)+

dmultinom (y [ i , ] , s i z e = m, pred .w[ i , ] ) ∗ r un i f ( 1 ) )
} e l s e i f ( y [ i ,1]==0 && y [ i ,2]==1 && y [ i ,3]==0){
r e s . quan t i l e .w[ i ] <− qnorm( pmultinom ( upper=c (m, y [ i ,2 ] −1 ,m) , s i z e = m,
probs=pred .w[ i , ] , method=”exact ”)+
dmultinom (y [ i , ] , s i z e = m, pred .w[ i , ] ) ∗ r un i f ( 1 ) )
} e l s e ( y [ i ,1]==0 && y [ i ,2]==0 && y [ i ,3]==1){
r e s . quan t i l e .w[ i ] <− qnorm( pmultinom ( upper=c (m,m, y [ i ,3 ] −1) , s i z e = m,
probs=pred .w[ i , ] , method=”exact ”)+
dmultinom (y [ i , ] , s i z e = m, pred .w[ i , ] ) ∗ r un i f ( 1 ) )

}}
return ( r e s . quan t i l e .w)

}
###########################################################################
#Function to the s imu la t i on s
f <− func t i on (m, x , prob ) {

y <− t ( apply ( prob , 1 , rmultinom , n=1, s i z e = m))
dfM <− data . frame (x , y )
#Fit o f model
f i t .w <− multinom (y~ 1 , data = dfM , t r a c e=”FALSE”) #nu l l model
f i t . r <− multinom (y ~ x , data = dfM , t r a c e=”FALSE”) #co r r e c t model
p_value <− anova ( f i t .w, f i t . r ) [ 2 , 7 ] #p−value o f the t e s t

#Pred icted p r o b a b i l i t i e s
pred .w<−pred i c t ( f i t .w, type = ”prob ”)
pred . r<−pr ed i c t ( f i t . r , type = ”prob ”)
# Standardized Res idua l s
r e s .w<−RQR.w(m, y , pred .w)
r e s . r<−RQR. r (m, y , pred . r )
r e s . mult .w. n<− ( r e s .w−mean( r e s .w) )/ sd ( r e s .w)
r e s . mult . r . n<−(r e s . r−mean( r e s . r ) )/ sd ( r e s . r )

#Half−normal p l o t with s imulated enve lope
i n v i s i b l e ( capture . output (myhnp .w<−hnp( r e s . mult .w. n , p r i n t = T, s c a l e=T,
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p lo t . sim = ”FALSE” , sim = 1000) ) )
i n v i s i b l e ( capture . output (myhnp . r<−hnp( r e s . mult . r . n , p r i n t=T, s c a l e=T,
p l o t . sim = ”FALSE” , sim = 1000) ) )
#Percentage o f po in t s ou t s id e the enve lope
npo ints .w<−myhnp . w$out
perc .w<−round ( ( npo ints .w/myhnp . w$tota l )∗100 ,2 )
npo ints . r<−myhnp . r$out
perc . r<−round ( ( npo ints . r /myhnp . r $ t o t a l )∗100 ,2 )
### Shapiro Wilk Test
t e s t .w<−shap i ro . t e s t ( r e s . mult .w. n) $p . va lue
t e s t . r<−shap i ro . t e s t ( r e s . mult . r . n ) $p . va lue
#Des c r i p t i v e s t a t i s t i c s
#nu l l model
mean .w <− mean( r e s . mult .w. n)
sd .w<− sd ( r e s . mult .w. n)
kurt .w<− ku r t o s i s ( r e s . mult .w. n)
skew .w<−skewness ( r e s . mult .w. n)

#co r r e c t model
mean . r <− mean( r e s . mult . r . n )
sd . r<− sd ( r e s . mult . r . n )
kurt . r<− ku r t o s i s ( r e s . mult . r . n )
skew . r<−skewness ( r e s . mult . r . n )
#To show the r e s u l t s
Values_Model<−c (” Perc .w”=perc .w, ” Perc . r”=perc . r )

Value_test<−c (”SW_test .w”=t e s t .w, ” SW_test . r”=t e s t . r , ” p−value”=p_value )
Sta t s .w <−c (”media .w”=mean .w, ” sd .w”=sd .w, ” kurt .w”=kurt .w, ” skew .w”=skew .w)
Stat s . r<−c (”media . r”=mean . r , ” sd . r”=sd . r , ” kurt . r”=kurt . r , ” skew . r”=skew . r )
Resu l t_f ina l<−c (Values_Model , Value_test , S ta t s .w, Sta t s . r )
re turn ( Resu l t_ f ina l )

}

#Res idua l us ing mult inomial
#3 c a t e g o r i e s and cont inuous cova r i a t e
n<−100# sample s i z e
x<−rnorm (n) #cova r i a t e
#f i r s t category as r e f e r e n c e
z2<−1.38−2.7∗x
z3<− 3.51 −5.11∗x
#to obta in the p r o b a b i l i t i e s
den<−1+exp ( z2)+exp ( z3 )
p1<−1/den ; p2<−exp ( z2 )/ den ; p3<−exp ( z3 )/ den
prob<−cbind (p1 , p2 , p3 )
#number o f s imu la t i on
n_repl ic <−1000
m<−1
sim_scenar io <− r e p l i c a t e ( n_repl ic , f (m, x , prob ) )
###########################################################################
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#Eucl idean Mahalanobis d i s t an c e s f o r mult inomial case :
#Function to the s imu la t i on s
f <− func t i on (m, x , prob ) {

y <− t ( apply ( prob , 1 , rmultinom , n=1, s i z e = m))
# Value o f Y and X toge the r
dfM <− cbind . data . frame (y , x )
#Fit o f model
f i t .w <− multinom (y ~ 1 , data = dfM , t r a c e=FALSE) #nu l l model
f i t . r <− multinom (y ~ x , data = dfM , t r a c e=FALSE) #co r r e c t model
p_value <− anova ( f i t .w, f i t . r ) [ 2 , 7 ] #p−value o f the t e s t
#hnp f o r redut ion o f ord inary r e s i d u a l s by the d i s t an c e s
##Eucl idean d i s t ance
d_eucl<− func t i on ( obj ) {

r <− r e s i d ( obj )
l2_r <− apply ( r , 1 , f unc t i on (x ) d i s t ( rbind (x , rep (0 , l ength (x ) ) ) ) )
re turn ( as . numeric ( l2_r ) )

}
#Mahalanobis d i s t ance
d_Mahal <− func t i on ( obj ) {

r <− r e s i d ( obj )
k<−nco l ( r )
Sr<−so l v e ( cov ( r ) )
D2 <− mahalanobis ( r , rep (0 , nrow ( r ) ) , Sr , i nve r t ed = T)
return (D2)

}
#Implementing new c l a s s f o r hnp
n<−length (x )
s_fun <− func t i on (n , obj ) {

pred<−pred i c t ( obj , type = ”prob ”)
newresp<− t ( apply ( pred , 1 , f unc t i on (x ) rmultinom (1 , s i z e = m, x ) ) )
newresp

}
f_fun .w <− func t i on ( newresp ) {

multinom ( newresp ~ 1 , data = dfM)
}
f_fun . r <− func t i on ( newresp ) {

multinom ( newresp ~ x , data = dfM)
}
#hnp f o r nu l l model vs c o r r e c t model
#Euc l id ian Dist
#Use o f t h i s func t i on f o r suppre s s ing convergence message
i n v i s i b l e ( capture . output (my_hnpE.w<−hnp( f i t .w, newclass = TRUE,
diag fun = d_eucl , s imfun = s_fun , f i t f u n = f_fun .w, how .many . out = T,
p l o t . sim = ”FALSE” ) ) )
i n v i s i b l e ( capture . output (my_hnpE. r<−hnp( f i t . r , newclass = TRUE,
diag fun = d_eucl , s imfun = s_fun , f i t f u n = f_fun . r , how .many . out = T,
p l o t . sim = ”FALSE” ) ) )
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#Percentage o f po in t s ou t s id e the enve lope
n_pointsE .w<−my_hnpE. w$out
percE .w<−round ( ( n_pointsE .w/my_hnpE. w$tota l )∗100 ,2)

n_pointsE . r<−my_hnpE. r$out
percE . r<−round ( ( n_pointsE . r /my_hnpE. r $ t o t a l )∗100 ,2)
#Mahalanobis Dist
i n v i s i b l e ( capture . output (my_hnpM.w<−hnp( f i t .w, newclass = TRUE,
diag fun = d_Mahal , simfun = s_fun , f i t f u n = f_fun .w, how .many . out = T,
p l o t . sim = ”FALSE” ) ) )

i n v i s i b l e ( capture . output (my_hnpM. r<−hnp( f i t . r , newc lass = TRUE,
diag fun = d_Mahal , simfun = s_fun , f i t f u n = f_fun . r , how .many . out = T,
p l o t . sim = ”FALSE” ) ) )
#Percentage o f po in t s ou t s id e the enve lope
n_pointsM .w<−my_hnpM. w$out
percM .w<−round ( ( n_pointsM .w/my_hnpM. w$tota l )∗100 ,2)
n_pointsM . r<−my_hnpM. r$out
percM . r<−round ( ( n_pointsM . r /my_hnpM. r $ t o t a l )∗100 ,2)
#To show the r e s u l t s
Incorrect_Cor_Model<−c (” Eucl_Inc”=percE .w, ” Eucl_Cor”=percE . r ,
”Mahal_Inc”=percM .w, ”Mahal_Cor”=percM . r )
Value_test<−c (”p−value”=p_value , ”LR”=l r_s ta t )
Resu l t_f ina l<−c ( Incorrect_Cor_Model , Value_test )
re turn ( Resu l t_ f ina l )

}
#3 c a t e g o r i e s and cont inuous cova r i a t e
n<−50#number o f samples
x<−rnorm (n) #cova r i a t e
#Ass ign ing the va lue s o f i n t e r c e p t s and betas
#The f i r s t l e v e l i s a s s i gned the r o l e o f r e f e r e n c e .
z2<−1.38−2.7∗x
z3<− 3.51 −5.11∗x
den<−1+exp ( z2)+exp ( z3 )
p1<−1/den ; p2<−exp ( z2 )/ den ; p3<−exp ( z3 )/ den
prob<−cbind (p1 , p2 , p3 )
m<−5 #After 10 and 15
n_repl ic <−1000 #number o f s imu la t i on s
s im_scenar io <− r e p l i c a t e ( n_repl ic , f (m, x , prob ) )
###########################################################################
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4 FINAL CONSIDERATIONS

This thesis is an introduction to residual analysis and diagnostics for categorized data. A
review of the available residuals in the literature was carried out in Chapter 2, emphasizing the surrogate
residuals and presenting an application for the case in which the categorized variable is ordinal with
an individual structure. However, this residual cannot be applied to cases with nominal responses or a
grouped structure for the data.

The specific contributions of this thesis are in Chapter 3. The first is the normality investi-
gation of the randomized quantile residuals associated with individual nominal data through simulation
studies. The second contribution is the proposal of Euclidean and Mahalanobis distances in the dimen-
sion reduction of the vector of ordinary residuals in the nominal grouped case. These measures were
used to detect outliers in the diagnostics of multinomial regression. Under simulation studies in different
scenarios, the approaches showed promising results in assessing the goodness-of-fit of the generalized logit
model. Also, the applications presented reinforce this conclusion. The possible limitations are related to
small samples. The statistical power of the randomized quantile residual may be low in small samples
to detect the incorrect specification of the model. For the cases using the Mahalanobis distance, small
samples can make difficult the calculation of the covariance matrix. Despite that, both approaches have
substantive appeal in the diagnostics of generalized logit models for nominal data (individual or grou-
ped) with moderate sample sizes, reasonably detecting the misspecification linear predictor in this study:
continuous covariate or continuous and factor covariates.

For future research, new scenarios can be studied to detect many forms of model misspecification
such as non-linearity or interaction effect under distinct sample sizes as well as realize simulations studies
for normality of randomized quantile residuals in the grouped data structure to evaluate the fit of the
generalized logit models. In addition, a sensitivity analysis can be performed to assess the goodness-of-fit
of these models and explore the diagnostics in Bayesian inference.




