
University of São Paulo
“Luiz de Queiroz” College of Agriculture

Models for overdispersed, correlated count entomological data

Sidcleide Barbosa de Sousa

Thesis presented to obtanin the degree of Doctor in Sci-
ence. Área: Statistics and Agriculural Experimentation

Piracicaba
2023



Sidcleide Barbosa de Sousa
Bachelor in Statistics

Models for overdispersed, correlated count entomological data

versão revisada de acordo com a resolução CoPGr 6018 de 2011

Advisor:
Profª Drª CLARICE GARCIA BORGES DEMÉTRIO

Thesis presented to obtanin the degree of Doctor in Sci-
ence. Área: Statistics and Agriculural Experimentation

Piracicaba
2023



2

Dados Internacionais de Catalogação na Publicação
DIVISÃO DE BIBLIOTECA - DIBD/ESALQ/USP

Sousa, Sidcleide Barbosa de
Models for overdispersed, correlated count entomological data / Sidcleide

Barbosa de Sousa. – – versão revisada de acordo com a resolução CoPGr 6018
de 2011. – – Piracicaba, 2023 .

86 p.

Tese (Doutorado) – – USP / Escola Superior de Agricultura “Luiz de
Queiroz”.

1. Modelos lineares generalizados mistos 2. Efeitos aleatórios 3. Modelos
Combinados 4. Dispersão extra . I. Título.



3

AGKNOWLEDGMENTS

I would like to express my gratitude to all those who gave me the possibility to
complete this thesis, especially my parents Severino Lourenço de Sousa and Maria Rosalia
Barbosa de Sousa, my sister Sivoneide Barbosa de Sousa, my four brothers, my husband
Francisco and my daughter Maria Fernanda for their love and supporting me throughout
my life.

To my adviser, Prof. Dr. Clarice Garcia Borges Demétrio, for the continuous
support of my Doctorate, for her patience, motivation, enthusiasm and knowledge.

I would like to thank the entire Graduate Program in Statistics and Agricultural
Experimentation (PPGEEA) of the Department of Exact Sciences at ESALQ USP. All
the teachers and professionals who work in the department and who helped me during
this period and all the my friends.

This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pes-
soas de Nível Superior), Brazil.



4

SUMMARY

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1 Models for overdispersed, correlated count entomological data . . . . . . . . . . 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Case study - description . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Introduction to Generalized Linear Models (GLMs) . . . . . . . . . 12
1.3.2 Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Quasi-Poisson model . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Negative Binomial model . . . . . . . . . . . . . . . . . . . . . . 16
1.3.5 Poisson-Normal model . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.6 Overdispersed models for longitudinal/correlated data . . . . . . . 18
1.3.7 COM-Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.8 Zero-Inflated Models . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.9 Model selection and diagnostics . . . . . . . . . . . . . . . . . . . 24
1.3.10 Clustering methods for the means . . . . . . . . . . . . . . . . . . 26

1.4 Analysis of the case-study - number of eggs . . . . . . . . . . . . . . . . 27
1.4.1 Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.2 Quasi-Poisson model . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.3 Negative Binomial model . . . . . . . . . . . . . . . . . . . . . . 28
1.4.4 Poisson-Normal model . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.5 Negative-binomial-normal model . . . . . . . . . . . . . . . . . . 30
1.4.6 COM-Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.7 Estimates and model selection . . . . . . . . . . . . . . . . . . . 31
1.4.8 Grouping means . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Analysis the case-study - number of flowers . . . . . . . . . . . . . . . . . 40
1.5.1 Exploratory analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.2 Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5.3 Quasi-Poisson model . . . . . . . . . . . . . . . . . . . . . . . . 45
1.5.4 Negative Binomial model . . . . . . . . . . . . . . . . . . . . . . 45
1.5.5 Zero-inflated Poisson model . . . . . . . . . . . . . . . . . . . . . 45
1.5.6 Zero-inflated negative binomial model . . . . . . . . . . . . . . . 46
1.5.7 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.6 Analysis the case-study - number of leaves . . . . . . . . . . . . . . . . . 49
1.6.1 Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



5

1.6.2 Quasi-Poisson model . . . . . . . . . . . . . . . . . . . . . . . . 51
1.6.3 Negative Binomial model . . . . . . . . . . . . . . . . . . . . . . 51
1.6.4 COM-Poisson model . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Referências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Apêndices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



6

RESUMO

Modelos para dados entomológicos superdispersos, correlacionados na forma de
contagens

Abstract

Resultados de interesse na área entomológica estão frequentemente na
forma de contagens e como uma primeiro passo, o modelo padrão para análise
desse tipo de dados é o modelo de Poisson, um caso particular de modelos lin-
eares generalizados. As suposições básicas para esse modelo são independência
das observações e taxa constante de ocorrência dos eventos. Se uma ou ambas
suposições falham a variância observada dos dados será maior (menor) do que a
variância esperada pelo modelo de Poisson, resultando no que é chamado superdis-
persão (subdispersão). Muitos modelos diferentes para superdispersão (subdisper-
são) podem aparecer de mecanismos específicos alternativos para o processo gerador
dos dados. Outra razão para estender o modelo de Poisson é devido à ocorrência
de uma estrutura hierárquica nos dados resultante de medidas repetidas feitas na
mesma unidade experimental. Nas aplicações entomológicas envolvendo dados de
contagem, frequentemente, ocorre um excesso de zeros. Neste trabalho, é apresen-
tada uma revisão de modelos que podem ser usados para levar em conta os diversos
aspectos de falhas das suposições do modelo Poisson. A metodologia proposta é
ilustrada, usando dados de um experimento para avaliar 25 isolados de fungos en-
tomopatogênicos (Metarhizium spp., B. bassiana and I. fumosorosea) e comparar
com três tratamentos de referência no controle de T. urticae. Comparam-se os re-
sultados e, também, são discutidos aspectos de seleção de modelos e diagnósticos.
Para agrupamento dos isolados são propostos dois métodos. todos os métodos foram
implementados usando o software R.

Abstract
Palavras-chave: Modelos lineares generalizados mistos; Efeitos aleatórios; Mode-
los Combinados; Dispersão extra.
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ABSTRACT

Models for overdispersed, correlated count entomological data

Abstract

Outcomes of interest for entomological data are often in the form of counts
and as a first step, a standard model to analyse this type of data is the Poisson
model, an example of generalized linear models. The basic model assumptions are
independence of observations and constant rate of event occurrence. If one or both of
these assumptions failure the variance of the data will be greater (smaller) than the
variance expected using the Poisson model resulting in what is called overdispersion
(undersispersion). Many different models for overdispersion (underdispersion) can
arise from alternative possible mechanisms for the underlying process. Another
reason for extending the Poisson model is because of the occurrence of a hierarchical
structure in the data caused by a clustering resulted from repeatedly measuring the
outcome on the same experimental unit. In entomological applications involving
count data there is often an excess of zero observations. In this work we present
a review of models that can be used to take into account the different aspects
of the failure of the Poisson model assumptions. The proposed methodology is
illustrated using data of an experiment to evaluate 25 isolates of entomopathogenic
fungi (Metarhizium spp., B. bassiana and I. fumosorosea) and compare with the
three reference treatments on the control of T. urticae. We compared the results
and also discussed model selection and diagnostics. For grouping the isolates we
proposed two different methods. All the methods were implemented in the software
R.

Abstract
Keywords: Generalized linear mixed model; Random effect; Combined model;
Extra-dispersion.
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1 MODELS FOR OVERDISPERSED, CORRELATED COUNT
ENTOMOLOGICAL DATA

1.1 Introduction

Strawberry is an economically important crop. The largest world strawberry
producers are United States, Spain, Japan, Italy, South Korea, and Poland. Spain and
the United States are the world’s largest strawberry exporters (Sjulin, 2003).

The strawberry stands out among the group of climate fruits, in Brazil where
the temperature varies regularly throughout the year, with the average above 10ºC, in
the warmer months and between -3ºC and 18ºC in the cold months. The interest in
strawberry cultivation is justified by the high profitability of the crop, the wide knowledge
and acceptance of the fruit by the consumer, and the diversity of marketing and processing
of the strawberry (sweets, yogurt, jellies, juices, pulp, and ice cream). With a production
of approximately 105000 tons spread over 4000 hectares, the cultivation is concentrated
in the states of Minas Gerais (41.4%), Rio Grande do Sul (25.6%), São Paulo (15.4%),
Paraná (4.7%) and Distrito Federal (4%). (Ceuppens et al., 2015).

The occurrence of the main pests of strawberry crop will depend on the region of
cultivation, climate, crop treatment and crop management (Kovaleski et al., 2006). The
damage is linked to the destruction of the aerial parts of the plant, attack on the fruit
and the transmission of viruses that may reduce plant production (Canassa et al., 2020).

Brazil is the world’s largest consumer of agrochemicals, and the same may remain
in strawberry fruits since, during production, harvests are performed twice a week and
the crop receives weekly applications of the products. This may be one of the reasons
for which this agricultural product is on the list of foods with high levels of chemical
residues annually, endangering the health of humans, as well as causing environmental
contamination (ANVISA, 2013).

Effective strategic studies in the control of pests and diseases are necessary and, at
the same time, capable of increasing production, with minimal environmental impact. Be-
cause of this, the demand for products from organic systems has increased (Castro, 2011).
For this reason promising entomopathogenic fungi of Metarhizium spp., B. bassiana, I.
fumosorosea were studied. They are effective in controlling pests, diseases and at the
same time being able to promote plant growth, having a high contribution to strawberry
crop (Canassa et al., 2020). The aim of many studies is to select isolates that are highly
potent.

The class of generalised linear models (GLM) was introduced by Nelder e Wed-
derburn (1972), for handling a range of statistical models for Gaussian and non-Gaussian
data. Outcomes of interest for entomological data are often in the form of counts and as a
first step, a standard model to analyse this type of data is the Poisson model, an example
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of generalized linear models (McCullagh e Nelder, 1989). The basic model assumptions
are independence of observations and constant rate of event occurrence. If one or both
of these assumptions failure the variance of the data will be greater than the variance
expected using the Poisson model resulting in what is called overdispersion.

There are many different possible causes of overdispersion and in specific situa-
tions a number of these could be involved. Some common possibilities in entomological
studies are variability of experimental material, correlation between individual responses,
cluster and multistage sampling, aggregation, omitted unobserved variables. In general, it
is difficult to infer the precise cause, leading to the overdispersion (Demétrio et al., 2014).
A number of different models and associated estimation methods have been proposed to
take account of overdispersion in order to avoid incorrect inferences (Hinde e Demétrio,
1998).

Many different specific models for overdispersion can arise from alternative pos-
sible mechanisms for the underlying process. The simplest way is to assume some more
general form for the variance function, possibly including additional parameters, leading
to the quasi-poisson model. Another way is to assume a two-stage model for the response,
that is, to assume that the basic response model parameter itself has some distribution
having as a typical example the negative binomial model. An alternative model arises
from the inclusion of random effects in the linear predictor of the model as the Poisson-
normal model an example of a generalised linear mixed model (GLMM), allowing to get
a measure of intraclass correlation.

Another reason for extending the Poisson model is because of the occurrence of
a hierarchical structure in the data caused by a clustering resulted from repeatedly mea-
suring the outcome on the same experimental unit (Verbeeke e Molenberghs, 2000). The
possible correlation between measurements for the same individual is often accommodated
through the inclusion of subject-specific, random effects. Additionally, overdispersion and
correlation between observations may occur simultaneously, and models accommodating
them at once are less than common. Molenberghs et al. (2007), and Molenberghs et al.
(2010) propose a generalized linear model, accommodating overdispersion and clustering
through two separate sets of random effects, of gamma and normal type, respectively.
Additionally, one frequent manifestation of overdispersion is that the incidence of zero
counts is greater than expected for the Poisson distribution and this is of interest because
zero counts frequently have special status (Ridout et al., 1998).

In entomological applications involving count data there is often an excess of zero
observations. Poisson regression models provide a standard framework for the analysis
of count data but it is not adequate when the incidence of zero counts is greater than
expected for the Poisson distribution and this is of interest because zero counts frequently
have special status (Ridout et al., 1998). There are two types of zeros that can occur:
structural zeros, which are inevitable, and sampling zeros, which occur by chance. The
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distinction between them will depend on the generating process of the count data. It is
also possible to have fewer zero count than expected (zero-deflation).

In this work we review and compare methods for analysing count data with
particular focus on potential applications in agricultural research. Section 1.2 provides a
motivation data set. Section 1.3 presents some models used for the analysis of count data,
discusses model selection and diagnostics and gives methods for grouping the isolates. The
motivation data set is analysed in Sections 1.4, 1.5 and 1.6. Some general considerations
are presented in Section 1.7. The scripts developed in the software R (R Core Team,
2020) are presented in the Appendix.

1.2 Case study - description

An experiment in a randomized block complete design with 28 isolates in 5 blocks
was conducted in a greenhouse for 180 days at ± 28°C and natural light, with biweekly
fertilization. This experiment was repeated twice.

For the first experiment (from July 2016 to January 2017), strawberry plants
of cultivar ’Albion’ were obtained at 2-4 leaves stage from the seedling nursery “Irmãos
Baptistella”, Itatiba, São Paulo, Brazil. The aim was to evaluate 25 isolates of ento-
mopathogenic fungi (Metarhizium spp., B. bassiana and I. fumosorosea) and compare
with the three reference treatments T. harzianum ESALQ 1306, Quartzo and Control
(0.05% Tween 80). Roots of individual strawberry plant were immersed for two min in 30
ml for each treatment. Plants were then directly transplanted individually into 2 L pots
containing 50% of surface soil 40% of substrate Tropstrato V-9 Mix and 10% of medium
texture sand. The remains of each treatment after root dipping were poured over the soil
substrate of the strawberry plant. Sixty days after inoculation of strawberry roots, one
T. urticae female from the laboratory rearing was placed on a leaflet of each strawberry
plant per treatment. After infestation, the leaflet with one T. urticae female was covered
with a clip cage (4.5 cm high, 3.8 cm diameter) with fine mesh at the open top end (0.09
mm mesh size) preventing the spread of T. urticae to other parts of the plant (Figure
1.1). After seven days, each infested leaflet was detached and the number of eggs under
the clip cage was counted under a 10X stereoscopic binocular microscope.

For the second experiment (from January to July 2018), the strawberry cultivar
was “Pircinque” with seedlings at the 2-4 leaves stage obtained from the seedling nursery
“Irmãos Baptistella”. The aim was to evaluate the effect of the same 25 isolates, previ-
ously used, and compare with the three reference treatments T. harzianum, Quartzo and
Control, on the number of T. urticae eggs at 60 days and 120 days after root inoculation.

Additionally, in both experiments, beneficial effects were evaluated on strawberry
plants inoculated with different isolates by counting the total number of leaves per plant
at 0, 30, 60, 90, 120, 150 and 180 days after inoculation (DAI), and the total number of
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flower per plant at 30, 60, 90, 120, 150 and 180 days after inoculation.

Figure 1.1. Cage clip trap

The exploratory plot of the data (Figure 1.2 (A)) shows that most dispersion
plot and (Figure 1.2 (B)) shows the sample variances are greater than the sample means
of all experiment, indicating a strong evidence of overdispersion. For experiment I, some
treatments show evidence of underdispersion.

1.3 Statistical models

1.3.1 Introduction to Generalized Linear Models (GLMs)

The class of GLMs was introduced by Nelder e Wedderburn (1972) as a framework
for handling a range of common statistical models for the analysis of Gaussian and non-
Gaussian data. The GLMs are applicable when we have a single response variable Y

and p associated explanatory variables. They are defined for three components as follows
(Demétrio et al., 2014).

The first component is a set of independent random variables, Y1, . . . , Yn, with Yi

following a distribution which is a member of the exponential family distribution

f(yi|θi, ϕ) ≡ exp{ϕ−1[yiθi − b(θi)] + c(yi, ϕ)} i = 1, . . . , n (1.1)

where ϕ is called the dispersion parameter and θi is the canonical parameter, b(·) and
c(·) are known functions. Several distributions belongs to the exponential family, e.g.
Binomial, Poisson, Normal, Gamma and, Inverse Gaussian. The mean and variance of Yi
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Figure 1.2. (A) Dispersion plots and (B) dispersion plots with sample variance against
sample mean of all experiments (dotted line is the identity line).

are given by

E(Yi) = µi = b′(θi)
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and

Var(Yi) = ϕb′′(θi) = ϕb′′[b′(µi)]
−1 = ϕV(µi)

where V(·) is called variance function.
For the normal distribution, for example, the mean and variance of the exponen-

tial family distributions are related through θi = µi = b′(θi) and ϕ = σ2.
The second component, called linear predictor, incorporates into the model the

information related to the explanatory variables.

ηi = β′xi

where β is a vector of p unknown parameters and x′
i = [xi1, . . . , xip] is the i-th row of the

n× p design matrix, i = 1, . . . , n.
The third component, called link function, g(·), provides the relationship between

the linear predictor and the mean of the distribution as

ηi = g(µi) = g(x′
iβ),

where g(·) is a differentiable function.
For a standard generalized linear model maximum likelihood estimates of the re-

gression parameters β are easily obtained using an iterative procedure based on a Newton-
Raphson or Fisher scoring algorithm.

The analysis of deviance was proposed by Nelder e Wedderburn (1972) to assess
the significance of effects in the predictor as a measure that compares a fitted model to
the saturated model, and for known ϕ, can be used as a measurement of goodness-of-fit
for the fitted model.

The alternative measure of overall fit, the Pearson X2 statistic, is given by

X2 =
n∑

i=1

(yi − µ̂i)
2

V̂ ar(Yi)
.

1.3.2 Poisson model

The Poisson distribution, a member of the exponential family, is a starting point
for the analysis of count data observed over identical time periods. The simplest model
assumes that the count random variables Yi, i = 1, . . . , n, are Poisson distributed with
means µi, that is, Yi ∼ Poisson(µi). The probability function can be written as

P (Yi = yi) =
e−µiµyi

i

yi!
, yi = 0, 1, 2, . . . , µi > 0, (1.2)

with log-link and linear predictor

log(λi) = x′
iβ.
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The mean and variance of the Poisson model are E(Yi) = µi and Var(Yi) = µi.
This implies an index of dispersion Var(Yi)

E(Yi)
= 1, a very restrictive assumption when

comparing the sample average with the sample variance for a particular set of data.
The deviance for the Poisson model is given by

Dp = 2
n∑

i=1

[
yi ln

(
yi
µ̂i

)
− (yi − µ̂i)

]
where µ̂i, i = 1, 2, . . . , n are the fitted values for the current model. The deviance DP can
be viewed as a measure of goodness-of-fit of the fitted model with p estimated parameters.

The Pearson X2 statistic, takes the familiar form

X2 =
n∑

i=1

(yi − µ̂i)
2

V̂ ar(Yi)
=

n∑
i=1

(yi − µ̂i)
2

µ̂i

.

For large expected counts µi, DP and X2
P are equivalent and asymptotically both

have an approximate X2 distribution with n− p degrees of freedom.
Then, for a well-fitting model we would expect that DP and X2

P would be ap-
proximately equal to the residual degrees of freedom. When this does not happen one
explanation is that the variation may simply be different from that predicted by the
model (Hinde e Demétrio, 1998; Demétrio et al., 2014). When the variability of the data
is smaller (underdispersion) or greater (overdispersion) than the mean, the Poisson model
does not fit to the data.

While he phenomenon of overdispersion is well known in literature, underdisper-
sion is less reported. Overdispersion may occur due to the absence of relevant covariates,
heterogeneity of sampling units and excess of zeros (Demétrio et al., 2014) and it is im-
portant to have models that take into account these features in order to avoid incorrect
inferences (Hinde e Demétrio, 1998). Therefore, extensions of the Poisson model can be
used to analyze underdispersed or overdispersed data.

Several models were proposed for the analysis of overdispersed count data, in-
cluding Breslow (1984) and Lawless (1987) and more general discussions are also to be
found in McCullagh e Nelder (1989) and Lindsey (1995). We will begin by considering a
quasi-likelihood approach to accommodate increased variability.

1.3.3 Quasi-Poisson model

The simplest way of modeling overdispersion is to replace the variance function
of the original model by the more general form

Var(Yi) = ϕµi (1.3)

where ϕ is called the dispersion parameter (called heterogeneity factor). A quasi-likelihood
method, which requires the specification of the first and second moments of the distri-
bution, is used for estimating β and the additional parameter ϕ. The overdispersion
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parameter ϕ > 1 is considered as an unknown, indicates that the increased variation for
observation Yi does not depend on the mean µi.

According to Wedderburn (1974), the estimates of the regression parameters β

using maximum quasi-likelihood for this constant overdispersion model are identical to
those from the Poisson model. However, the assumed greater variability in (1.3) inflates
the standard errors of β̂ by a factor of

√
ϕ compared to those of the Poisson (ϕ = 1)

model. For the quasi-Poisson model (1.3) the estimate of ϕ is

ϕ̃ =
X2

P

n− p

where X2
P =

∑n
i=1(yi − µ̂i)

2/µ̂i is the generalised Pearson statistic for the Poisson model,
a measure of goodness-of-fit, and use ϕ̃ estimated value to obtain the standard errors of
β̂.

1.3.4 Negative Binomial model

An alternative approach to account for overdispersion in count data is through a
two-stage model. Assuming that the conditional distribution of Yi given zi is a Poisson
model, that is, Yi|zi ∼ Poisson(zi), and that Zi is a random variable with no particular
distributional form with E(Zi) = µi and Var(Zi) = σ2

i . The marginal mean and variance
are given by

E[E(Yi|zi)] = µi,

and
Var(Yi) = E[Var(Yi|zi)] + Var[E(Yi|λi)] = µi + σ2

i .

If we assume Zi ∼ Gamma(α, θi), a natural and flexible family of distributions
on (0,∞) with a fixed shape parameter α and a varying scale parameter θi, that is, with
a density

f(zi) =
1

θαi Γ(α)
zα−1
i e−

zi
θi ,

where Γ(·) is the gamma function, E(Zi) = µi = αθi and Var(Zi) = σ2
i = αθ2i , then

unconditionally Yi has a negative binomial distribution with probability function

P (Yi = yi) =
1

θαi Γ(α)

∫ ∞

0

zyii e−zi

yi!
zα−1
i e−

zi
θi dzi

=
Γ(yi + α)

Γ(α)θαi yi!

(
θi

θi + 1

)yi+α

=

(
α + yi − 1

α− 1

)
µyi
i α

α

(µi + α)yi+α
.

with mean

E(Yi) = E[E(Yi|zi)] = E[Zi] = αθi = µi,
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and variance

Var(Yi) = E[Var(Yi|Zi)] + Var[E(Yi|Zi)] = E[Zi] + Var(Zi)

= αθi + αθ2i = µi(1 + θi) (1.4)

According to Demétrio et al. (2014), an advantage of using a fixed value of α is
that the resulting distribution for Yi is in the exponential family and so we are still in
the generalized linear modelling framework. The negative binomial distribution is similar
to the Poisson distribution, but incorporates a variance that is larger than its mean. As
a result, it is more flexible and can accommodate more distributional shapes than the
Poisson distribution (Gbur et al., 2012).

1.3.5 Poisson-Normal model

Another way to model overdispersion for count data consists in adding an obser-
vation level random effect to the linear predictor (Hinde e Demétrio, 1998). Assuming that
the conditional distribution of Yi given zi is a Poisson model, that is, Yi|zi ∼ Poisson(λi),
with log-link and linear predictor

log(λi) = x′
iβ + σzi

where Zi is a random variable with a standard normal distribution, that is, Zi ∼ N(0, 1).
According to Hinde (1982) this additional random effect is a combination of many unex-
plained things. This is the simpler case of a generalized linear mixed model. There is no
closed form for the distribution of Yi but its mean and variance are given, respectively,
by

E(Yi) = E[E(Yi|zi)] = E[exp(x′
iβ + σZi)] = ex′

iβ+
1
2
σ2

= µi

and

Var(Yi) = E[Var(Yi|zi)] + Var[E(Yi|zi)] = E[exp(x′
iβ + σZi)] + Var[exp(x′

iβ + σZi)]

= ex′
iβ+

1
2
σ2

+ e2x′
iβ+σ2

(eσ2 − 1) = µi + ϕµ2
i (1.5)

So the form of the variance of the Poisson-normal model (1.5) is the same as for
the negative binomial distribution (1.4). This implies that approximate quasi-likelihood
estimates are the same for both the negative binomial and Poisson-normal models but
full maximum likelihood estimates will differ (Hinde e Demétrio, 1998). Hinde (1982)
gives the details of maximum likelihood estimation for the Poisson-normal model based
on using Guassian-quadrature to integrate over the random effect.
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1.3.6 Overdispersed models for longitudinal/correlated data

In many entomological experiments, besides the problem of overdispersion, the
studies can be carried out in such a way that several measurements are taken from the
same subject or sample unit over time, characterizing a longitudinal study. To analyze
this type of data, the univariate models just described can be extended to take into
account overdispersion and/or the correlation between the data resulted from repeatedly
measuring the outcome on the same experimental unit (Molenberghs et al., 2007, 2017).

To take into account the possible correlation between measurements for the
same individual appropriate statistical approaches are needed, such as Generalized Linear
Mixed Model (GLMM) and it is often accommodated through the inclusion of subject-
specific, random effects as an extension of the linear mixed model in the context of non
Gaussian repeated measurements (Verbeeke e Molenberghs, 2000).

Let Yij be the j-th outcome measured for subject i = 1, . . . , N and j = 1, . . . , ni

and group the ni measurements into a vector Yi = (Yi1, ..., Yini
)′ with a distribution and

with a vector of means λi = (λi1, ..., λini
)′.

Repeated-version of the quasi-likelihood model

Here as in Molenberghs et al. (2007), we assume that Yij|λij ∼ Poisson(λij) and
that λi = (λi1, ..., λini

)′ is a vector of random variables with no particular distributional
form with E(λi) = µi and Var(λi) = Σi. The marginal mean and variance are given by

E[E(Yi|λi)] = µi,

and
Var(Yi) = E[Var(Yi|λi)] + Var[E(Yi|λi)] = Mi +Σi,

where Mi is a diagonal matrix with the vector µi along the diagonal. Alternatively, we
can assume a gamma distribution for λi, leading to the negative-binomial model.

Repeated-version of the Poisson-normal model

In general, we assume, conditionally on q-dimensional random effects bi ∼ N(0, D),
with density f(bi|D), the responses Yij are independent with distributions that are mem-
bers of exponential family of the form

fi(yij|bi,β, ϕ) = exp{ϕ−1[yijθij − b(θij)] + c(yij, ϕ)}, (1.6)

with

η[b′(θij)] = η(µij) = η[E(Yij|bi,β)] = x′
ijβ + z′

ijbi, (1.7)

for a known link function η(·), with xij and zij p-dimensional and q-dimensional vectors of
known covariate values, β a p-dimensional vector of unknown fixed regression coefficients,
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and ϕ a scale parameter. For a count response as proposed by Molenberghs et al. (2007)
we have

Yi|bi ∼ Poisson(λi),

log(λi) = x′
iβ + z′

ibi,

bi ∼ N(0, D).

The marginal mean vector and variance-covariance matrix of Yi, are given, re-
spectively, by

E(Yi) = E[E(Yi|bi)] = E[exp(x′
iβ + z′

ibi)]

= exp(x′
iβ)E[exp(z′

ibi)] = exp
(
x′
iβ +

1

2
z′
iDzi

)
= µi (1.8)

and

Var(Yi) = E[Var(Yi|bi)] + Var[E(Yi|bi)]

= E[exp(x′
iβ + z′

ibi)] + Var[exp(x′
iβ + z′

ibi)]

= Mi +Mi{exp(z′
iDzi)− Jni

}Mi.

where Mi is a diagonal matrix with the vector µi along the diagonal.
Molenberghs et al. (2007) also derived an expression for the joint probability of

Yi. Estimates of β, D and ϕ for GLMM are obtained from maximizing the marginal
likelihood, integrating out the random effects and written as

L(β,D, ϕ) =
N∏
i=1

∫ ∞

−∞

ni∏
j=1

fi(yij|bi,β, ϕ)f(bi|D)dbi. (1.9)

The problem in maximizing equation (1.9) is the presence of N integrals over
the q-dimensional random effects bi. However, the Laplace method works well for a
considerable number of mixed models and is implemented in a wide range of software
packages as glmer and lme4 in R.

Repeated-version of the Poisson-gamma-normal model (Combined Model)

Overdispersion and correlation between observations may occur simultaneously,
and models accommodating both at once were proposed by Molenberghs et al. (2007),
and Molenberghs et al. (2010) through two separate sets of random effects, of gamma and
normal type, respectively. This led to an unified modeling framework, which they termed
the combined model. Combining overdispersion and normal random effects, and using
the generalized linear model framework, produces the following general family

fi(yij|bi,β, θij, ϕ) = exp{ϕ−1[yijλij − b(λij)] + c(yij, ϕ)}, (1.10)
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with notation similar to the one used in equation (1.6), but with the conditional mean as

E(Yij|bi,β, θij) = b′(λij) = θijkij = µij, (1.11)

where the random effect to accommodate overdispersion acts multiplicatively in the mean
of the variable while the normal random effect to capture correlation among repeated
observations is placed in the linear predictor.

A model for repeated Poisson data with overdispersion can then be expressed by

Yi|bi, θij ∼ Poisson(θijkij),
kij = exp(x′

iβ + z′
ibi),

bi ∼ N(0, D),

θij = Gamma(αij, βij)

resulting a Poisson-Gamma-Normal model, having as a special case the Negative Binomial
Normal model. Assuming that θi and bi are independent and given that E(θij) = αijβij

and Var(θij) = αijβ
2
ij, and normal random effects bi ∼ N(0,D), the marginal mean and

variance of Yij are given, respectively, by

E(Yij) = E{E[E(Yij|bi, θij)]} = E{E[θij exp(x′
ijβ + z′

ijbi)]}

= E[E(θij) exp(x′
ijβ + z′

ijbi)] = E(θij)E[exp(x′
ijβ + z′

ijbi)]

= αijβij exp(x′
ijβ +

1

2
z′
ijDz′

ij) = µij,

and

Var(Yij) = E{E[Var(Yij|bi, θij)]}+ E{Var[E(Yij|bi, θij)]}+ Var{E[E(Yij|bi, θij)]}

= E[E(θijkij)] + E[Var(θijkij)] + Var[E(θijkij)]
= E[E(θij)kij] + E[k2

ijVar(θij)] + Var[E(θij)kij]
= E(θij)E(kij) + E{k2

ij[E(θ2ij)− E(θij)2]}+ E(θij)2Var(kij)
= E(θij)E(kij) + E(k2

ij)E(θ2ij)− E(k2
ij)E(θij)2 + E(θij)2[E(k2

ij)− E(kij)2]
= E(θij)E(kij) + E(k2

ij)E(θ2ij)− E(k2
ij)E(θij)2 + E(θij)2E(k2

ij)− E(θij)2E(kij)2

= E(θij)E(kij) + E(k2
ij)E(θ2ij)− E(θij)2E(kij)2

= αijβij exp{x′
ijβ +

1

2
z′
ijDzij}+ αijβ

2
ij exp{2x′

ijβ + 2z′
ijDzij}+

+ α2
ijβ

2
ij exp{2x′

ijβ + z′
ijDzij}[exp(z′

ijDzij)− 1], (1.12)

Molenberghs et al. (2007) also derived an expression for the joint probability
of Yi, and showed that fitting the combined model proceeds by integrating over the
random effects. The joint distribution of the ij-th observation, assuming θij and bi are
independent, is given by

fi(yij|β, bi, θij) = fij(yij|β, bi,θi)f(bi|D)f(θi|αi, βi) (1.13)
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The likelihood contribution of subject i is

fi(yi|β,D, αi, βi) =

∫ ni∏
j=1

fij(yij|β, bi,θi)f(bi|D)f(θi|αi, βi)dbidθi. (1.14)

where, β groups all parameters in the conditional model for Yi. From equation (1.14) the
likelihood derives as

L(β,D, α, β) =
N∏
i=1

fi(yi|β,D, αi, βi)

=
N∏
i=1

∫ ni∏
j=1

fij(yij|β, bi,θi)f(bi|D)f(θi|αi,βi)dbidθi (1.15)

The problem in maximizing equation (1.15) is the presence of N integrals over
the random effects bi and θ. The standard software tools, such as the glmer and lme4 in
the R, can be used for maximum likelihood estimation.

1.3.7 COM-Poisson model

The COM–Poisson distribution, proposed for Conway e Maxwell (1962), is a two-
parameter generalization of the Poisson distribution (Sellers et al., 2010; Ribeiro Jr et al.,
2020). A random variable Yi ∼ COM-Poisson(λi, ν) has a probability mass function given
by

P (Yi = yi) =
λyi
i

(yi!)νZ(λi, ν)
, yi = 0, 1, 2, . . . , i = 1, 2, . . . , n, (1.16)

where λi > 0, ν ≥ 0 and

Z(λi, ν) =
∞∑
J=0

λj
i

(j!)ν
,

is a normalizing constant that depends on both parameters. This distribution can handle
under- (ν > 1), over- (0 < ν < 1) and equidispersion (ν = 1).

There is no closed form for its moments. Shmueli et al. (2005) using an asymp-
totic approximation for Z(λ, ν), showed that the mean and variance of the COM-Poisson
distribution can be approximated by

E(Yi) ≈ λ
1
ν − ν−1

2ν
and Var(Yi) ≈ λ

1
ν

ν
, (1.17)

with accurate approximations for ν ≤ 1 or λ > 10ν (Sellers et al., 2010).
The regression COM-Poisson model was proposed by Sellers et al. (2010) to mod-

elling the relationship between E(Yi) and the covariates xi, indirectly, using the log link
function

ηi = log(λi) = x′
iβ.
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A reparametrization of the COM-Poisson model, based on the mean approxima-
tion given by equation (1.17), was proposed by Ribeiro Jr et al. (2020), introducing a new
parameter

µ = hν(λ) = λ
1
ν − ν−1

2ν
=⇒ λ = h−1

ν (µ) =
(
µ+ (ν−1)

2ν

)ν

(1.18)

and taking the precision parameter on the log scale, ϕ = log(ν), to avoid restrictions on
the parameter space, ϕ ∈ R.

The reparametrized COM-Poissonµ probability mass distribution function is given
by

P (Yi = yi) =

(
µ+

eϕ − 1

2eϕ

)yeϕ
(y!)−eϕ

Z(µ, ϕ)
, y = 0, 1, 2, . . . , (1.19)

where µ > 0 allowing for modelling overdispersion (ϕ < 0), underdispersion (ϕ > 0) and
equidispersion (ϕ = 0) (Ribeiro Jr et al., 2020).

The parameter estimates are obtained by numerical maximization of the log-
likelihood function, using BFGS algorithm, with the Hessian matrix calculated numeri-
cally by finite differences (Richardson method). The inferences are based on standard
asymptotic likelihood theory (Ribeiro Jr et al., 2020). The log likelihood function from
the COM-Poissonµ distribution is given by

L(y|ϕ,β) = eϕ

[
n∑

i=1

yi log
(
µi +

eϕ − 1

2eϕ

)
−

n∑
i=1

log(yi!)
]
−

n∑
i=1

log[Z(µi, ϕ)],(1.20)

where µi = exp(x′
iβ), let x′

i = (x1, . . . , xn). The normalizing constant Z(µi, ϕ) is approx-
imated by

Z(µ, ϕ) =
∞∑
i=1

[(
µi +

eϕ − 1

2eϕ

)jeϕ
1

(j!)eϕ

]
. (1.21)

Ribeiro Jr et al. (2019) proposed an extension of the COM-Poisson model to
jointly model the mean and the dispersion as functions of covariates taking into account,
possibly, under- and overdispersion in the same count data set. Estimation and inference
are based on the maximum likelihood method.

Let yi, i = 1, 2, . . . , n, be independent realizations of Yi from COM-Poisson distri-
butions with parameters µi and νi. The proposed COM-Poisson varying dispersion model
assumes

Yi|xi ∼ CMPµ(µi, νi),

ηi = g(µi) = x′
iβ,

ξi = h(νi) = z′
iγ,
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where β = (β1, β2, . . . , βp)
T and γ = (γ1, γ2, . . . , γq)

T are the parameters to be estimated,
xi = (xi1, xi2, . . . , xnp)

T and zi = (zi1, zi2, . . . , znq)
T are vectors of known covariates, and

g(·) and h(·) are suitable link functions, such as the log. Maximum likelihood estimation
for fitting reparametrized (and original) version of COM-Poisson models with varying
dispersion and methods for computing the associated confidence intervals are implemented
in the R package cmpreg (https://github.com/jreduardo/cmpreg).

1.3.8 Zero-Inflated Models

In entomological applications involving count data there is often an excess of zero
observations. Poisson regression models provide a standard framework for the analysis
of count data but it is not adequate when the incidence of zero counts is greater than
expected for the Poisson distribution and this is of interest because zero counts frequently
have special status (Ridout et al., 1998). There are two types of zeros that can occur:
structural zeros, which are inevitable, and sampling zeros, which occur by chance. The
distinction between them will depend on the generating process of the count data. It is
also possible to have fewer zero count than expected (zero-deflation).

Different types of models have been proposed in the literature to take into account
overdispersion caused by the zero-inflation. The mixed Poisson distributions have been
used widely to model overdispersed data. The most used distribution is the negative
binomial, that has a higher probability for zero than the Poisson distribution.

Zero-inflated models are two component mixture models combining excess zero
with a count distribution such as Poisson or negative binomial (Ridout et al., 1998). To
modify the standard Poisson distribution to allow for extra zeros using a zero-inflated
Poisson (ZIP) distribution, we augment the probability of zero by a proportion w and for
the remainder the Poisson parameter takes the fixed value λ, given by

P (Y = y) =

{
w + (1− w) exp(−λ) y = 0

(1− w) exp(−λ)λy

y!
y > 0.

(1.22)

According to Ridout et al. (1998) it is possible for w in equation (1.22) to as-
sume negative values, giving a zero–inflated distribution, Zero-inflated data seldom arise
in practice, however, and we shall assume 0 ≤ w < 1. For the zero-inflated Poisson
distribution, the mean is

E(Y ) = (1− w)λ = µ

while the variance is

Var(Y ) = µ+ µ2

(
w

1− w

)
(1.23)

The variance given by (1.23) has the same form as equations (1.4) and (1.5) but resulted
from different generating process. We may think of it as a model for overdispersed count
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data, but data in which the overdispersion arises in a very specific way, through an excess
of zeros.

In mixed Poisson models, covariates are introduced via a log-linear model for λ,
as in the Poisson model and logit model for w

log(λ) = Xβ and log
(

w

1− w

)
= Zγ

where X and Z are matrices of covariates and β and γ are vectors of parameters. The two
sets of covariates may or may not coincide. For zero-inflated models it is also possible to
include random effects in the linear predictor to account for overdispersion and correlation
between clustered data.

An alternative model that takes into account zero-inflation and extra overdisper-
sion is a zero-inflated negative binomial (ZINB) distribution (Ridout et al., 2001), given
by

P (Y = y) =

 w + (1− w)(1 + αλc)−
λ1−c

α , y = 0

(1− w)
Γ(y+λ1−c

α
)

y!Γ(λ
1−c

α
)

(1 + αλc)−
λ1−c

c (1 + λ−c

α
)−y y > 0

(1.24)

where α(≥ 0) is a dispersion parameter that is assumed not to depend on covariates. This
distribution reduces to the zero-inflated Poisson distribution in the limit α → 0.

The mean of the distribution is

E(Y ) = (1− w)λ = µ

while the variance of the distribution is

Var(Y ) = (1− w)λ(1 + wλ+ αλc).

The index c identifies the particular form of the underlying negative binomial distribution
with mean λ, for c = 0, the variance of the negative binomial distribution is (1 + α)λ

(NB1) and, for c = 1, the variance is λ+αλ2 (NB2). In the same way as for ZIP models,
covariates are introduced via a log-linear model for λ, and logit model for w.

Zero-inflated count data models can be fitted using the zeroinfl() function
from the pscl package, in the software R (R Core Team, 2020). It allows the fitting
of zero-inflated Poisson and negative binomial models with regression models for both
components, but without additional random effects (Zeileis et al., 2008).

1.3.9 Model selection and diagnostics

A model selection process involves a combination of choosing an adequate distri-
bution and link function, testing for terms of possible interest and the use of the goodness-
of-fit to check that any selected models are adequate descriptions of the data (Moral et al.,
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2017). An approach for checking the goodness of fit of a model is to use the half nor-
mal plot with simulated envelope (hnp). The steps for building the envelope (Hinde e
Demétrio, 1998) are

I. After fitting a model, extract the values of a chosen diagnostic quantity, and get its
absolute values, d(i);

II. Perform m simulations, considering the fitted model with the same values for the
explanatory variables;

III. Fit the same model to each of the m samples, and get the ordered absolute values
of the diagnostic quantity, q∗j(i), j = 1, . . . ,m, i = 1, . . . , n;

IV. For each i, calculate the mean, first and third quartiles of the q∗j(i);

V. Plot these values and the observed d(i) versus the half-normal order statistics given
by

Φ−1

(
i+ n− 1

8

2n+ 1
2

)
, (1.25)

where Φ−1(·) is an accumulated function of the standard normal distribution, and n refers
to the sample size obtained, with i = 1, . . . ,n.

This type of graph is implemented through the function hnp for some probability
distributions, using software R (Moral et al., 2017). If the model fits to the data we would
expect the plot of the observed values to lie within the boundaries of the envelope (Hinde
e Demétrio, 1998).

The selection of the linear predictor for a model, in general, involve comparisons
of nested models and deviance differences (Analysis of deviance), that is, likelihood ratio
tests. Involves evaluating the value of the likelihood function for the complete model
and evaluating the value of the likelihood function for the model under the conditions of
H0 (reduced model), using ML. The nested and reference models have the same set of
covariance parameters but different sets of fixed-effect parameters

LR = −2[logLik(reduced model) - logLik(complete model)]
= deviance(reduced model) - deviance(complete model)

where logLik is the logarithm of the likelihood function. LR ∼ χ2
ν where ν is the difference

in number of fixed-effect parameters between the two models.
Many interesting comparisons involve non-nested models and in this case we

can use of the Akaike Information Criterion (AIC; (Akaike, 1973)) or Bayes Information
Criterion (BIC; (Schwarz, 1978))

AIC = −2logLik+ 2p
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and
BIC = −2logLik+ log(n)p

where p is the number of fitted parameters and n is the number of observations.

1.3.10 Clustering methods for the means

Empirical grouping - Visual inspection

As suggested by Fatoretto et al. (2018), the isolates can be grouped and a
likelihood-ratio test can be performed to test the differences of the similarity observed
between isolates and the groups can be constructed according to the predicted values in
order to group the ones that have a similar behaviour. For the quasi-likelihood model the
nested models are compared using the F-test.

K-means clustering

Another way to group data sets is to use the K-means algorithm proposed by
MacQueen (1967) which has a wide application and according to it each observation
belongs to the cluster with the nearest mean (cluster centers or cluster centroid).

Given a set of observations x1,x2, . . . ,xn, where each observation xi is a d-
dimensional real vector, the aim of K-means clustering is to partition n observations into
(k ≤ n) clusters C = {C1, C2, . . . Ck} so as to minimize the within-cluster variances
(squared Euclidean distances), that is, minimizes

k∑
j=1

∑
x∈Cj

||x− cj||2

where cj is the mean of points in Sj.
The main steps of the algorithm are as follows.

i. A user indicates that data should be grouped into k clusters.

ii. Two initialization methods for the algorithm are commonly used: Forgy and Ran-
dom Partition. The Forgy method randomly chooses k observations from the dataset
and uses these as the initial means, cj(1 ≤ j ≤ k). The Random Partition method
first randomly assigns a cluster to each observation and then compute the initial
mean, cj(1 ≤ j ≤ k), to be the centroid of the cluster’s randomly assigned points.

iii. Assignment step: Calculate the Euclidean distance between each data object xi(1 ≤
i ≤ n) and all k cluster centers cj(1 ≤ j ≤ k) and assign data object xi to the nearest
cluster (Fahim et al., 2006).

C
(t)
j = {xi : ||xi − c

(t)
j ||2 ≤ ||xi − c

(t)
j′ ||

2∀j, 1 ≤ j ≤ k
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where each xi is assigned to exactly one C
(t)
j .

If xi is two-dimensional the Euclidean distance is given by

d(xi, cj) =

[
2∑

i=1

(xi − cj)
2

]1/2

.

iv. Update step: For each cluster j(1 ≤ j ≤ k), recalculate the new cluster center cj.

v. Repeat steps three and four until the cluster centers of all data do not change.
According to Nazeer e Sebastian (2009) the K-means clustering algorithm always
converge to local minimum.

The K-means algorithm is implemented in the kmeans() function from the stats
package, in the software R (R Core Team, 2020). It allows the number of points in cluster
is the Euclidean distance between point and cluster, this procedure is to search for a K-
partition with locally optimal within-cluster sum of squares by moving points from one
cluster to another (Hartigan e Wong, 1979).

Other methods that are under study to be compared with the K-means algorithm
are Automatic Interaction Detection (AID) and random forests.

1.4 Analysis of the case-study - number of eggs

1.4.1 Poisson model

To analyse the number of eggs data obtained from the experiments described
in Session 1.2, we first assume the simplest underlying process that the eggs are laid
independently, singly, and at random at some constant underlying rate (Hinde e Demétrio,
1998; Demétrio et al., 2014). The response variable of interest, number of eggs, is simply
a count, Yij and the Poisson distribution provides a starting point for data analysis.

We begin by fitting a standard Poisson log-linear model with the factors block
and isolates as fixed effects, using the maximal linear predictor:

ηij = µ+ βj + αi, j = 1, . . . , 5, i = 1, . . . , 28, (1.26)

where µ is the intercept, βj is the fixed effect of j-th block, and αi is the fixed effect of
the i-th isolate. The analysis of deviance (Table 1.1) show that there is evidence from
the residual deviance and X2 values that the model does not fit to the data satisfactorily.
This can also be seen in the half-normal plot of the deviance residuals with simulated
envelope shown in (Figure 1.3 (A)). There is more variability (ϕ̂ > 1) than the Poisson
model accommodates, a clear evidence of overdispersion.

Models for overdispersed count data move away from the script Poisson assump-
tion of equal mean and variance (dispersion index ϕ = 1). As a next step we may try to
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Table 1.1. Analysis of deviance (and X2) for the number of eggs, using a Poisson log-
linear model.

Experiment I
Sources of variation df Deviance p-value X2 p-value
Block 4 16.59
Isolates 27 325.48
Residual 108 400.45 <0.01 379.56 <0.01
ϕ̂ = 379.56/108 = 3.51

Experiment II - 60 days after root inoculation
Sources of variation df Deviance p-value X2 p-value
Block 4 22.29
Isolates 27 415.77
Residual 108 670.27 <0.01 620.47 <0.01
ϕ̂ = 620.47/108 = 5.75

Experiment II - 120 days after root inoculation.
Sources of variation df Deviance p-value X2 p-value
Block 4 24.07
Isolates 27 186.55
Residual 108 481.51 <0.01 449.08 <0.01
ϕ̂ = 449.08/108 = 4.16

accommodate the extra variability by considering approaches to allowing for overdisper-
sion (Demétrio et al., 2014).

1.4.2 Quasi-Poisson model

The simplest way of taking overdispersion into account is to assume that the
extra-dispersion is constant and independent of the number of eggs produced, replacing
the variance function of the Poisson model by the more general form (1.3). Fitting a
quasi-Poisson model with log link and the same linear predictor (1.26) to the number of
eggs, Yij, the estimated values of ϕ = X2/(Res df) are given in Table 1.1.

The plots presented in (Figure 1.3(B)) show there is evidence of an adequate
model fit, with most of the observed residuals lying within the simulated envelopes.

It is important to note the quasi-Poisson is based only on first and second mo-
ments assumptions and the drawback of this framework is that it does not provide an
associated probability distribution. Next we present some alternative models that are
distribution based.

1.4.3 Negative Binomial model

Assuming now that the eggs are laid not independently or at some varying un-
derlying rate (differences in fertility of the T. urticae females), contributing additional
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Figure 1.3. Half-normal plot with simulation envelopes for deviance residuals for (A)
Poisson, (B) quasi-Poisson (C) Negative binomial and (D) Poisson-normal log-linear.

variability to the recorded counts, a two-stage model like the negative binomial model
could give an explanation for the extra dispersion. Fitting the negative binomial model
with log link and the same linear predictor (1.26) to the number of eggs, Yij, making use
of the MASS package, the estimated values α̂ for all the experiments are 13.35(2, 64),
3.61(0.564), and 6.43(1.15) implying considerable overdispersion.

The half-normal plot presented in (Figure 1.3(C)) show that there is evidence for
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all the experiments that the negative binomial model does not fit to the data, there is a
considerable amount of points outside of the simulated envelopes.

1.4.4 Poisson-Normal model

Since we may think that there is a combination of many unexplained sources
affecting the number of eggs, we can include a normal random effect at observation level,
Zij ∼ N(0, σ2

z), in the linear predictor,

ηij = µ+ βj + αi + Zij, j = 1, . . . , 5, i = 1, . . . , 28, (1.27)

where Zij is a random effect with variance σ2
z , βj is the fixed effect of the j-th block and

αi is the fixed effect of the i-th isolate.
Fitting a Poisson-normal model, for these data the estimated values of σ2

z for
all the experiments are σ2

zI = 0, 0729(0, 2701), σ2
zII60 = 0, 2856(0.5345) and σ2

zII120 =

0, 1523(0.3903).
The half normal plot presented in (Figure 1.3(D)) show that there is evidence

for all the experiments that the Poisson-normal model does not fit to the data, there is a
considerable amount of points outside of the simulated envelopes.

Another way, instead of considering isolate as a fixed effect is to assume that it
is a random effect, in the linear predictor,

ηij = µ+ βj + αi, j = 1, . . . , 5, i = 1, . . . , 28, (1.28)

where αi is a random effect with variance σ2
I , that is αi ∼ N(0, σ2

I ).
Alternatively, we can assume both types of random effects, at observation level,

Zij ∼ N(0, σ2
z) and at isolate level, αi ∼ N(0, σ2

I ), in the linear predictor

ηij = µ+ βj + αi + Zij, j = 1, . . . , 5, i = 1, . . . , 28. (1.29)

The half normal plots (not presented here) for the models with linear predictors given by
equations (1.28) and (1.29) show that they also do not fit to the data.

1.4.5 Negative-binomial-normal model

Assuming now that overdispersion can be caused by varying mean and extra
random variability simultaneously, a negative-binomial-normal can be fitted to the number
of eggs, Yij. In a similar way as for the Poisson-Normal model we can include random
effects at observation and/or isolate level, with the linear predictors given by (1.27), (1.28)
and (1.29).

The half normal plot presented in (Figure 1.4) show that there is evidence for all
the experiments that the Negative-binomial-normal model with a normal random effect
at observation level does not fit to the data, there is a considerable amount of points
outside of the simulated envelopes. Similar plots are obtained when considering a normal
random effect at isolate level and at both levels.
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Figure 1.4. Half-normal plot with simulation envelopes for deviance residuals for (E)
Negative-binomial-normal models

1.4.6 COM-Poisson model

Assuming now that for certain isolates the dispersion is smaller and for others is
larger (see Figure 1.2B for experiment I) than predicted by the Poisson model, we can
take into account underdispersion and overdispersion simultaneously, by fitting a COM-
Poissonµ model to the number of eggs, Yij, using the same linear predictor (1.26) for the
mean and a constant dispersion or a regression for the dispersion with linear predictor

ηij = µ+ βj + αi, j = 1, . . . , 5, i = 1, . . . , 28, (1.30)

where µ is the intercept, βJ is the fixed effect of j-th block, and αi is the fixed effect of
the i-th isolate.

1.4.7 Estimates and model selection

The estimated values of the parameters and goodness-of-fit measures for the Pois-
son, Quasi-Poisson, Negative Binomial, Poisson-normal, Negative-Binomial-Normal (com-
bined) and COM-Poissonµ models for all the experiments are given in Tables 1.2, 1.3 and
1.4 while for the COM-Poissonµ model with varying dispersion are in Table 1.5.

The results presented in Tables 1.2, 1.3 and 1.4 for the goodness-of-fit measures
(log-likelihood, AIC and BIC) show that the COM-Poissonµ model with constant dis-
persion gives the best fit for all experiments. The Poisson model is unsuitable, being
conservative, due to the underestimated standard errors. The difference between the
log-likelihood of the Poisson and COM-Poissonµ model was 48.966 for one additional pa-
rameter, which confirms the significantly fit of the COM-Poissonµ model. The estimated
values (ϕ̂) of the constant dispersion parameter −1, 133,−1.797,−1.299, respectively for
Experiment I, Experiment II with 60 days and Experiment II with 120 days confirms the
overdispersion evidence.

The half-normal plots presented in Figures 1.3 and 1.4 show that among Poisson,
Quasi-Poisson, Negative Binomial, Poisson-normal and Negative-Binomial-Normal mod-
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Table 1.2. Parameter estimates (Est) and standard errors (SE) for the Poisson, Quasi-
Poisson, Negative Binomial, Poisson-normal, Negative-Binomial-Normal (combined) and
COM-Poissonµ models. Experiment I.

Parameter Poi Q.-P. Neg.-Bin Poi-Nor Neg.-Bin-Nor CMPµ

ϕ 3.514 13.346 5017.82 -1,133
σ 0.073 0.073
Intercept 3.689 (0.080) 3.689 (0.150) 3.705 (0.153) 3.677 (0.153) 3.681 (0.152) 3.718 (0.149)
1306 0.104 (0.102) 0.104 (0.191) 0.099 (0.201) 0.123 (0.199) 0.119 (0.199) 0.126 (0.196)
1451 -0.381 (0.116) -0.381 (0.217) -0.394 (0.208) -0.374 (0.207) -0.380 (0.207) -0.400 (0.207)
1587 -0.405 (0.117) -0.405 (0.219) -0.410 (0.209) -0.420 (0.208) -0.425 (0.208) -0.424 (0.208)
1604 -0.584 (0.123) -0.584 (0.232) -0.584 (0.212) -0.575 (0.211) -0.579 (0.211) -0.603 (0.219)
1608 -0.172 (0.109) -0.172 (0.205) -0.181 (0.205) -0.189 (0.204) -0.194 (0.204) -0.187 (0.198)
1610 -0.584 (0.123) -0.584 (0.232) -0.605 (0.213) -0.606 (0.212) -0.610 (0.212) -0.605 (0.219)
1618 -0.373 (0.116) -0.373 (0.217) -0.384 (0.208) -0.367 (0.207) -0.372 (0.207) -0.392 (0.207)
1622 -0.802 (0.133) -0.803 (0.249) -0.810 (0.218) -0.841 (0.218) -0.846 (0.219) -0.823 (0.233)
1629 -0.068 (0.106) -0.068 (0.199) -0.068 (0.203) -0.057 (0.202) -0.062 (0.202) -0.076 (0.195)
1634 -0.319 (0.114) -0.319 (0.214) -0.315 (0.207) -0.309 (0.206) -0.314 (0.206) -0.336 (0.204)
1635 -0.397 (0.116) -0.397 (0.218) -0.427 (0.209) -0.451 (0.209) -0.456 (0.209) -0.417 (0.208)
1636 -0.594 (0.124) -0.594 (0.232) -0.600 (0.213) -0.658 (0.214) -0.663 (0.214) -0.614 (0.219)
1637 -0.296 (0.113) -0.297 (0.212) -0.301 (0.207) -0.293 (0.205) -0.298 (0.206) -0.314 (0.203)
1638 -0.500 (0.120) -0.500 (0.225) -0.514 (0.211) -0.554 (0.211) -0.558 (0.211) -0.519 (0.214)
1641 -0.755 (0.131) -0.755 (0.245) -0.763 (0.217) -0.757 (0.216) -0.761 (0.216) -0.775 (0.230)
1669 -0.430 (0.118) -0.430 (0.221) -0.446 (0.209) -0.432 (0.208) -0.437 (0.208) -0.450 (0.210)
1684 -0.491 (0.120) -0.491 (0.225) -0.497 (0.211) -0.510 (0.210) -0.514 (0.210) -0.510 (0.213)
1709 -0.357 (0.115) -0.357 (0.216) -0.369 (0.208) -0.350 (0.207) -0.355 (0.207) -0.376 (0.206)
3323 -0.365 (0.115) -0.365 (0.216) -0.368 (0.208) -0.392 (0.208) -0.397 (0.208) -0.383 (0.206)
3375 -0.397 (0.116) -0.397 (0.218) -0.402 (0.209) -0.382 (0.207) -0.386 (0.207) -0.416 (0.208)
3692 -0.575 (0.123) -0.575 (0.231) -0.581 (0.212) -0.564 (0.211) -0.568 (0.211) -0.594 (0.218)
3693 -0.373 (0.116) -0.373 (0.217) -0.378 (0.208) -0.364 (0.207) -0.369 (0.207) -0.391 (0.207)
3703 -0.166 (0.109) -0.166 (0.205) -0.181 (0.205) -0.182 (0.204) -0.186 (0.204) -0.181 (0.198)
43 -0.699 (0.128) -0.699 (0.240) -0.715 (0.216) -0.745 (0.216) -0.750 (0.216) -0.719 (0.226)
Nemix 0.166 (0.100) 0.166 (0.188) 0.155 (0.200) 0.171 (0.199) 0.167 (0.199) 0.212 (0.199)
Control 0.370 (0.096) -0.370 (0.180) 0.368 (0.198) 0.382 (0.196) -0.377 (0.197) 0.691 (0.268)
PL63 -0.005 (0.105) -0.005 (0.196) -0.013 (0.202) 0.011 (0.201) -0.006 (0.201) -0.007 (0.194)
Loglik -552.4920 - -505.3184 -506.6098 -506.6086 -493.1054
AIC 1168.984 - 1076.637 1079.220 1081.2017 1052.2109
BIC 1263.117 - 1173.711 1176.294 1181.233 1149.2851

els, the model that gave a best fit is the Quasi-Poisson. It was not possible to get the
half-normal plot for the COM-Poissonµ model due to convergence problems.

Comparing the COM-Poisson model with constant dispersion (Tables 1.2, 1.3 and
1.4) and the COM-Poisson model with varying dispersion (Table 1.5), using the likelihood
ratio test we can see that of Com-Poisson model with varying dispersion gives a better
fit ( 2*(−433.4589 + 493.1054) = 59.6465 = 119.293 for Experiment I; 2*(−471.4465
+ 486.418) = 2*14.9715 = 29.943 for Experiment II with 60 days and 2*(−457.0709 +
477.976) = 2*20.9051 = 41.8102 for Experiment II with 120 days).

1.4.8 Grouping means

The predicted means and respective standard errors for the number of eggs for the
well-fitted Quasi-Poisson model were used because of its simplicity, to obtain the groups
of the isolates.
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Table 1.3. Parameter estimates (Est) and standard errors (SE) for Poisson, Quasi-
Poisson, Negative Binomial, Poisson-normal, Negative-Binomial-Normal (combined) and
COM-Poissonµ models. Experiment II with 60 days.

Parameter Poi Q.-P. Neg.-Bin Poi-Nor Neg.-Bin-Nor CMPµ

ϕ 5.745 3.614 2916.049 -1.797
σ 0.564 0.286 0.285
Intercept 2.539 (0.132) 2.539 (0.316) 2.541 (0.284) 2.425 (0.292) 2.426 (0.293) 2.517
1306 0.754 (0.151) 0.754 (0.363) 0.762 (0.365) 0.822 (0.374) 0.821 (0.375) 0.785
1451 0.514 (0.158) 0.514 (0.379) 0.522 (0.368) 0.588 (0.377) 0.588 (0.377) 0.530
1587 0.248 (0.167) 0.248 (0.400) 0.248 (0.372) 0.252 (0.382) 0.251 (0.383) 0.255
1604 0.560 (0.157) 0.560 (0.375) 0.564 (0.368) 0.570 (0.377) 0.569 (0.378) 0.577
1608 0.104 (0.172) 0.104 (0.413) 0.075 (0.375) -0.038 (0.390) -0.039 (0.391) 0.098
1610 0.284 (0.165) 0.284 (0.397) 0.260 (0.372) 0.241 (0.383) 0.241 (0.384) 0.286
1618 -0.901 (0.232) -0.901 (0.557) -0.918 (0.407) -0.891 (0.415) 0.892 (0.418) -0.908
1622 0.172 (0.170) 0.172 (0.407) 0.191 (0.373) 0.177 (0.383) 0.176 (0.385) -0.182
1629 0.260 (0.166) 0.260 (0.399) 0.214 (0.373) 0.064 (0.388) 0.063 (0.390) 0.257
1634 0.523 (0.158) 0.523 (0.378) 0.522 (0.368) 0.552 (0.377) 0.552 (0.378) 0.538
1635 0.352 (0.163) 0.352 (0.391) 0.340 (0.371) 0.311 (0.382) 0.310 (0.383) 0.360
1636 0.374 (0.162) 0.374 (0.389) 0.393 (0.370) 0.389 (0.380) 0.389 (0.381) 0.388
1637 0.223 (0.168) 0.223 (0.402) 0.206 (0.373) 0.170 (0.384) 0.169 (0.385) 0.225
1638 -1.023 (0.243) -1.023 (0.583) -1.034 (0.413) -1.037 (0.423) -1.038 (0.425) -1.025
1641 -0.267 (0.190) -0.267 (0.455) -0.260 (0.383) -0.256 (0.393) -0.257 (0.394) -0.270
1669 -0.288 (0.191) -0.288 (0.458) -0.308 (0.384) -0.327 (0.396) -0.327 (0.397) -0.305
1684 0.272 (0.166) 0.272 (0.398) 0.287 (0.372) 0.077 (0.388) 0.077 (0.389) 0.282
1709 0.248 (0.167) 0.248 (0.400) 0.235 (0.372) 0.181 (0.384) 0.180 (0.385) 0.251
3323 -0.330 (0.193) -0.330 (0.463) -0.362 (0.386) -0.443 (0.400) -0.444 (0.402) -0.358
3375 0.272 (0.166) 0.272 (0.398) 0.295 (0.371) -0.140 (0.386) 0.140 (0.387) 0.284
3692 0.185 (0.169) 0.185 (0.405) 0.175 (0.373) 0.245 (0.382) 0.244 (0.383) 0.188
3693 -0.151 (0.184) -0.151 (0.441) -0.187 (0.381) -0.150 (0.390) -0.150 (0.392) -0.170
3703 0.157 (0.170) 0.159 (0.408) 0.133 (0.374) 0.143 (0.384) 0.143 (0.385) 0.157
43 0.363 (0.163) 0.363 (0.390) 0.327 (0.371) 0.280 (0.383) 0.280 (0.384) 0.366
Nemix 0.965 (0.147) 0.965 (0.352) 0.943 (0.364) 1.028 (0.372) 1.027 (0.373) 1.031
Control 1.093 (0.144) 1.093 (0.346) 1.102 (0.363) 1.184 (0.371) 1.184 (0.371) 1.212
PL63 -0.032 (0.178) -0.032 (0.427) -0.019 (0.377) 0.030 (0.386) 0.029 (0.387) -0.029
Loglik -640.310 - -492.868 -497.836 -497.832 -486.418
AIC 1344.6 - 1051.7 1061.7 1063.7 1038.837
BIC 1263.117 - 1173.711 1158.7 1163.7 1135.911

Empirical grouping - Visual inspection

As suggested by Fatoretto et al. (2018), the isolates can be grouped by visual
inspection using a likelihood-ratio test to identify the number of groups based on the
similarity observed between isolate predicted means (Figure 1.5).

For the analysis of number of eggs, using the isolate predicted means, by visual
inspection, we started creating ten groups of similar isolates for all experiment as shown
in Table 1.6 and Figure 1.5. Table 1.8 shows the values for residual deviances for models
with different numbers of groups and we used the F-test to get up to four groups of
isolates.

We first compared the model with 28 isolates with the model with ten groups for
all experiment Table 1.6 and Figure 1.5, resulting in a non significant F-test. Similarities
between the isolate groups were searched by merging groups, with the aim of reducing
the number of groups. The values of the residual deviances for the different groupings are
presented in Table 1.8.

For experiment I, a first reduced Grouping 2 was created by merging Control and
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Table 1.4. Parameter estimates (Est) and standard errors (SE) for the Poisson, Quasi-
Poisson, Negative Binomial, Poisson-normal, Negative-Binomial-Normal (combined) and
COM-Poissonµ models. Experiment II with 120 days.

Parameter Poi Q.-P. Neg.-Bin Poi-Nor Neg.-Bin-Nor CMPµ

ϕ 4.157 6.433 3179.376 -1.299
σ 1.15 0.152 0.152 0.137
Intercept 2.984 (0.115) 2.984 (0.234) 2.982 (0.221) 2.887 (0.224) 2.888 (0.225) 2.984 (0.212)
1306 0.511 (0.138) 0.511 (0.281) 0.528 (0.285) 0.562 (0.287) 0.561 (0.288) 0.517 (0.257)
1451 0.154 (0.149) 0.154 (0.303) 0.149 (0.291) 0.233 (0.292) 0.233 (0.292) 0.154 (0.275)
1587 0.112 (0.150) 0.112 (0.306) 0.122 (0.291) 0.176 (0.293) 0.175 (0.293) 0.113 (0.277)
1604 0.023 (0.153) 0.023 (0.313) 0.017 (0.293) 0.068 (0.295) 0.066 (0.296) 0.022 (0.283)
1608 0.174 (0.148) 0.174 (0.302) 0.179 (0.290) 0.263 (0.291) 0.261 (0.292) 0.175 (0.274)
1610 -0.036 (0.156) -0.036 (0.317) -0.016 (0.294) 0.051 (0.295) 0.050 (0.296) -0.035 (0.287)
1618 -0.140 (0.160) -0.140 (0.326) -0.158 (0.297) -0.103 (0.299) -0.104 (0.300) -0.145 (0.295)
1622 -0.581 (0.182) -0.581 (0.371) -0.613 (0.310) -0.603 (0.314) -0.605 (0.315) -0.599 (0.332)
1629 -0.024 (0.155) -0.024 (0.316) -0.030 (0.294) 0.001 (0.297) 0.001 (0.297) -0.025 (0.286)
1634 -0.304 (0.167) -0.304 (0.341) -0.291 (0.300) -0.291 (0.304) -0.292 (0.305) -0.305 (0.306)
1635 -0.241 (0.164) -0.241 (0.335) -0.234 (0.299) -0.211 (0.302) -0.212 (0.302) -0.244 (0.302)
1636 -0.370 (0.171) -0.370 (0.348) -0.380 (0.303) -0.388 (0.307) -0.390 (0.308) -0.377 (0.312)
1637 -0.036 (0.156) -0.036 (0.317) -0.063 (0.295) -0.049 (0.298) -0.049 (0.299) -0.040 (0.287)
1638 -0.127 (0.159) -0.127 (0.325) -0.137 (0.296) -0.066 (0.298) -0.067 (0.299) -0.130 (0.293)
1641 0.035 (0.153) 0.035 (0.312) 0.024 (0.293) 0.042 (0.296) 0.040 (0.297) 0.033 (0.282)
1669 -0.304 (0.167) -0.304 (0.341) -0.298 (0.300) -0.302 (0.304) -0.303 (0.305) 0.306 (0.306)
1684 0.012 (0.154) 0.012 (0.314) 0.017 (0.293) 0.085 (0.295) 0.084 (0.295) 0.011 (0.284)
1709 0.144 (0.149) 0.144 (0.304) 0.158 (0.290) 0.238 (0.292) 0.237 (0.292) 0.146 (0.275)
3323 0.213 (0.147) 0.213 (0.299) 0.199 (0.290) 0.272 (0.291) 0.271 (0.292) 0.213 (0.272)
3375 -0.140 (0.160) -0.140 (0.326) -0.145 (0.297) -0.083 (0.298) -0.084 (0.299) -0.143 (0.294)
3692 -0.087 (0.158) -0.087 (0.322) -0.060 (0.295) -0.049 (0.298) -0.050 (0.298) -0.085 (0.290)
3693 0.080 (0.151) 0.080 (0.308) 0.089 (0.292) 0.110 (0.294) 0.108 (0.295) 0.080 (0.279)
3703 0.444 (0.140) 0.444 (0.285) 0.451 (0.286) 0.547 (0.286) 0.546 (0.287) 0.449 (0.260)
43 0.233 (0.146) 0.233 (0.298) 0.223 (0.289) 0.236 (0.292) 0.235 (0.293) 0.233 (0.270)
Nemix 0.546 (0.137) 0.546 (0.279) 0.538 (0.285) 0.592 (0.287) 0.591 (0.287) 0.552 (0.256)
Control 0.553 (0.137) 0.553 (0.279) 0.553 (0.285) 0.648 (0.286) 0.648 (0.286) 0.560 (0.256)
PL63 -0.074 (0.157) -0.074 (0.321) -0.050 (0.294) 0.004 (0.296) 0.002 (0.297) -0.072 (0.289)
Loglik -559.417 - -485.746 -488.477 -488.474 -477.976
AIC 1182.8 - 1037.5 1043.0 1044.9 1021.953
BIC 1276.967 - 1134.565 1140.0 1145.0 1119.027

isolates from G II, giving a non significant result. Grouping 3 was created by merging
Control and isolates from G II and G III, giving a non significant test. Grouping 4 was
created by, additionally to Grouping 2, merging isolates from G III and G IV giving a non-
significant test. Grouping 5 was created by, additionally, to Grouping 2, merging isolates
from G III, G IV and G V giving a non significant test. Grouping 6 was created by,
additionally to Grouping 4, merging isolates from G V and G VI, giving a non-significant
test. Grouping 7 was created additionally to Grouping 4, merging isolates from G V, G
VI and G VII, giving a non significant test. Finally, Grouping 8 was created additionally
to Grouping 4, merging isolates from G VII and G VIII, giving a significant test. This
process resulted in four groups of isolates as shown in Table 1.7 and Figure 1.6. A half-
normal plot for the deviance residuals after fitting a quasi-Poisson with four groups of
isolates confirms the evidence of a well- fitted model (Figure 1.7). The four groups (Table
1.7) would be classified as

• group I: highly promising isolates;

• group II: moderately promising isolates;
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Table 1.5. Parameter estimates (Est) and standard error (SE) for the fitted COM-
Poisson model with dispersion for all experiments.

Exp. I Exp. II 60 days Exp. II 120 days
Parameter Mean Dispersion Mean Dispersion Mean Dispersion
Intercept 3.600 (0.118) -0.921 (0.701) 2.411 (0.223) -1.000 (0.738) 3.061 (0.175) -1.000 (0.401)
1306 0.100 (0.118) 9.434 (1.971) 0.768 (0.233) 0.333 (1.039) 0.511 (0.256) -0.682 (0.800)
1451 -0.381 (0.147) 0.911 (0.979) 0.528 (0.232) 0.633 (1.045) 0.145 (0.186) 1.914 (0.678)
1587 -0.398 (0.225) -0.676 (0.964) 0.259 (0.269) -0.013 (1.010) 0.093 (0.309) -1.000 (1.027)
1604 -0.584 (0.145) 1.203 (0.924) 0.576 (0.311) -1.000 (1.081) 0.023 (0.228) 0.342 (0.736)
1608 -0.173 (0.188) -0.330 (1.044) 0.110 (0.348) -1.000 (0.990) 0.165 (0.195) 1.319 (0.719)
1610 -0.580 (0.204) -0.179 (1.013) 0.284 (0.313) -0.688 (1.112) -0.037 (0.243) 0.110 (0.871)
1618 -0.378 (0.141) 1.134 (1.135) -0.885 (0.269) 1.199 (0.988) -0.129 (0.224) 0.610 (0.742)
1622 -0.818 (0.312) -1.277 (1.180) 0.182 (0.325) -0.769 (1.123) -0.639 (0.379) -1.000 (1.642)
1629 -0.066 (0.141) 0.816 (0.913) 0.243 (0.343) -1.000 (0.955) -0.042 (0.240) 0.185 (0.732)
1634 -0.315 (0.157) 0.523 (0.915) 0.538 (0.301) -0.818 (1.113) -0.298 (0.304) -0.475 (0.873)
1635 -0.413 (0.267) -1.154 (1.090) 0.357 (0.330) -1.000 (1.099) -0.171 (0.309) -0.662 (0.824)
1636 -0.640 (0.337) -2.071 (——-) 0.388 (0.318) -0.891 (1.132) -0.342 (0.347) -1.000 (0.910)
1637 -0.295 (0.162) 0.365 (0.915) 0.220 (0.342) -1.000 (1.128) -0.006 (0.295) -0.671 (0.842)
1638 -0.512 (0.317) -1.670 (1.215) -1.000 (0.356) 0.166 (1.195) -0.142 (0.200) 1.385 (0.720)
1641 -0.755 (0.196) 0.124 (0.947) -0.257 (0.308) -0.073 (1.066) 0.017 (0.235) 0.206 (0.674)
1669 -0.431 (0.172) 0.242 (0.961) -0.295 (0.345) -0.460 (1.199) -0.273 (0.341) -1.000 (0.920)
1684 -0.513 (0.238) -0.713 (0.989) 0.264 (0.339) -1.000 (0.910) 0.002 (0.277) -0.465 (0.956)
1709 -0.356 (0.138) 1.243 (1.052) 0.240 (0.342) -1.000 (1.124) 0.153 (0.215) 0.568 (0.839)
3323 -0.363 (0.241) -0.915 (1.019) -0.322 (0.374) -1.000 (1.085) 0.196 (0.234) 0.054 (0.812)
3375 -0.395 (0.123) 2.575 (0.964) 0.291 (0.333) -1.000 (0.906) -0.140 (0.284) -0.420 (0.931)
3692 -0.573 (0.121) 2.995 (1.461) 0.200 (0.214) 1.940 (1.075) -0.102 (0.325) -1.000 (0.883)
3693 -0.373 (0.147) 0.890 (0.905) -0.140 (0.286) 0.121 (1.079) 0.038 (0.313) -1.000 (0.816)
3703 -0.162 (0.188) -0.338 (1.055) 0.169 (0.271) 0.048 (1.020) 0.412 (0.238) -0.223 (1.162)
43 -0.703 (0.315) -1.440 (1.207) 0.367 (0.329) -1.000 (1.031) 0.186 (0.303) -1.000 (0.764)
Nemix 0.168 (0.147) 0.343 (1.052) 0.979 (0.224) 0.504 (1.111) 0.505 (0.226) -0.068 (0.738)
Control 0.371 (0.154) -0.084 (0.919) 1.108 (0.224) 0.348 (1.061) 0.547 (0.175) 5.732 (1.372)
PL63 -0.003 (0.127) 1.612 (0.922) -0.017 (0.231) 1.237 (1.011) -0.082 (0.260) -0.126 (0.882)
Loglik −433.4589 −471.4465 −457.0709
AIC 1026.918 1062.893 1034.142
BIC 1203.416 1239.392 1210.640

• group III: less promising isolates;

• group IV: isolates with no effect (similar to the worst Control).

For experiment II with 60 days, a first reduced Grouping 2 was created by merging
Control and isolates from G II, giving a non significant result. Grouping 3 was created by,
additionally, merging control, isolates of G II and G III, giving a non significant result.
Grouping 4 was created by, additionally to Grouping 2, merging isolates from G III and
G IV giving a non-significant test. Grouping 5 was created by, additionally, to Grouping
2, merging isolates from G III, G IV and G V giving a non-significant test. Grouping 6
was created by, additionally to Grouping 4, merging isolates from G III, G IV, G V and
G VI, giving a non-significant test. Grouping 7 was created by, additionally to Grouping
4, merging isolates from G III, G IV, G V, G VI and G VII, giving a non significant test.
Finally, grouping 8 was created additionally to Grouping 4, merging isolates from G VII
and G VIII, giving a significant test. This process resulted in four groups of isolates as
shown in Table 1.7 and Figure 1.6. A half-normal plot for the deviance residuals after
fitting a quasi-Poisson with four groups of isolates confirms the evidence of a well- fitted
model (Figure 1.7). The four groups (Table 1.7) would be classified as

• group I: highly promising isolates;



36

Table 1.6. First grouping according to the
empirical grouping of the isolate predicted
means.

Groups Experiment I
G I 1622
G II 1641
G III 43
G IV 1636 1610 1604 3692
G V 1638 1684
G VI 1669 1587 1635 3375 1451

3693 1618 3323 1709 1634
G VII 1608 3703
G VIII 1629 PL63 1296
G IX 1306 Quar
G X Cont
Groups Experiment II - 60
G I 1638 1618
G II 3323 1669 1641
G III 3693
G IV PL23 1296 1608
G V 3703 1622 3692 1637 1587

1709 1629 3375 1684 1610
1610

G VI 1635 43 1636
G VII 1451 1634 1604
G VIII 1306
G IX Quar
G X Cont
Groups Experiment II - 120
G I 1622
G II 1636
G III 1669 1634 1635
G IV 1618 3375 1638 3692 PL23
G V 1610 1637 1629 1296 1684

1604 1641
G VI 3693 1587 1709 1451
G VII 1608 3323 43
G VIII 3703
G IX 1306
G X Quar Cont

Figure 1.5. Plot with the predicted values

• group II: moderately promising isolates;

• group III: less promising isolates;

• group IV: isolates with no effect (similar to the worst Control).

For experiment II with 120 days, a first reduced Grouping 2 was created by
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merging G I and GII, giving a non significant result. Grouping 3 was created by merging
G I, GII and G III, giving a non-significant result. Grouping 4 was created by merging
G I, GII, G III and G IV, giving a non significant result. Grouping 5 was created by,
additionally to Grouping 3, merging isolates from G IV and G V giving a non-significant
test. Grouping 6 was created by, additionally to Grouping 3, merging isolates from G IV,
G V and G VI giving a non-significant test. Grouping 7 was created by, additionally to
Grouping 3, merging isolates from G IV, G V, G VI and G VII giving a non significant
test. Finally, additionally to Grouping 8, merging isolates from G VII and G VIII giving
a significant test. This process resulted in four groups of isolates as shown in Table 1.7
and Figure 1.6. A half-normal plot for the deviance residuals after fitting a quasi-Poisson
with four groups of isolates confirms the evidence of a well- fitted model (Figure 1.7). The
four groups (Table 1.7) would be classified as

• group I: highly promising isolates;

• group II: moderately promising isolates;

• group III: less promising isolates;

• group IV: isolates with no effect (similar to the worst Control).

Table 1.8. Values of residual deviances for models with different numbers of groups

Number of Empirical K-means
Groups Df Exp I E II - 60 E II - 120 Df E I E II - 60 E II - 120

28 groups 108 400.75 670.27 481.51 108 400.75 670.27 481.51
10 groups 126 404.29 672.84 482.90 126 402.20 671.93 482.59
9 groups 127 404.38 673.63 483.24 127 402.70 673.63 482.96
8 groups 128 404.76 678.51 483.54 128 403.83 675.11 483.39
7 groups 129 405.89 682.83 484.26 129 405.15 678.16 484.43
6 groups 130 410.37 692.35 487.48 130 409.34 684.05 485.30
5 groups 131 419.16 693.82 488.68 131 415.69 688.61 488.46
4 groups 132 428.45 710.70 491.47 132 415.69 715.24 491.47
3 groups 133 458.19 756.71 508.57 133 449.20 742.80 506.74

K-means clustering

For the analysis of number of eggs, using the predicted means and respective
standard errors, we started with K = 10 groups (Table 1.9 and Figure 1.8) and tested up
to get four groups of isolates. For experiment I and II with 120 days we obtained four
groups (Table 1.10 and Figure 1.9)

• group I: highly promising isolates;
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Table 1.7. Final grouping according to the
empirical grouping of the isolate predicted
means.

Groups Experiment I
G I 1622 1641 43 1636 1610

1604 3692 1638 1684
G II 1669 1587 1635 3375 1451

3693 1618 3323 1709 1634
1637

G III 1608 3703 1629 PL63 1296
G IV Quar 1306 Cont
Groups Experiment II - 60
G I 1638 1618
G II 3323 1669 1641 3693 PL63

1296
G III 1608 3703 1622 3692 1637

1587 1709 1629 3375 1684
1610 1635 43 1636 1451
1634 1604

G IV 1306 Quar Cont
Groups Experiment II - 120
G I 1622 1636 1669 1634 1635
G II 1618 3375 1638 3692 PL63

1610 1637 1629 1296 1684
1604 1641

G III 3693 1587 1709 1451 1608
3323 43

G IV 3703 1306 Quar Cont

Figure 1.6. Plot with the predicted values

• group II: moderately promising isolates;

• group III: less promising isolates;

• group IV: isolates with no effect (similar to the worst control)

while for experiment II with 60 days we obtained five groups (Table 1.10 and Figure 1.9).
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Figure 1.7. Half-normal plot with simulation envelopes of deviance residuals component
for fitted groups using Quasi-Poisson model. Empirical grouping.

Half-normal plot for the deviance residuals after fitting a quasi-Poisson with four groups
of isolates confirms the evidence of a well- fitted model (Figure 1.10). The four groups
(Table 1.10) would be classified as

• group I: highly promising isolates;

• group II: less highly promising isolates;

• group III: moderately promising isolates;

• group IV: less promising isolates;

• group V: isolates with no effect (similar to the worst control).

1.4.9 Discussion

In this Section, we proposed different models that take into account overdispersion
(underdispersion) to analyse the number of T. urticae eggs at 60 days and 120 days after
root inoculation of strawberry plants inoculated with different promising isolates of the
entomopathogenic fungi of Metarhizium spp., B. bassiana, I. fumosorosea. We compared
the results and also discussed model selection and diagnostics. For grouping the isolates
we proposed two different methods. All the methods were implemented in the software R
(R Core Team, 2020) and the scripts developed are presented in the Appendix.



40

Table 1.9. First grouping according to
the nearby between the predicted values and
standard error using the kmeans method.

Groups Experiment I
G I 1622 1641 43
G II 1636 1610 1604 3692
G III 1638 1684
G IV 1669 1587 1635 3375 1451

3693 1618 3323 1709
G V 1634 1637
G VI 1608 3703
G VII 1629
G VIII PL63 1296
G IX 1306 Quar
G X Cont
Groups Experiment II - 60
G I 1638 1618
G II 3323 1669 1641
G III 3693 PL63 1296
G IV 1608 3703 1622 3692
G V 1637 1587 1709 1629 3375

1684 1610
G VI 1635 43 1636
G VII 1451 1634 1604
G VIII 1306
G IX Quar
G X Cont
Groups Experiment II - 120
G I 1622
G II 1636 1669 1634 1635
G III 1618 3375 1638
G IV 3692 PL23 1610 1637 1629
G V 1296 1684 1604 1641
G VI 3693 1587
G VII 1709 1451 1608
G III 3323 43
G IX 3703
G X 1306 Quar Cont

Figure 1.8. Plot with the predicted values

1.5 Analysis the case-study - number of flowers

The motivating dataset of this work had as one of its aims to evaluate the effect of
promising entomopathogenic fungi inoculated on the roots of strawberry plants to control
the population of mitesand, also, to evaluate how the fungi affect the development of the
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Table 1.10. Final grouping chosen accord-
ing to the proximity between the predicted
values and the standard error. Kmeans
method.

Groups Experiment I
G I 1622 1641 43 1636 1604

1610 3692
G II 1638 1684 1669 1587 1635

3375 1451 1618 3693 3323
1709 1634 1637

G III 1608 3703 1629 PL63 1296
G IV 1306 Quar Cont
Groups Experiment II - 60
G I 1638 1618
G II 3323 1669 1641 3693 PL63

1296
G III 1608 3703 1622 3692 1637

1587 1709 1629 1684 3375
1610 1635 43 1636

G IV 1451 1634 1604 1306
G V Quar Cont
Groups Experiment II - 120
G I 1622 1636 1634 1669 1635
G II 1618 3375 1638 3692 PL63

1610 1637 1629 1296 1684
1604 1641

G III 3693 1587 1709 1451 1608
3323 43

G IV 3703 1306 Quar Cont

Figure 1.9. Plot with the predicted values

plants, mainly number of flowers and leaves, as a measure for the plants growth.

1.5.1 Exploratory analysis

The dispersion plots of the number of flowers for each isolates, over time for
experiments I and II (Figures 1.11) show an increasing trend over time and that there
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Figure 1.10. Half-normal plot with simulation envelopes of deviance residuals compo-
nent for fitted groups using Quasi-Poisson model. Kmeans method.

are clear differences in the influence of the isolates and evidence of differing degrees of
variability between replicates.

Figure 1.11. Dispersion plots of number of flowers per day versus days for (A) experi-
ment I and (B) experiment II.

The dispersion plots of the sample variance versus sample means (Figures 1.12)
show that there points below and above the identity line, suggesting evidence of overdis-
persion and underdispersion. Bar plots of the observed numbers of flowers for experiment
I (Figure 1.13(A)) and experiment II (Figure 1.13(B)), suggests that there is zero-inflation,
mainly for experiment II.

1.5.2 Poisson model

We begin by fitting a Poisson log-linear model with the factors block, isolate, and
day as fixed effects, using the maximal linear predictor given by the equation (1.31).
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Figure 1.12. Dispersion plots sample mean versus the sample variance of number of
flowers per day for (A) experiment I and (B) experiment II (dotted line is the identity
line and the solid line is the least squares line).

Figure 1.13. Frequency distribution for the number of flowers.

ηijk = α+ βj + β1idaysk + β2idays2k, j = 1, . . . , 10, i = 1, . . . , 28 and k = 1, . . . , 6, (1.31)

where α is the intercept, βj is the effect of j-th block, and β1i is the effect of the i-th isolate.
Looking at the analysis of deviance and goodness-of-fit given in Table 1.11, there is

evidence from the residual deviance components and X2 values that the model does not fit to
the data satisfactorily, the observations are more variable than we would expect under a Poisson
model. A Poisson model is clearly inadequate here with a residual deviance of 2797.6 on 1587
df indicating huge overdispersion in experiment I and a residual deviance of 2185.5 on 1587 df
indicating huge overdispersion in experiment II.

This can also be seen in the half normal plot simulated envelope for the deviance
residuals components shown for both the experiments in Figure 1.14 that the Poisson model
does give an adequate fit to the observed values and thus it should not be used. This occurs
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Table 1.11. Analysis of deviance for the number flowers data, using a Poisson log-linear
model of all experiments.

Experiment I
Sources of variation df Deviance p-value X2 p-value
Block 9 22.72
Isolates 27 84.92
Days 1 821.59
Days2 1 23.03
Isol:Days 27 142.73
Isol:Days2 27 164.25
Residual 1587 2797.6 <0.01 2436.297 <0.01

Experiment II
Sources of variation df Deviance p-value χ2 p-value
Block 9 9.51
Isolates 27 52.53
Days 1 2138.62
Days2 1 257.10
Isol:Days 27 46.58
Isol:Days2 27 32.60
Residual 1587 2185.5 <0.01 2442.468 <0.01

because there is more variability than the Poisson model accommodates, it is suggested that we
may try to accommodate the extra variability by estimating the dispersion parameter with a
quasi-Poisson model (Demétrio et al., 2014).

Figure 1.14. Half-normal plot with simulation envelopes of deviance residuals compo-
nent using Poisson model.
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1.5.3 Quasi-Poisson model

Fitting a Quasi-Poisson model with the same predictor (1.31), the estimated values of
ϕ are ϕ̃1 = 1.5351 and ϕ̃2 = 1.539, for experiments I and II, respectively. A half-normal plot
with a simulated envelope show that for experiment I, there is strong evidence of an inadequate
model fit, with 23, 71% of the observed residuals lying outside the simulated envelope (Figure
1.15 (a)). The plot presented in (Figure 1.15 (b)) shows evidence of an adequate model, with
most of the observed residuals lying inside the simulated envelope for experiment II.

Figure 1.15. Half-normal plot with simulation envelopes of deviance residuals compo-
nent using Quasi-Poisson model.

1.5.4 Negative Binomial model

The negative binomial model is an alternative approach to account for overdispersion.
We can fit this model with the same linear predictor (1.31). The estimated values for θ is
θ̂ = 4.86 and θ̂ = 10.5, for experiments I and II, respectively.

The half normal plot presented in Figure 1.16 (a) and Figure 1.16 (b) show evidence
that the negative binomial model is inadequate for the data of both experiments, there is a
considerable amount of points outside of the simulated envelopes.

1.5.5 Zero-inflated Poisson model

The plot of the frequency distribution for number of flowers given in Figure 1.13 shows
that there are large numbers of zero observations. Alternative models to be considered are a
zero inflated Poisson (ZIP) and a negative binomial models (ZINB), to incorporate excess zeros.

We, initially, fit a zero-inflated Poisson model with constant zero-inflation and with
the same linear predictor (1.31) using the R package pscl Zeileis et al. (2008). A zero-inflated
Poisson is clearly inadequate for experiment I when looking at the half-normal plot with most of
the observed residuals lying outside the simulated envelope in Figure 1.17(a), which still suggests
considerable overdispersion, while for Experiment II there is evidence of a good fit.
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Figure 1.16. Half-normal plot with simulation envelopes of deviance residuals compo-
nent using negative binomial model.

Figure 1.17. Half-normal plot with simulation envelopes of deviance residuals compo-
nent using zero-inflated Poisson model.

1.5.6 Zero-inflated negative binomial model

Fitting a zero-inflated negative binomial distribution to the data, with the same lin-
ear predictor (1.31), the half normal plots presented in Figure 1.18 (a) and Figure 1.18 (b)
show evidence that the zero-inflated negative binomial model is adequate for the data of both
experiments, with most of the observed residuals lying inside the simulated envelope.

1.5.7 Grouping

As suggested by Fatoretto et al. (2018), the isolates can be grouped by visual inspection
using a likelihood-ratio test to identify the number of groups based on the similarity observed
between isolate predicted means Figure 1.19. For the analysis of number of flowers, using the
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Figure 1.18. Half-normal plot with simulation envelopes of deviance residuals compo-
nent using zero-inflated negative binomial model.

isolate predicted means, by visual inspection, we started creating eight groups of similar isolates
for all experiment as shown in Table 1.12 and Figure 1.19. We first compared the model with
28 isolates with the model with eight groups for all experiment, resulting in a non significant
likelihood ratio test. Similarities between the isolate groups were searched by merging groups,
with the aim of reducing the number of groups.

In experiment I, G II was created to test similarities between the isolates 1684 and
isolates of G II, but this hypothesis was not rejected. G III was created to test similarities
between the isolates 1684, isolates of G II and isolates of G III, but this hypothesis was not
rejected. G IV was created to test similarities between G III and G IV and this hypothesis was
not rejected. G V was created to test similarities between G III, IV and V. G VI was created to
test similarities between G V and G VI. G VII was created to test similarities between G V, VI
and VII. And finally, G VIII was created to test similarities between G VII and VIII, but this
hypothesis was not rejected. (Table 1.12).

In experiment II, G II was created to test similarities between the isolates 1629 and
isolates of G II, but these hypothesis was not rejected. G III was created to test similarities
between the isolates 1629, isolates of G II and isolates of G III and this hypothesis was not
rejected. G IV was created to test similarities between G III and G IV, but these hypothesis
was not rejected. G V was created to test similarities between G III, IV and V, and this
hypothesis was not rejected. G VI was created to test similarities between G V and G VI. G
VII was created to test similarities between G V, VI and VII. And finally G VIII was created
to test similarities between G VII and VIII, but this hypothesis was rejected (Table 1.12).

According to the tests, we can group the isolates in four groups in experiments I and
experiment II (Table 1.13) in which the isolates belonging to distinct groups are significantly
different at a significance level of 5%. The four groups are isolates that give variable number of
flowers

• group I: isolates with almost no effect (similar to the worst control) with smaller number
of flowers;
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Table 1.12. First grouping according to the
empirical grouping of the isolate predicted
means.

Groups Experiment I
G I 1684
G II 1451 1638
G III 3692 1636 Quar
G IV 1637 PL63 1634 3693 1669

1587 1618 1604
G V 1641 1610 1608 3323 Cont

1296 3703 1622
G VI 1709
G VII 1629 3375
G VIII 43 1306 1635
Groups Experiment II
G I 1629
G II 1610 1669 1306 3692
G III 3703 1618 3693 Quar 3323
G IV Cont 1637 1634 1636 43
G V 1622 1587 1635 1684 1296

PL63 1604 1638
G VI 3375 1709
G VII 1608 1641
G VIII 1451

Figure 1.19. Plot with the predicted aver-
age values

• group II: moderately promising isolates;

• group IV: less highly promising isolates;

• group IV: highly promissing isolates (larger number of flowers).

1.5.8 Discussion

In this Section, we proposed different models that take into account overdispersion
and zero inflation, to analyse the number of flowers after root inoculation of strawberry plants
inoculated with different promising isolates of the entomopathogenic fungi of Metarhizium spp.,
B. bassiana, I. fumosorosea. We compared the results and also discussed model selection and
diagnostics. For grouping the isolates we proposed one empirical method. The methods were
implemented in the software R (R Core Team, 2020) and the scripts developed are presented in
the Appendix II.
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Table 1.13. Final grouping according to the
empirical grouping of the isolate predicted
means.

Groups Experiment I
G I 1684
G II 1451 1638 3692 1636 Quar

1637 PL63 1634 3693 1669
1587 1618 1604 1641 1610
1608 3323 Cont 1296 3703
1622 1709

G III 1629 3375
G IV 43 1306 1635
Groups Experiment II
G I 1629 1610 1669 1306 3692

3703
G II 1618 3693 Quar 3323 Cont

1637 1634 1636 43
G III 1622 1587 1635 1684 1296

PL63 1604 1638 3375 1709
G IV 1608 1641 1451

Figure 1.20. Plot with the predicted aver-
age values

1.6 Analysis the case-study - number of leaves

The dispersion plots of the number of number of leaves for each isolates, over time for
experiments I and II Figures 1.21 (a) show an increasing trend over time and that there are
clear differences in the influence of the isolates and evidence of differing degrees of variability
between replicates.

The dispersion plots of the sample variance versus sample means Figures 1.21 (b) show
that there are points below and above the identity line, suggesting evidence of overdispersion
and underdispersion.

1.6.1 Poisson model

We begin by fitting a Poisson log-linear model with the factors block, isolate, and day
as fixed effects, using the maximal linear predictor given by the equation (1.32).

ηijk = α+ βj + β1idaysk + β2idays2k, j = 1, . . . , 10, i = 1, . . . , 28 and k = 1, . . . , 7, (1.32)
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Figure 1.21. Dispersion plots of (a) number of flowers per day versus days and (b)
sample mean versus the sample variance of number of leaves per day (dotted line is the
identity line and solid line least squares line.

where α is the intercept, βj is the effect of j-th block, and β1i is the effect of the i-th isolate.
Looking at the analysis of deviance and goodness-of-fit given in Table 1.14, there is

evidence from the residual deviance components and X2 values that the model does not fit the
data satisfactorily, the observation are more variable than we would expect under a Poisson
model.

This can also be seen in the half normal plot simulated envelope for the deviance
residuals components shown for both the experiments in Figure 1.22 (A) that the Poisson model
does not give an adequate fit to the observed values and thus it should not be used. This occurs
because there is more variability than the Poisson model accommodates, it is suggested that we
may try to accommodate the extra variability by estimating the dispersion parameter with a
quasi-Poisson model (Demétrio et al., 2014).
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Table 1.14. Analysis of deviance for the number of leaves data, using a Poisson log-linear
model.

Experiment I
Sources of variation df Deviance p-value X2 p-value
Block 9 11.86
Isolates 27 63.43
Days 1 1270.96
Days2 1 68.45
Residual 1921 1422.30 <0.01 1483.84 <0.01

Experiment II
Sources of variation df Deviance p-value X2 p-value
Block 9 30.36
Isolates 27 98.76
Days 1 543.24
Days2 1 92.67
Residual 1641 918.09 <0.01 968.51 <0.01

1.6.2 Quasi-Poisson model

Fitting a Quasi-Poisson model with the same predictor (1.32) the estimated values of
ϕ are ϕ̃1 = 0.77 and ϕ̃2 = 0.59, for experiments I and II, respectively.

A half-normal plot with a simulated envelope Figure 1.22 (B) show that for experiments
I and II, there is strong evidence of an inadequate model fit, with most of the observed residuals
lying outside the simulated envelope which shows evidence of an inadequate model (Demétrio
et al., 2014).

1.6.3 Negative Binomial model

Fitting the negative binomial model with the same liner predict (1.32). The estimated
values for θ is θ̂1 = 154242.4 and θ̂2 = 351007 for experiments I and II, respectively.

The half normal plots presented in Figure 1.22 (C) show evidence that the negative
binomial model is inadequate for analysing this set of data.
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Figure 1.22. Half-normal plot with simulation envelopes for deviance residuals for (A)
Poisson, (B) quasi-Poisson and (C) Negative binomial, for the number of leaves.

1.6.4 COM-Poisson model

Alternatives analysis of data with underdispersion and overdispersion have been pro-
posed by Huang (2017) and Ribeiro Jr et al. (2020), by using different mean parametrizations
of the COM-Poisson model.

We fitted a COM-Poisson model (in the two forms (original and new parametrization)
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with the same predictor (1.32) for the mean (ηijk = log(µijk)).
The parameter estimated values of ϕ and goodness-of-fit measures (log-likelihood, AIC

and BIC) for the Poisson, COM-Poisson, COM-Poissonµ and Quasi-Poisson are given in Table
1.15.

The results presented in Table 1.15 show that the goodness-of-fit measures are quite
similar for the COM-Poisson and COM-Poissonµ models. In line with Ribeiro Jr et al. (2020)
the reparametrization does not change the model fit.

The Poisson model is unsuitable, being conservative, due to the overestimated stan-
dard errors. The −2 x difference between the log-likelihood of the Poisson and COM-Poissonµ

model was 190.522 for one additional parameter, which confirms the significantly fit of the
COM-Poisson model. The estimated value of the dispersion parameter ϕ̂ = 0.530 indicates un-
derdispersion. Another possible model under study is the COM-Poisson with varying dispersion.

1.6.5 Discussion

In this Section, we proposed different models that take into account overdispersion
(underdispersion) to analyse the number of leaves after root inoculation of strawberry plants
inoculated with different promising isolates of the entomopathogenic fungi of Metarhizium spp.,
B. bassiana, I. fumosorosea. We compared the results and also discussed model selection and
diagnostics, but the difficulty in programming. The database is difficult to analyzed. We are
having difficulties in developing adapted methodologies due to the nature of the data. All the
methods were implemented in the software R (R Core Team, 2020) and the scripts developed
are presented in the Appendix. For the number of leaves, many other modelswere fitted with no
success. Additional models need to be developed. Also, it is under development the half-normal
plot for the COM-Poisson model.

1.7 Final remarks

Outcomes of interest for entomological data are often in the form of counts and as a
first step, a standard model to analyse this type of data is the Poisson model, an example of
generalized linear models. The basic model assumptions are independence of observations and
constant rate of event occurrence. If one or both of these assumptions failure the variance of
the data will be greater (smaller) than the variance expected using the Poisson model resulting
in what is called overdispersion (undersispersion). Many different models for overdispersion
(underdispersion) can arise from alternative possible mechanisms for the underlying process.
Another reason for extending the Poisson model is because of the occurrence of a hierarchical
structure in the data caused by a clustering resulted from repeatedly measuring the outcome
on the same experimental unit. In entomological applications involving count data there is
often an excess of zero observations. In this work we present a review of models that can be
used to take into account the different aspects of the failure of the Poisson model assumptions.
The proposed methodology is illustrated using data of an experiment to evaluate 25 isolates of
entomopathogenic fungi (Metarhizium spp., B. bassiana and I. fumosorosea) and compare with
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Table 1.15. Parameter estimates (Est) and standard error (SE) for the five model for
the analysis of the experiment .

Experiment
Parameter Poisson Est(SE) COM-Poisson Est(SE) CMPµ Est(SE) Quasi-Poisson Est(SE)
ϕ,σ 0.530 (15.086) 0.530 (15.081) 0.648
Intercept 2.220 (49.339) 3.810 (25.796) 2.220 (63.796) 2.220 (61.306)
trt1306 -0.149 (-2.775) -0.248 (-3.558) -0.149 (-3.587) -0.149 (-3.448)
trt1451 -0.027 (-0.519) -0.045 (-0.670) -0.027 (-0.673) -0.027 (-0.645)
trt1587 -0.139 (-2.610) -0.233 (-3.348) -0.140 (-3.374) -0.139 (-3.243)
trt1604 -0.163 (-3.024) -0.271 (-3.872) -0.163 (-3.909) -0.163 (-3.758)
trt1608 -0.070 (-1.337) -0.117 (-1.723) -0.070 (-1.730) -0.070 (-1.661)
trt1610 -0.201 (-3.696) -0.335 (-4.713) -0.201 (-4.779) -0.201 (-4.593)
trt1618 -0.037 (-0.702) -0.061 (-0.906) -0.036 (-0.907) -0.037 (-0.872)
trt1622 0.013 ( 0.257) 0.022 ( 0.331) 0.013 ( 0.331) 0.013 ( 0.319)
trt1629 -0.048 (-0.912) -0.079 (-1.177) -0.048 (-1.180) -0.048 (-1.134)
trt1634 -0.142 (-2.665) -0.238 (-3.418) -0.143 (-3.446) -0.142 (-3.311)
trt1635 -0.108 (-2.036) -0.180 (-2.621) -0.108 (-2.632) -0.108 (-2.530)
trt1636 -0.050 (-0.965) -0.084 (-1.246) -0.050 (-1.247) -0.050 (-1.199)
trt1637 -0.052 (-0.992) -0.086 (-1.279) -0.052 (-1.281) -0.052 (-1.232)
trt1638 -0.048 (-0.912) -0.079 (-1.177) -0.048 (-1.178) -0.048 (-1.134)
trt1641 -0.108 (-2.036) -0.180 (-2.620) -0.108 (-2.632) -0.108 (-2.530)
trt1669 -0.034 (-0.650) -0.056 (-0.838) -0.034 (-0.836) -0.034 (-0.807)
trt1684 -0.092 (-1.739) -0.153 (-2.239) -0.092 (-2.248) -0.092 (-2.160)
trt1709 -0.086 (-1.631) -0.143 (-2.100) -0.086 (-2.106) -0.086 (-2.027)
trt3323 -0.037 (-0.702) -0.061 (-0.906) -0.037 (-0.908) -0.037 (-0.872)
trt3375 0.035 ( 0.690) 0.059 ( 0.892) 0.035 ( 0.892) 0.035 ( 0.857)
trt3692 -0.175 (-3.247) -0.292 (-4.152) -0.175 (-4.194) -0.175 (-4.035)
trt3693 0.031 ( 0.614) 0.053 ( 0.794) 0.032 ( 0.797) 0.031 ( 0.762)
trt3703 -0.013 (-0.259) -0.022 (-0.333) -0.013 (-0.334) -0.013 (-0.321)
trt43 -0.064 (-1.230) -0.108 (-1.587) -0.064 (-1.586) -0.064 (-1.529)
trtControl -0.230 (-4.208) -0.384 (-5.342) -0.231 (-5.435) -0.230 (-5.228)
trtPL63 -0.146 (-2.720) -0.243 (-3.488) -0.146 (-3.516) -0.146 (-3.379)
trtQuartzo -0.204 (-3.753) -0.340 (-4.781) -0.204 (-4.849) -0.204 (-4.663)
days 0.098 (23.204) 0.164 (20.919) 0.098 (29.944) 0.098 (28.832)
LogLik -4084.046 -3988.555 -3988.785 -
AIC 8244.092 8055.109 8055.569 -
BIC 8450.301 8266.745 8267.205 -

the three reference treatments on the control of T. urticae. We compared the results and also
discussed model selection and diagnostics. For grouping the isolates we proposed two different
methods. All the methods were implemented in the software R.
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APÊNDICES

Apêndice I: computational routines

We carried out all programming in R For Poisson, Quasi-Poisson, negative bino-
mial, Poisson-normal, Negative-binimial-normal and COM-Poisson models the following
codes were used for number of eggs for experiment I:

source ( ” he lp e r01_gene ra l −f un c t i o n s .R” )
source ( ” he lp e r02_l a t t i c e −pane l s .R” )

# Pred i c t o r
f 1 <− neggs ~ b lock + i s o l

# Poisson f i t comple t
model1 <− glm( f1 , family=poisson , data = dados )
anova (model1 , t e s t=”Chisq ” )
sum( resid (model1 , ty=” pearson ” )^2)
summary( model1 )
l ogL ik ( model1 )
hnp (model1 , print .on = T, pch=4, main=” (A) ␣ Po i s son : ␣ exper iment ␣ I ” ,

cex =0.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
l ab=”Deviance ␣ r e s i d u a l s ” )

# Quasi−Poisson f i t
model2 <− glm( f1 , family=quas ipo i s s on , data = dados )
summary( model2 )$ d i s p e r s i o n #phi
summary( model2 )
l ogL ik ( model2 )
anova (model2 , t e s t=”F” )
hnp (model2 , print .on = T, pch=4, main=” (B) ␣Quasi−Poi s son :
exper iment ␣ I ” , cex =0.5 , cex . main=0.9 , pty= ’ s ’ ,
x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

# Nega t i ve b inomia l f i t
model3 <− glm . nb ( f1 , data=dados )
the tahat <− summary( model3 )$ the ta #t h e t a e s t ima t
anova (model3 , t e s t = ”F” )
hnp (model3 , print .on = T, pch=4, main=” (C) ␣Negat ive ␣ b inomia l :
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exper iment ␣ I ” , cex =0.5 , cex . main=0.9 , pty= ’ s ’ ,
x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

# Poisson−normal model
z <− factor ( c ( rep ( 1 : 2 8 , each =5)))
id <− factor ( 1 :nrow( numbereggs ) )
modelPN <− glmer (NO ~ b lock + t r t + (1 | id ) ,

family = poisson , data = numbereggs )
summary(modelPN)
anova (modelPN , t e s t = ”F” )
l ogL ik (modelPN)
getME(modelPN , ” the ta ” )^2 # Normal va r i ance parameter
hnp (modelPN , pa in t . out = T, print .on = T)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
modelPN1 <− glmer (NO ~ b lock + t r t + (1 | z ) ,

family = poisson , data = numbereggs )
l ogL ik (modelPN1 )
hnp (modelPN1 , pa in t . out = T, print .on = T)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
modelPN2 <− glmer (NO ~ b lock + (1 | id ) + ( 1 | z ) ,

family = poisson , data = numbereggs )
summary(modelPN2 )
anova (modelPN2 , t e s t = ”F” )
l ogL ik (modelPN2 )
getME(modelPN2 , ” the ta ” )^2 # Normal va r i ance parameter
hnp (modelPN2 , pa in t . out = T, print .on = T)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Negat ive −binomia l −normal model ( combined approach )
modelCB <− glmer . nb (NO ~ b lock + t r t + (1 | id ) , data = numbereggs ,

control=glmerContro l ( op t im i z e r = ’ bobyqa ’ ,
op tCt r l= l i s t (maxfun=600000)))

summary(modelCB)
l ogL ik (modelCB)

getME(modelCB , ” glmer . nb . the ta ” ) # Negat ive −b inomia l parameter
getME(modelCB , ” the ta ” )^2 # Normal va r i ance parameter

# Implementando hnp para o modelo b inomia l Nega t i vo .
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# Var iáve l r e s p o s t a : neggs
r e sp<−numbereggs$NO

dfun <− function ( obj ) resid ( obj , type=” dev iance ” )

s fun <− function (n , obj ) s imu la t e ( obj ) [ [ 1 ] ]

f f un <− function ( r e sp ) glmer . nb ( r e sp~ b lock + t r t+ ( 1 | id ) ,
data=numbereggs , control=glmerContro l ( op t im i z e r= ’ bobyqa ’
, op tCt r l= l i s t (maxfun=600000)))

#hnp
set . s eed (1618)
hnp (modelCB , con f = 0 . 9 5 , newc la s s = TRUE, verb . sim = T,

d iag fun = dfun , s imfun = sfun ,
f i t f u n = f fun , print = TRUE, print .on = T,
pch=4, main=” (E) ␣Negative−binomial−normal : ␣ exper iment ␣ I ” ,
cex =.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
modelCB1 <− glmer . nb (NO ~ b lock + t r t + (1 | z ) , data = numbereggs ,

control=glmerContro l ( op t im i z e r = ’ bobyqa ’ ,
op tCt r l= l i s t (maxfun=600000)))

summary(modelCB1 )
l ogL ik (modelCB1 )

getME(modelCB1 , ” glmer . nb . the ta ” ) # Negat ive −b inomia l parameter
getME(modelCB1 , ” the ta ” )^2 # Normal va r i ance parameter

# Implementando hnp para o modelo b inomia l Nega t i vo .
# Var i áv e l r e s p o s t a : neggs
r e sp<−numbereggs$NO

dfun <− function ( obj ) resid ( obj , type=” dev iance ” )

s fun <− function (n , obj ) s imu la t e ( obj ) [ [ 1 ] ]
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f f un <− function ( r e sp ) glmer . nb ( r e sp~ b lock + t r t+ ( 1 | z ) ,
data=numbereggs , control=glmerContro l ( op t im i z e r= ’ bobyqa ’
, op tCt r l= l i s t (maxfun=600000)))

#hnp
set . s eed (1618)
hnp (modelCB1 , con f = 0 . 9 5 , newc la s s = TRUE, verb . sim = T,

d iag fun = dfun , s imfun = sfun , f i t f u n = f fun , print = TRUE)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
modelCB2 <− glmer . nb (NO ~ b lock + t r t + (1 | id ) + (1 | z ) ,
data = numbereggs )
summary(modelCB2 )
l ogL ik (modelCB2 )

getME(modelCB2 , ” glmer . nb . the ta ” ) # Negat ive −b inomia l parameter
getME(modelCB2 , ” the ta ” )^2 # Normal va r i ance parameter

r e sp<−numbereggs$NO

dfun <− function ( obj ) resid ( obj , type=” dev iance ” )

s fun <− function (n , obj ) s imu la t e ( obj ) [ [ 1 ] ]

f f un <− function ( r e sp ) glmer . nb ( r e sp~ b lock + t r t + ( 1 | z ) + (1 | id ) ,
data=numbereggs , control=glmerContro l ( op t im i z e r= ’ bobyqa ’
, op tCt r l= l i s t (maxfun=600000)))

#hnp
set . s eed (1618)
hnp (modelCB2 , con f = 0 . 9 5 , newc la s s = TRUE, verb . sim = T,

d iag fun = dfun , s imfun = sfun , f i t f u n = f fun , print = TRUE,
print .on = T, pch=4, main=” (E) ␣Negative−binomial−normal :

␣␣␣␣ exper iment ␣ I ” , cex =.5 , cex . main=0.9 , pty= ’ s ’ ,
l ab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Empir ica l g roup ing − Visua l i n s p e c t i o
p r ed i t o <− predict (model2 , type = ” re spons e ” )
media <− tapply ( p red i to , dados$ i s o l , mean)
med . ord <− sort ( media )
par (mar = c ( 6 . 5 , 6 . 5 , 2 , 1) + 0 . 1 )
bpp <− barplot (med . ord , b e s i d e=TRUE, border = ” b lack ” ,

yl im = c ( 0 , 6 0 ) ,
col = ” l i g h t g r a y ” ,
x lab = ” i s o l a t e s ” ,
y lab = ” Pred i c t ed ␣ va lu e s ␣ o f ␣number␣ o f ␣ eggs ␣␣” ,
main = ”Experiment ␣ I ” , l a s =2)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 1
dados$grouping1 <− dados$ i s o l
l eve l s ( dados$grouping1 )
l eve l s ( dados$grouping1 ) <− c ( 8 , 9 , 6 , 6 , 4 , 7 , 4 , 6 , 1 , 8 , 6 , 6 , 4 , 7 , 5 , 2 ,
6 , 5 , 6 , 6 , 6 , 4 , 6 , 7 , 3 , 1 0 , 8 , 9 )

#model f i t t e d wi th f a c t o r group ing 1 i n s t e a d o f fung
model5 <− glm( neggs ~ b lock + grouping1 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model5 , model2 , t e s t = ”F” )

# The model5 i s s e l e c t e d , because p>0.05 , t h e i s o l a t e s w i t h i n
#the groups do not d i f f e r s t a t i s t i c a l l y .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 2
dados$grouping2 <− dados$ i s o l
l eve l s ( dados$grouping2 )
l eve l s ( dados$grouping2 ) <− c ( 8 , 9 , 6 , 6 , 4 , 7 , 4 , 6 , 1 , 8 , 6 , 6 , 4 , 7 ,
5 , 1 , 6 , 5 , 6 , 6 , 6 , 4 , 6 , 7 , 3 , 1 0 , 8 , 9 )
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#model f i t t e d wi th f a c t o r group ing 2 i n s t e a d o f fung
model6 <− glm( neggs ~ b lock + grouping2 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model6 , model2 , t e s t = ”F” )
anova (model6 , model5 , t e s t = ”F” )

# The model6 i s s e l e c t e d , because p>0.05 ,
the i s o l a t e s c o n t r e l does not d i f f e r #from i s o l a t e s in group2
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 3
dados$grouping3 <− dados$ i s o l
l eve l s ( dados$grouping3 )
l eve l s ( dados$grouping3 ) <− c ( 8 , 9 , 6 , 6 , 4 , 7 , 4 , 6 , 1 , 8 , 6 , 6 , 4 , 7 , 5 , 1
, 6 , 5 , 6 , 6 , 6 , 4 , 6 , 7 , 1 , 1 0 , 8 , 9 )

#model f i t t e d wi th f a c t o r group ing 3 i n s t e a d o f fung
model7 <− glm( neggs ~ b lock + grouping3 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model7 , model2 , t e s t = ”F” )
anova (model7 , model5 , t e s t = ”F” )
anova (model7 , model6 , t e s t = ”F” )

# The model6 i s s e l e c t e d , because p<0.05 , t h e i s o l a t e s
control , Nemix and 1306 #d i f f e r s from i s o l e t e s in group3 .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 4
dados$grouping4 <− dados$ i s o l
l eve l s ( dados$grouping4 )
l eve l s ( dados$grouping4 ) <− c ( 8 , 9 , 6 , 6 , 4 , 7 , 4 , 6 , 1 , 8 , 6 , 6 , 4 , 7 , 4 ,
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1 , 6 , 4 , 6 , 6 , 6 , 4 , 6 , 7 , 1 , 1 0 , 8 , 9 )

#model f i t t e d wi th f a c t o r group ing 4 i n s t e a d o f fung
model8 <− glm( neggs ~ b lock + grouping4 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT

anova (model8 , model2 , t e s t = ”F” )
anova (model8 , model5 , t e s t = ”F” )
anova (model8 , model6 , t e s t = ”F” )
anova (model8 , model7 , t e s t = ”F” )

# The model8 i s s e l e c t e d , because p>0.05 , t h e i s o l a t e s 1296 ,
PL63 and 1629 #does not d i f f e r s from i s o l e t e s in group2
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 5
dados$grouping5 <− dados$ i s o l
l eve l s ( dados$grouping5 )
l eve l s ( dados$grouping5 ) <− c ( 7 , 9 , 6 , 6 , 4 , 7 , 4 , 6 , 1 , 7 , 6 , 6 , 4 , 6 , 4 , 1 ,
4 , 4 , 6 , 6 , 6 , 4 , 6 , 7 , 1 , 1 0 , 7 , 9 )

#model f i t t e d wi th f a c t o r group ing 5 i n s t e a d o f fung
model9 <− glm( neggs ~ b lock + grouping5 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model9 , model2 , t e s t = ”F” )
anova (model9 , model5 , t e s t = ”F” )
anova (model9 , model6 , t e s t = ”F” )
anova (model9 , model7 , t e s t = ”F” )
anova (model9 , model7 , t e s t = ”F” )
anova (model9 , model8 , t e s t = ”F” )
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# The model8 i s s e l e c t e d , because p>0.05 , t h e i s o l a t e s
1 in group5 # does not d i f f e r s from i s o l e t e s in group4
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 6
dados$grouping6 <− dados$ i s o l
l eve l s ( dados$grouping6 )
l eve l s ( dados$grouping6 ) <− c ( 7 , 9 , 6 , 6 , 4 , 7 , 4 , 6 , 1 , 7 , 6 , 6 , 4 , 6 , 4 , 1 ,
4 , 4 , 6 , 6 , 6 , 4 , 6 , 7 , 1 , 9 , 7 , 9 )

#model f i t t e d wi th f a c t o r group ing 6 i n s t e a d o f fung
model10 <− glm( neggs ~ b lock + grouping6 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova ( model10 , model2 , t e s t = ”F” )
anova ( model10 , model5 , t e s t = ”F” )
anova ( model10 , model6 , t e s t = ”F” )
anova ( model10 , model7 , t e s t = ”F” )
anova ( model10 , model8 , t e s t = ”F” )
anova ( model10 , model9 , t e s t = ”F” )

# The model10 i s s e l e c t e d , because p>0.05 , t h e i s o l a t e s in group4
# d i f f e r s from i s o l e t e s in group6
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 7
dados$grouping7 <− dados$ i s o l
l eve l s ( dados$grouping7 )
l eve l s ( dados$grouping7 )<− c ( 7 , 9 , 6 , 6 , 4 , 7 , 4 , 6 , 4 , 7 , 6 , 6 , 4 , 6 , 4 , 4 ,
4 , 4 , 6 , 6 , 6 , 4 , 6 , 7 , 4 , 9 , 7 , 9 )

#model f i t t e d wi th f a c t o r group ing 7 i n s t e a d o f fung
model11 <− glm( neggs ~ b lock + grouping7 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
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# LRT
anova ( model11 , model2 , t e s t = ”F” )
anova ( model11 , model5 , t e s t = ”F” )
anova ( model11 , model6 , t e s t = ”F” )
anova ( model11 , model7 , t e s t = ”F” )
anova ( model11 , model8 , t e s t = ”F” )
anova ( model11 , model9 , t e s t = ”F” )
anova ( model11 , model10 , t e s t = ”F” )

# The model10 i s s e l e c t e d , because p<0.05 , t h e i s o l a t e s in group6
# d i f f e r s from i s o l e t e s in group7
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 8
dados$grouping8 <− dados$ i s o l
l eve l s ( dados$grouping8 )
l eve l s ( dados$grouping8 ) <− c ( 7 , 9 , 6 , 6 , 6 , 7 , 6 , 6 , 6 , 7 , 6 , 6 , 6 , 6 , 6 , 6 ,
6 , 6 , 6 , 6 , 6 , 6 , 6 , 7 , 6 , 9 , 7 , 9 )

#model f i t t e d wi th f a c t o r group ing 6 i n s t e a d o f fung
model12 <− glm( neggs ~ b lock + grouping8 , family=quas ipo i s s on ,
data = dados )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova ( model12 , model2 , t e s t = ”F” )
anova ( model12 , model5 , t e s t = ”F” )
anova ( model12 , model6 , t e s t = ”F” )
anova ( model12 , model7 , t e s t = ”F” )
anova ( model12 , model8 , t e s t = ”F” )
anova ( model12 , model9 , t e s t = ”F” )
anova ( model12 , model10 , t e s t = ”F” )
anova ( model12 , model11 , t e s t = ”F” )
# The model10 i s s e l e c t e d , because p>0.05 , t h e i s o l a t e s in group4
# does not d i f f e r s from i s o l e t e s in group6
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
hnp (model11 , print .on = T, pch=4, main=” (A) ␣Quasi−Poi s son : ␣ exper iment ␣ I ” ,

cex =.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )



68

l ibrary ( emmeans )
medias <− emmeans : : emmeans (model2 , ~ i s o l ,

type=” re spons e ” )
medias <− data . frame ( medias )
colnames ( medias ) [ 2 ] <−”media ”
medias [ 1 : 3 ]

#Graf i co s imp l e s dos e f e i t o s
l ibrary ( e f f ec t s )
e f f ec t s : : e f f e c t ( ” i s o l ” , model2 )
#p l o t ( e f f e c t s : : e f f e c t (” i s o l ” , model2 ) )
#####
l ibrary ( ggp lo t2 )
#10 grup
ggp l o t ( medias , ae s ( x=r e o rd e r ( i s o l , media ) , y=media ))+

geom_col ( f i l l = c ( 1 1 , 9 , 3 , 3 , 5 , 8 , 5 , 3 , 1 , 1 1 ,
3 , 3 , 5 , 8 , 7 , 2 , 3 , 7 , 3 , 3 ,
3 , 5 , 3 , 8 , 6 , 4 , 11 , 9 ) )+

geom_e r r o r b a r ( aes ( ymin = asymp .LCL, ymax = asymp .UCL) ,
width = 0 . 09 , s i z e = 0.3)+

g g t i t l e ( ”Experiment ␣ I ”)+
scale_y_cont inuous (

breaks = seq ( 0 , 70 , 5 ) ,
labels = seq ( 0 , 70 , 5))+

geom_po in t ( shape = 20 ,
s i z e = 3) +

theme_t e s t ( base_s i z e =12 , base_family = ” s e r i f ”)+
theme ( axis . t i t l e . y = element_text (margin = margin ( t = 0 ,
r = 5 , b = 5 , l = 0)))+
theme ( axis . t i t l e = element_text ( f a c e = ” bold ” ) ,

axis . text . x = element_text ( ang l e = 90 , v j u s t = . 7 ,
c o l o r = ” b lack ” , s i z e = 8) ,
axis . text . y = element_text ( c o l o r = ” b lack ” ) ,
panel . spac ing = un i t (0 , ”cm”))+

ylab ( ”Number␣ o f ␣ eggs ”)+ xlab ( ” I s o l a t e s ” )

#grup
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ggp l o t ( medias , ae s ( x=r e o rd e r ( i s o l , media ) , y=media ))+
geom_col ( f i l l = c ( 8 , 4 , 5 , 5 , 2 , 8 , 2 , 5 , 2 , 8 ,

5 , 5 , 2 , 5 , 2 , 2 , 5 , 2 , 5 , 5 ,
5 , 2 , 5 , 8 , 2 , 4 , 8 , 4 ) )+

geom_e r r o r b a r ( aes ( ymin = asymp .LCL, ymax = asymp .UCL) ,
width = 0 . 09 , s i z e = 0.3)+

g g t i t l e ( ”Experiment ␣ I ”)+
scale_y_cont inuous (

breaks = seq ( 0 , 70 , 5 ) ,
labels = seq ( 0 , 70 , 5))+

geom_po in t ( shape = 20 ,
s i z e = 3) +

theme_t e s t ( base_s i z e =12 , base_family = ” s e r i f ”)+
theme ( axis . t i t l e . y = element_text (margin = margin ( t = 0 ,
r = 5 , b = 5 , l = 0)))+
theme ( axis . t i t l e = element_text ( f a c e = ” bold ” ) ,

axis . text . x = element_text ( ang l e = 90 , v j u s t = . 7 ,
c o l o r = ” b lack ” , s i z e = 8) ,
axis . text . y = element_text ( c o l o r = ” b lack ” )
,panel . spac ing = un i t (0 , ”cm”))+

ylab ( ”Number␣ o f ␣ eggs ”)+ xlab ( ” I s o l a t e s ” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p r ed i t o <− predict (model2 , type = ” re spons e ” )
#res i duo<−r e s i d u a l s ( model2 , t ype = ” dev iance ”)
AIC<−AIC(model2 )
media<−tapply ( p red i to , data$ i s o l ,mean)
var<−tapply ( p red i to , data$ i s o l , var )
sd<−tapply ( p red i to , data$ i s o l , sd )
med . ord<−sort ( media )
media<−tapply (data$neggs , data$ i s o l ,mean)
med . ord<−sort ( media )
bpp <− barplot (med . ord , b e s i d e=TRUE, border = ” b lack ” ,

col = ” l i g h t g r a y ” ,
x lab = ” i s o l a t e s ” ,
y lab = ”Deviance ␣ r e s i d u a l s ␣␣” ,
main = ”Experiment ␣ I ” , l a s =2)
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#Plotando os dados b r u t o s e a curva esperada
#p l o t ( p r e d i t o ~ res iduo , data=data , x l a b =”Deviance r e s i d u a l s ” ,
ylab=” p r ed i c t ed ␣ va lu e s ” )
#curve ( exp ( co e f ( model2 ) [1 ]+ coe f ( model2 ) [ 2 ] ∗x ) , add=T)

bpp <− barplot (med . ord , b e s i d e=TRUE, border = ” b lack ” ,
col = ” l i g h t g r a y ” ,
x lab = ” i s o l a t e s ” ,
y lab = ”Deviance ␣ r e s i d u a l s ␣␣” ,
main = ”Experiment ␣ I ” , l a s =2)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l ibrary ( ggp lo t2 )
l ibrary ( ggpubr )
l ibrary ( f a c t o e x t r a )
data1<−data . frame (media , medias$SE)
n . c l u s t e r<−f v i z_nbc lu s t ( scale ( data1 ) , kmeans , method = ”wss ” )
n . c l u s t e r

# Compute k−means wi th k = 10
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =10 , n s t a r t = 100)
print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
km. c l u s t e r s<−r e s .km$ c l u s t e r
r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )
#Creat ing the f a c t o r group ing 1
dados$grouping1 <− dados$ i s o l
l eve l s ( dados$grouping1 )
l eve l s ( dados$grouping1 )<−c ( 2 , 1 0 , 8 , 8 , 1 , 4 , 1 , 8 , 7 , 9 , 5 , 8
, 1 , 5 , 6 , 7 , 8 , 6 , 8 , 8 , 8 , 1 , 8 , 4 , 7 , 3 , 2 , 1 0 )

#model f i t t e d wi th f a c t o r group ing 1 i n s t e a d o f fung
model3 <− glm( neggs ~ b lock + grouping1 , family=quas ipo i s s on ,
data = dados )
summary( model3 )
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
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anova (model3 , model2 , t e s t = ”F” )

#g e t dev iance f o r model
−2∗ l o gL ik ( model2 )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Compute k−means wi th k = 9
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =9, n s t a r t = 100)
print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
data . labels = data$ i s o l
km. c l u s t e r s<−r e s .km$ c l u s t e r
r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )

#Creat ing the f a c t o r group ing 2
dados$grouping2 <− dados$ i s o l
l eve l s ( dados$grouping2 )
l eve l s ( dados$grouping2 )<−c ( 2 , 1 0 , 8 , 8 , 1 , 4 , 1 , 8 , 7 , 2 , 5 , 8 ,
1 , 5 , 6 , 7 , 8 , 6 , 8 , 8 , 8 , 1 , 8 , 4 , 7 , 3 , 2 , 1 0 )

#model f i t t e d wi th f a c t o r group ing 1 i n s t e a d o f fung
model4 <− glm( neggs ~ b lock + grouping2 , family=quas ipo i s s on ,
data = dados )

#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model4 , model2 , t e s t = ”F” )
anova (model4 , model3 , t e s t = ”F” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Compute k−means wi th k = 8
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =8, n s t a r t = 100)
print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
data . labels = data$ i s o l
km. c l u s t e r s<−r e s .km$ c l u s t e r
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r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )

#Creat ing the f a c t o r group ing 3
dados$grouping3 <− dados$ i s o l
l eve l s ( dados$grouping3 )
l eve l s ( dados$grouping3 )<−c ( 2 , 1 0 , 8 , 8 , 1 , 4 , 1 , 8 , 7 , 2 , 5 , 8 , 1 , 5 ,
1 , 7 , 8 , 1 , 8 , 8 , 8 , 1 , 8 , 4 , 7 , 3 , 2 , 1 0 )

#model f i t t e d wi th f a c t o r group ing 1 i n s t e a d o f fung
model5 <− glm( neggs ~ b lock + grouping3 , family=quas ipo i s s on ,
data = dados )

#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model5 , model2 , t e s t = ”F” )
anova (model5 , model3 , t e s t = ”F” )
anova (model5 , model4 , t e s t = ”F” )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Compute k−means wi th k = 7
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =7, n s t a r t = 100)
print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
data . labels = data$ i s o l
km. c l u s t e r s<−r e s .km$ c l u s t e r
r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )

#Creat ing the f a c t o r group ing 4
dados$grouping4 <− dados$ i s o l
l eve l s ( dados$grouping4 )
l eve l s ( dados$grouping4 )<−c ( 2 , 1 0 , 8 , 8 , 1 , 4 , 1 , 8 , 7 , 2 , 8 ,
8 , 1 , 8 , 1 , 7 , 8 , 1 , 8 , 8 , 8 , 1 , 8 , 4 , 7 , 3 , 2 , 1 0 )

#model f i t t e d wi th f a c t o r group ing 1 i n s t e a d o f fung
model6 <− glm( neggs ~ b lock + grouping4 , family=quas ipo i s s on ,
data = dados )
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#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model6 , model2 , t e s t = ”F” )
anova (model6 , model3 , t e s t = ”F” )
anova (model6 , model4 , t e s t = ”F” )
anova (model6 , model5 , t e s t = ”F” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Compute k−means wi th k = 6
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =6, n s t a r t = 100)
print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
data . labels = data$ i s o l
km. c l u s t e r s<−r e s .km$ c l u s t e r
r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )

#Creat ing the f a c t o r group ing 5
dados$grouping5 <− dados$ i s o l
l eve l s ( dados$grouping5 )
l eve l s ( dados$grouping5 )<−c ( 2 , 1 0 , 8 , 8 , 1 , 2 , 1 , 8 , 7 , 2 , 8 , 8 , 1 ,
8 , 1 , 7 , 8 , 1 , 8 , 8 , 8 , 1 , 8 , 2 , 7 , 3 , 2 , 1 0 )

#model f i t t e d wi th f a c t o r group ing 5 i n s t e a d o f fung
model7 <− glm( neggs ~ b lock + grouping5 , family=quas ipo i s s on ,
data = dados )

#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model7 , model2 , t e s t = ”F” )
anova (model7 , model3 , t e s t = ”F” )
anova (model7 , model4 , t e s t = ”F” )
anova (model7 , model5 , t e s t = ”F” )
anova (model7 , model6 , t e s t = ”F” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Compute k−means wi th k = 5
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =5, n s t a r t = 100)
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print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
data . labels = data$ i s o l
km. c l u s t e r s<−r e s .km$ c l u s t e r
r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )

#Creat ing the f a c t o r group ing 6
dados$grouping6 <− dados$ i s o l
l eve l s ( dados$grouping6 )
l eve l s ( dados$grouping6 )<−c ( 2 , 1 0 , 8 , 8 , 1 , 2 , 1 , 8 , 1 , 2 , 8
, 8 , 1 , 8 , 8 , 1 , 8 , 8 , 8 , 8 , 8 , 1 , 8 , 2 , 1 , 3 , 2 , 1 0 )

#model f i t t e d wi th f a c t o r group ing 5 i n s t e a d o f fung
model8 <− glm( neggs ~ b lock + grouping6 , family=quas ipo i s s on ,
data = dados )

#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model8 , model2 , t e s t = ”F” )
anova (model8 , model3 , t e s t = ”F” )
anova (model8 , model4 , t e s t = ”F” )
anova (model8 , model5 , t e s t = ”F” )
anova (model8 , model6 , t e s t = ”F” )
anova (model8 , model7 , t e s t = ”F” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Compute k−means wi th k = 4
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =4, n s t a r t = 100)
print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
data . labels = data$ i s o l
km. c l u s t e r s<−r e s .km$ c l u s t e r
r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )

#Creat ing the f a c t o r group ing 7
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dados$grouping7 <− dados$ i s o l
l eve l s ( dados$grouping7 )
l eve l s ( dados$grouping7 )<−c ( 2 , 1 0 , 8 , 8 , 1 , 2 , 1 , 8 , 1 , 2 , 8 , 8 , 1
, 8 , 8 , 1 , 8 , 8 , 8 , 8 , 8 , 1 , 8 , 2 , 1 , 1 0 , 2 , 1 0 )

#model f i t t e d wi th f a c t o r group ing 5 i n s t e a d o f fung
model9 <− glm( neggs ~ b lock + grouping7 , family=quas ipo i s s on ,
data = dados )

#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova (model9 , model2 , t e s t = ”F” )
anova (model9 , model3 , t e s t = ”F” )
anova (model9 , model4 , t e s t = ”F” )
anova (model9 , model5 , t e s t = ”F” )
anova (model9 , model6 , t e s t = ”F” )
anova (model9 , model7 , t e s t = ”F” )
anova (model9 , model8 , t e s t = ”F” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Compute k−means wi th k = 3
r e s .km <− kmeans ( scale ( data1 ) , c e n t e r s =3, n s t a r t = 100)
print ( r e s .km)

# V i s u a l i z e t he c l u s t e r i n g a l g o r i t hm r e s u l t s .
data . labels = data$ i s o l
km. c l u s t e r s<−r e s .km$ c l u s t e r
r e s .km$ s i z e
f v i z_c l u s t e r ( l i s t (data=scale ( data1 ) , c l u s t e r = km. c l u s t e r s ) )

#Creat ing the f a c t o r group ing 8
dados$grouping8 <− dados$ i s o l
l eve l s ( dados$grouping8 )
l eve l s ( dados$grouping8 )<−c ( 2 , 2 , 8 , 8 , 1 , 8 , 1 , 8 , 1 , 2 , 8 ,
8 , 1 , 8 , 1 , 1 , 8 , 1 , 8 , 8 , 8 , 1 , 8 , 8 , 1 , 2 , 2 , 2 )

#model f i t t e d wi th f a c t o r group ing 5 i n s t e a d o f fung
model10 <− glm( neggs ~ b lock + grouping8 , family=quas ipo i s s on ,
data = dados )
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#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
anova ( model10 , model2 , t e s t = ”F” )
anova ( model10 , model3 , t e s t = ”F” )
anova ( model10 , model4 , t e s t = ”F” )
anova ( model10 , model5 , t e s t = ”F” )
anova ( model10 , model6 , t e s t = ”F” )
anova ( model10 , model7 , t e s t = ”F” )
anova ( model10 , model8 , t e s t = ”F” )
anova ( model10 , model9 , t e s t = ”F” )

hnp (model8 , print .on = T, pch= 4 , main = ” (A) ␣Quasi−Poi s son :
exper iment ␣ I ” , cex =.5 , cex . main=.9 , pty=” s ” , x lab = ”Half−nomal␣ s c o r e s ” ,
y lab = ”Deviance ␣ r e r i d u a l s ” )

Apêndice II: computational routines

We carried out all programming in R For Poisson, Quasi-Poisson, negative bino-
mial, Zero-inflated Poisson and Zero-inflated negative binimial models the following codes
were used for number of flowers for experiment I:

source ( ” he lp e r01_gene ra l −f un c t i o n s .R” )
source ( ” he lp e r02_l a t t i c e −pane l s .R” )

# Pred i c t o r
f 1 <− NF ~ b lock + t r t + days
f 2 <− NF ~ b lock + t r t + days + I ( days ^2)
f 3 <− NF ~ b lock + t r t ∗ ( days + I ( days ^2))
f 4 <− NF ~ b lock + t r t ∗ ( days + I ( days ^2) + I ( days ^3))
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Poisson
modeloPO <− glm( f1 , family = poisson , data = f l owe r )
modelo1PO <− glm( f2 , family = poisson , data = f l owe r )
modelo2PO <− glm( f3 , family = poisson , data = f l owe r )
modelo3PO <− glm( f4 , family = poisson , data = f l owe r )
sum( resid (modelo1PO , ty=” pearson ” )^2)
sum( resid (modelo2PO , ty=” pearson ” )^2)
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summary(modelo2PO)
anova (modelo2PO , t e s t = ”Chisq ” )

par (mfrow=c ( 2 , 2 ) )
hnp (modeloPO , pa in t . out = T, print .on = T, pch=4,

main = ” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo1PO , pa in t . out = T, print .on = T, pch=4,
main = ” (b ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo2PO , pa in t . out = T, print .on = T, pch=4,
main = ” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo3PO , pa in t . out = T, print .on = T, pch=4,
main = ” (d ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Quasi−Poisson
modeloQP <− glm( f1 , family = quas ipo i s s on , data = f l owe r )
modelo1QP <− glm( f2 , family = quas ipo i s s on , data = f l owe r )
modelo2QP <− glm( f3 , family = quas ipo i s s on , data = f l owe r )
modelo3QP <− glm( f4 , family = quas ipo i s s on , data = f l owe r )
#( ph i <− 2442.468/ )

par (mfrow=c ( 2 , 2 ) )
hnp (modeloQP , pa in t . out = T, print .on = T, pch=4,

main=” ( a ) ␣Quasi−Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo1QP , pa in t . out = T, print .on = T, pch=4,
main=” (b ) ␣Quasi−Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo2QP , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣Quasi−Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo3QP , pa in t . out = T, print .on = T, pch=4,
main=” (d ) ␣Quasi−Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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# n e g a t i v e b inomia l
modeloBN <− glm . nb ( f1 , data = f l owe r )
modelo1BN <− glm . nb ( f2 , data = f l owe r )
modelo2BN <− glm . nb ( f3 , data = f l owe r )
modelo3BN <− glm . nb ( f4 , data = f l owe r )
the tahat <− summary(modelo2BN)$ the ta
the tahat
par (mfrow=c ( 2 , 2 ) )
hnp (modeloBN , pa in t . out = T, print .on = T, pch=4,

main=” ( a ) ␣Negat ive ␣Binomial ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo1BN , pa in t . out = T, print .on = T, pch=4,
main=”␣Negat ive ␣Binomial ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo2BN , pa in t . out = T, print .on = T, pch=4,
main=”␣ ( a ) ␣Negat ive ␣Binomial ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modelo3BN , pa in t . out = T, print .on = T, pch=4,
main=”␣Negat ive ␣Binomial ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Zero−i n f l a t e d Poisson

l ibrary ( hnp )
require ( p s c l )
modeloPO . z1 <− z e r o i n f l ( NF ~ b lock + t r t + days | t r t + days ,
data = f l owe r )
modeloPO . z2 <− z e r o i n f l ( NF ~ b lock + t r t + days + I ( days ^2 ) | t r t
+ days + I ( days ^2) , data = f l owe r )
modeloPO . z3 <− z e r o i n f l (NF ~ b lock + t r t ∗ ( days + I ( days ^ 2 ) ) |
t r t ∗ ( days + I ( days ^2) ) , data = f l owe r )
modeloPO . z4 <− z e r o i n f l (NF ~ b lock + t r t ∗ ( days + I ( days ^2) +
I ( days ^ 3 ) ) | t r t ∗ ( days + I ( days ^2) + I ( days ^3) ) , data = f l owe r )
modeloPO . z5 <− z e r o i n f l (NF ~ b lock + t r t +(days + I ( days ^2) +
I ( days ^ 3 ) ) | t r t +(days + I ( days ^2) + I ( days ^3) ) , data = f l owe r )

summary(modeloPO . z1 )
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summary(modeloPO . z3 )

par (mfrow=c ( 2 , 2 ) )
hnp (modeloPO . z1 , pa in t . out = T, print .on = T, pch=4,

main=” ( a ) ␣Zero−i n f l a t e d −Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 ,
cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloPO . z2 , pa in t . out = T, print .on = T, pch=4,
main=”␣Zero−i n f l a t e d −Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 ,
cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloPO . z3 , pa in t . out = T, print .on = T, pch=4,
main=”␣ ( a ) ␣Zero−i n f l a t e d −Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 ,
cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloPO . z4 , pa in t . out = T, print .on = T, pch=4,
main=”␣Zero−i n f l a t e d −Poi s son ; ␣ exper iment ␣ I ” , cex =0.5 ,
cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloPO . z5 , pa in t . out = T, print .on = T, pch=4,
main=”␣Zero−i n f l a t e d −Poi s son ; ␣ exper iment ␣ I I ” , cex =0.5 ,
cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
modeloNB . z1 <− z e r o i n f l (NF ~ b lock + t r t + days | t r t + days ,
data = f l owe r s , d i s t = ” negbin ” )
modeloNB . z2<− z e r o i n f l (NF ~ b lock + t r t + days + I ( days ^2 ) | t r t +
days + I ( days ^2) , data = f l owe r s , d i s t = ” negbin ” )
modeloNB . z3 <− z e r o i n f l (NF ~ b lock + t r t ∗ ( days + I ( days ^ 2 ) ) | t r t
+(days + I ( days ^2) ) , data = f l owe r s , d i s t = ” negbin ” )
modeloNB . z4 <− z e r o i n f l (NF ~ b lock + t r t ∗ ( days + I ( days ^2) +
I ( days ^ 3 ) ) | t r t ∗ ( days + I ( days ^2) + I ( days ^3) ) , data = f l owe r s ,
d i s t = ” negbin ” )
modeloNB . z5 <− z e r o i n f l (NF ~ b lock + t r t+ days + I ( days ^2) +
I ( days ^3 ) | t r t + days + I ( days ^2) + I ( days ^3) , data = f l owe r s ,
d i s t = ” negbin ” )
summary(modeloNB . z5 )
summary(modeloNB . z4 )
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par (mfrow=c ( 2 , 2 ) )
hnp (modeloNB . z1 , pa in t . out = T, print .on = T, pch=4,

main=” ( a ) ␣Zero−i n f l a t e d −Neg␣Binomial ; ␣ exper iment ␣ I I ” ,
cex =0.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloNB . z2 , pa in t . out = T, print .on = T, pch=4,
main=” (b ) ␣Zero−i n f l a t e d −Neg␣Binomial ; ␣ exper iment ␣ I I ” ,
cex =0.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloNB . z3 , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣Zero−i n f l a t e d −Neg␣Binomial ; ␣ exper iment ␣ I ” ,
cex =0.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloNB . z4 , pa in t . out = T, print .on = T, pch=4,
main=” (d ) ␣Zero−i n f l a t e d −Neg␣Binomial ; ␣ exper iment ␣ I I ” ,
cex =0.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

hnp (modeloNB . z5 , pa in t . out = T, print .on = T, pch=4,
main=” ( e ) ␣Zero−i n f l a t e d −Neg␣Binomial ; ␣ exper iment ␣ I I ” ,
cex =0.5 , cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p r ed i t o <− predict (modeloNB . z3 , type = ” re spons e ” )
media <− tapply ( p red i to , f l ow e r s $ t r t , mean)
med . ord <− sort ( media )
par (mar = c ( 6 . 5 , 6 . 5 , 2 , 1) + 0 . 1 )
bpp <− barplot (med . ord , b e s i d e=TRUE, border = ” b lack ” ,

yl im = c ( 0 , 3 . 5 ) ,
col = ” l i g h t g r a y ” ,
x lab = ” i s o l a t e s ” ,
y lab = ” Pred i c t ed ␣ va lu e s ␣ o f ␣number␣ o f ␣ f l ow e r s ␣␣” ,
main = ”Experiment ␣ I ” , l a s =2)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 1
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f l ow e r s $grouping1 <− f l ow e r s $ t r t
l eve l s ( f l ow e r s $grouping1 )
l eve l s ( f l ow e r s $grouping1 )<−c ( 5 , 2 , 8 , 5 , 5 , 7 , 2 , 3 , 5 , 1 , 4 , 5 , 4 , 4 , 5 , 7 ,
2 , 5 , 6 , 3 , 6 , 2 , 3 , 3 , 4 , 4 , 5 , 3 )

#model f i t t e d wi th f a c t o r group ing 1 i n s t e a d o f fung
modeloNBG . z2 <− z e r o i n f l (NF ~ b lock + grouping1 + t r t +
( days + I ( days ^ 2 ) ) | t r t +(days+I ( days ^2) ) ,

d i s t = ” negbin ” , data = f l ow e r s )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
l ibrary ( lmte s t )
l r t e s t ( modeloNBG . z2 , modeloNB . z2 )

# The model5 i s s e l e c t e d , because p>0.05 , t h e i s o l a t e s w i t h i n
#the groups do not d i f f e r s t a t i s t i c a l l y .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 2
f l ow e r s $grouping2 <− f l ow e r s $ t r t
l eve l s ( f l ow e r s $grouping2 )
l eve l s ( f l ow e r s $grouping2 )<−c ( 5 , 2 , 8 , 5 , 5 , 7 , 2 , 3 , 5 , 2 , 4 , 5 , 4 , 4 , 5 , 7 ,
2 , 5 , 6 , 3 , 6 , 2 , 3 , 3 , 4 , 4 , 5 , 3 )

#model f i t t e d wi th f a c t o r group ing 2 i n s t e a d o f fung
modeloNBG . z3 <− z e r o i n f l (NF ~ b lock + grouping2 + t r t +
( days + I ( days ^ 2 ) ) | t r t +(days + I ( days ^2)) ,
d i s t = ” negbin ” , data = f l ow e r s )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
l r t e s t (modeloNBG . z3 , modeloNBG . z2 )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Creat ing the f a c t o r group ing 3
f l ow e r s $grouping3 <− f l ow e r s $ t r t
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l eve l s ( f l ow e r s $grouping3 )
l eve l s ( f l ow e r s $grouping3 )<−c ( 5 , 2 , 8 , 5 , 5 , 7 , 2 , 4 , 5 , 2 , 4 , 5 , 4 , 4 , 5 , 7 , 2
, 5 , 6 , 4 , 6 , 2 , 4 , 2 , 4 , 4 , 5 , 4 )

modeloNBG . z4 <− z e r o i n f l (NF ~ b lock + grouping3 +
t r t + ( days + I ( days ^ 2 ) ) | t r t +(days + I ( days ^2)) ,
d i s t = ” negbin ” , data = f l ow e r s )
#
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
l r t e s t (modeloNBG . z4 , modeloNBG . z3 )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Compute k−means wi th k = 5

#Creat ing the f a c t o r group ing 4
f l ow e r s $grouping4 <− f l ow e r s $ t r t
l eve l s ( f l ow e r s $grouping4 )
l eve l s ( f l ow e r s $grouping4 )<−c ( 5 , 2 , 8 , 5 , 5 , 7 , 2 , 4 , 5 , 2 , 4 , 5 , 4 , 4 , 5 , 7 ,
2 , 5 , 5 , 4 , 5 , 2 , 4 , 2 , 4 , 4 , 5 , 4 )

#model f i t t e d wi th f a c t o r group ing 4 i n s t e a d o f fung
modeloNBG . z5 <− z e r o i n f l (NF ~ b lock + grouping4 + t r t +
( days + I ( days ^ 2 ) ) | t r t +(days + I ( days ^2)) ,
d i s t = ” negbin ” , data = f l ow e r s )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
wa ld t e s t (modeloNBG . z6 , modeloNBG . z3 , t e s t = ”F” )
l r t e s t (modeloNBG . z5 , modeloNBG . z4 )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 4
f l ow e r s $grouping5 <− f l ow e r s $ t r t
l eve l s ( f l ow e r s $grouping5 )
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l eve l s ( f l ow e r s $grouping5 )<−c ( 5 , 2 , 8 , 5 , 5 , 7 , 2 , 4 , 5 , 2 , 4 , 5 , 4 , 4 , 5 , 7 , 2 ,
5 , 5 , 4 , 5 , 2 , 4 , 2 , 4 , 4 , 5 , 4 )

#model f i t t e d wi th f a c t o r group ing 4 i n s t e a d o f fung
modeloNBG . z6 <− z e r o i n f l (NF ~ b lock + grouping5 + t r t +
( days + I ( days ^ 2 ) ) | t r t +(days + I ( days ^2)) ,
d i s t = ” negbin ” , data = f l ow e r s )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
l r t e s t (modeloNBG . z6 , modeloNBG . z5 )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Creat ing the f a c t o r group ing 4
f l ow e r s $grouping6 <− f l ow e r s $ t r t
l eve l s ( f l ow e r s $grouping6 )
l eve l s ( f l ow e r s $grouping6 )<−c ( 5 , 2 , 8 , 5 , 5 , 7 , 2 , 5 , 5 , 2 , 5 , 5 , 5 , 5 , 5 , 7 , 2 ,
5 , 5 , 5 , 5 , 2 , 5 , 2 , 5 , 5 , 5 , 5 )

#model f i t t e d wi th f a c t o r group ing 4 i n s t e a d o f fung
modeloNBG . z7 <− z e r o i n f l (NF ~ b lock + grouping6 + t r t +
( days + I ( days ^ 2 ) ) | t r t +(days + I ( days ^2)) ,
d i s t = ” negbin ” , data = f l ow e r s )
#

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Tes t ing group ing ( e q u a l i t y between i s o l a t e s o f t h e same group )
# LRT
l r t e s t (modeloNBG . z7 , modeloNBG . z6 )

Apêndice III: computational routines

We carried out all programming in R For Poisson, Quasi-Poisson, negative bino-
mial, and COM-Poisson models the following codes were used for number of leaves for
experiment I:
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source ( ” he lp e r01_gene ra l −f un c t i o n s .R” )
source ( ” he lp e r02_l a t t i c e −pane l s .R” )

# Pred i c t o r
f 1 <− NF ~ b lock + t r t + days
f 2 <− NF ~ b lock + t r t + days + I ( days ^2)
f 3 <− NF ~ b lock + t r t ∗ ( days + I ( days ^2))
f 4 <− NF ~ b lock + t r t ∗ ( days + I ( days ^2) + I ( days ^3))

# Poisson
modeloPO <− glm( f1 , family = poisson , data = l e a v e s )
modelo1PO <− glm( f2 , family = poisson , data = l e a v e s )
modelo2PO <− glm( f3 , family = poisson , data = l e a v e s )
modelo3PO <− glm( f4 , family = poisson , data = l e a v e s )
anova (modeloPO , modelo1PO , t e s t = ”Chisq ” )
anova (modeloPO , t e s t = ”Chisq ” )
summary(modeloPO)

par (mfrow=c ( 2 , 2 ) )
hnp (modeloPO , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo1PO , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo2PO , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo3PO , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

# Quasi−Poisson
modeloQP <− glm( f1 , family = quas ipo i s s on , data = l e a v e s )
modelo1QP <− glm( f2 , family = quas ipo i s s on , data = l e a v e s )
modelo2QP <− glm( f3 , family = quas ipo i s s on , data = l e a v e s )
modelo3QP <− glm( f4 , family = quas ipo i s s on , data = l e a v e s )
anova (modeloQP , modelo1QP , t e s t = ”F” )
anova (modeloQP , t e s t = ”F” )
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summary(modeloQP)

par (mfrow=c ( 2 , 2 ) )
hnp (modeloQP , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo1QP , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo2QP , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo3QP , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )

# n e g a t i v e b inomia l
modeloBN <− glm . nb ( f1 , data = l e a v e s )
modelo1BN <− glm . nb ( f2 , data = l e a v e s )
modelo2BN <− glm . nb ( f3 , data = l e a v e s )
modelo3BN <− glm . nb ( f4 , data = l e a v e s )
getAnova (modeloBN , modelo1BN)
anova (modeloBN , modelo1BN)
anova (modeloBN , t e s t = ”F” )
summary(modeloBN)

par (mfrow=c ( 2 , 2 ) )
hnp (modeloBN , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 ,
cex . main=0.9 , pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” ,
y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo1BN , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo2BN , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” , cex =0.5 , cex . main=0.9 ,
pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )
hnp (modelo3BN , pa in t . out = T, print .on = T, pch=4,
main=” ( a ) ␣ Po i s son ; ␣ exper iment ␣ I ” cex =0.5 , cex . main=0.9 ,
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pty= ’ s ’ , x lab=”Half−normal ␣ s c o r e s ” , y lab=”Deviance ␣ r e s i d u a l s ” )


