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RESUMO

Modelos estatísticos para o estudo de biotecnologias reprodutivas em bovinos

O advento das técnicas de inseminação artificial e fertilização in vitro possibili-
taram que o campo de melhoramento animal obtivesse um avanço nos resultados de prenhez.
Os dados utilizados nesse trabalho são referentes a transferência e viabilidade embrionária,
onde a natureza da variável de interesse são amostras binárias e de proporção, respectiva-
mente. Nesse contexto, o objetivo deste trabalho é desenvolver modelos capazes de acomodar
esses tipos de dados, e com isso avaliar as possíveis influências para cada um dos interesses,
fomentando o conhecimento no que tange a área de estatística, bem como a de melhoramento
animal. Para o desenvolvimento deste trabalho foram utilizados modelos lineares general-
izados mistos para avaliar os dados binários superdispersos, a fim de identificar quais os
fatores que influenciavam a uma transferência embrionária de sucesso. Um outro objetivo foi
verificar as condições que resultam em uma elevada taxa de viabilidade embrionária, para
isso, foram propostos os modelos combinados para acomodar os dados de proporção. Para
finalizar o trabalho foi proposta uma comparação entre de diferentes metodologias, as quais
utilizaram os dados binários a fim de verificar a performance entre modelos estatísticos com
aqueles propostos para o aprendizado de máquina.

Palavras-chave: Dados binários, Modelos combinados, Modelos lineares generalizados mis-
tos, Machine learning, Superdispersão, Classificação de prenhez, Random forest, Embrião
viável.
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ABSTRACT

Statistical models to study of reproductive biotechnology in cattle

The advent of artificial insemination and in vitro fertilization have made it possible
for the field of animal breeding to gain sizeable advances in pregnancy outcomes. The data
used in this work relates to embryo transfer and viability, where the nature of the variable
under study are, respectively, binary and proportion samples. In this context, the goal of
this work is to develop models capable of accommodating these kinds of data, and with
data evaluate the possible influences for each of the interests, advancing knowledge in the
field of statistics, as well as animal breeding. For the development of this work generalized
linear mixed-effects models to evaluate the overdispersed binary data, with the objective
of identifying which factors influenced a successful embryo transfer. Another goal was to
verify which conditions lead to a high embryo viability rate, for that, combined models were
proposed as a solution capable of accommodating the proportion data. Finally, in the last
chapter, we proposed a comparison between different methodologies, which used the binary
data with the objective of verifying the performance between statistical models with those
proposed for machine learning.

Keywords: Binary data, Combined models, Generalized linear mixed models, Machine
learning, Overdispersion, Pregnancy classification, Random forest, Viable embryo.
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1 INTRODUCTION

The reproductive efficiency in cattle ensures greater productivity and profitability for
the producer. This advance in the supply of products from the livestock is due to the development
of reproductive techniques, and animal breeding.

The techniques of production and embryo transfer have contributed to the reproductive
performance since it facilitates acceleration in the process of multiplication of animals of higher
zootechnical value. According with Barros et al. (1995), a bovine female shows approximately
a 21 day estrous cycle, that is, under ideal conditions, without the use of reproductive biotech-
niques, it would only be possible to produce one calf per year. Thus, superovulation is used
through the application of exogenous hormones to later perform the artificial insemination (AI),
and transfer them to the receiving females. One of the major obstacles to employment in the
larger volume of these techniques is the great variability of the response.

In this context, researchers are interested in the identification of animals with greater
genetic potential, as well as in the main factors that influence the multiplication process.

Studies show that there is growing concern about statistical modeling, since one must
consider the nature of the variable of interest, whether continuous or discrete. Among the great
variety of models, Nelder e Wedderburn (1972) proposed the Generalized Linear Models (GLMs)
that associate to the response variable to a probability distribution since this can be written in
the form of the exponential family.

By combining GLMs with random effects in the linear predictor, we have the Mixed
Generalized Linear Models (GLMMs). Developed by Lindsay (1986); Breslow e Clayton (1993),
the theory allows describing several sources of variation, caused by the inclusion of unobserved
latent variables, which are responsible for the excess variability. In addition, it allows accommo-
dating dependency structures between observations. However, when constructing models based
on this methodology, some constraints are imposed, such as correctly specifying the response
variable, defining the components of the model, and including random effects and covariance
structures appropriately.

In practice, for data that involve response variable in the form of proportions or counts,
the inclusion of random effects will not always be sufficient, since they may be overdispersed, that
is, the variability of the data is greater than expected by the specified model. It is necessary
in this case to use models whose structure makes it possible to add an extra variation. The
implication of data adjustments in which overdispersion is not considered is the overestimation
of the deviance associated with the terms of the model and the underestimation of the standard
errors of the parameter estimates, which will consequently promote erroneous interpretations of
the significance of the effects, inducing in this case, the incorrect selection of models (Hinde e
Demétrio, 1998; Moral et al., 2017).

In this context, in order to accommodate this extra variability, Hinde e Demétrio (1998)
incorporated a dispersion parameter into the variance function. Later, Molenberghs et al. (2007,
2010) would combine the GLMMs with those models that consider the phenomenon of overdis-
persion.

There also exist in the literature other techniques which have been found to successful
model binary data, the machine learning algorithms, which have found a vast array of appli-
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cations in the discipline which came to be known as data science. This approach has found
broad acceptance in industry, and powers much of the analytical capabilities behind common
technologies such as search engines (Mahesh, 2020).

In the existing literature, no applications of these methodologies to bovine reproduc-
tion data were found. Thus, the objectives of the work were to study and propose models,
which could be used to solve problems related to production and embryo transfer data, such
as, overdispersion and correlation structures. In Chapter 2, the case study was related to the
embryo transfer, being proposed the Bernoulli distribution, with the response variable corre-
sponding to the receiving cow’s pregnancy diagnosis, being of the binary type, and analyzed via
hierarchical models. In Chapter 3, the embryo production data set was used, with the response
variable rate of embryonic viability, which was modeled considering the binomial distribution
using the methodology of the combined models. In Chapter 4, we proposed a comparison be-
tween different methodologies, such as classical statistics and those applied in data science, such
as machine learning algorithms. Finally, in Chapter 5 we have the final considerations obtained
in this study and future perspectives to the research.
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2 HIERARCHICAL MODEL APPLIED TO EMBRYO TRANSFER DATA

Abstract

In 2021, there were more than 1.5 million embryo transfers (ET) recorded worldwide.
The main goal of any embryo program is to obtain a pregnancy and consequently a live calf and
there are many variables that can affect the results. Embryo transfer studies are usually not
planned experiments but observational data which are very unbalanced and heterogeneous. The
pregnancy outcome is a binary response of either a success or a failure. Data cases of this nature
often present a typical case of variance much greater than that specified by the model, charac-
terized as overdispersion. The limitations in the statistical analyses of binary data were solved
with the emergence of Generalized Linear Models, which enriched expressively, with respect to
flexibility regarding classification, and choice of models for the response variable. A parametric
alternative in these situations is to adopt the methodology of the Mixed Generalized Linear
Models, which allows to include one or more random effect terms in the linear predictor. In this
study, the Bernoulli-logistic-normal model was applied to embryo transfer data, with pregnancy
outcome being the interest of this study. The results show that the approach proposed in rela-
tion to conventional models was able to capture the Bernoulli model’s lack of fit and possible
sources of dispersion present in the data set. In addition, it helped in understanding the factors
that may influence ET pregnancy outcomes.

keywords: Bernoulli Distribution; Generalized Linear Mixed Model; Pregnancy Classification.

2.1 Introduction

Embryo production has proven to be a powerful technology for bovine genetic improve-
ment, primarily to propagate the genes of females with superior genetic values and lineage. In
2021, there were more than 1.5 million embryo transfers (ET) recorded worldwide (Viana, 2022).
The main goal of any embryo program is to obtain a pregnancy and consequently a live calf.
There are many variables that can possibly affect pregnancy outcomes such as embryo stage
of development, embryo quality, embryo transfer practitioner, season, type of semen (conven-
tional or sex sorted), donor dam and sires, recipient status, and possibly genomic values of the
donor, sire and recipients such as fertility index (FI), daughter pregnancy rate (DPR) and total
performance index (TPI) (Hansen, 2020).

Embryo transfer studies are usually not planned experiments but observational data
which are very unbalanced and heterogeneous. An important step of the data analysis is the data
cleaning which consists in the process of identifying, formatting, parsing and fixing or removing
data from a dataset to improve data quality by eliminating wrongful or inaccurate information
(Wickham, 2014). It is the process of structuring data in such a way that makes it easy to
inspect, visualize or analyze it. The data is checked for completeness, and any abnormal data
is considered unknown. An important point to be highlighted is that the statistician should
always work with the data collector to find mistakes in the data set and also to understand the
factors that have relevance in the analysis.
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The pregnancy outcome is a binary response of either a success (1) or a failure (0).
A critical analysis of the pregnancy data depends on an adequate statistical analysis for better
interpretation of the data, taking into account the variables that can possibly affect pregnancy.
The use of the traditional statistical analysis, ANOVA, does not apply to the study of the
pregnancy data, since the data usually do not follow a normal distribution.

A Bernoulli regression model, a particular case of the generalized linear models (GLMs)
(McCullagh e Nelder, 1989), provides a standard framework for the analysis of binary data.
However, a common problem is the potential of overdispersion that occurs when the data display
more variability than is predicted by the variance-mean relationship for the assumed model.
Also, in this type of study it is very common to have a mixture of crossed and hierarchical data,
given that different sires can be mated with different dams and/or some common ones. This
will bring different types of correlation between the embryos, for example, embryos generated
with the semen of a bull with oocytes of a dam will be more correlated than embryos generated
with the semen of a bull with oocytes of different dams. The possible correlation between
measurements resulted from the clustering is often accommodated through the inclusion of
subject-specific, random effects (Molenberghs et al., 2007, 2010, 2017).

The structures of correlations between individuals and/or variability greater than that
specified by the assumed distribution for the variable of interest, should be considered in the
model, being necessary the addition of one or more random effects in the linear predictor,
characterizing the Mixed Generalized Linear Models.

If overdispersion and/or correlation are not taken into account all model selection cri-
teria would generally be expected to perform poorly and a model with too many parameters is
likely to be selected. The estimates of the parameters of the model and its standard errors will
be incorrect and we may incorrectly assess significance of individual parameters.

The aim of this paper is to propose models that best fit ET observational data with a
binary response, and describe ways to analyze these types of data with the goal of identifying
which factors influence the ET pregnancy outcome.

In this work we review and compare methods for analyzing binary data with particular
focus on potential applications in agricultural research. In subsection 2.2.1 provides a motivation
data set. In subsection 3.2.3 and subsection 2.2.3 presents some models used for the analysis of
binary data, and discusses model selection and diagnostics. The motivation data set is analyzed
and discussed in section 2.3. Some general considerations are presented in section 2.4. The
scripts developed in the software R (R Core Team, 2018) are presented in the Appendix.

2.2 Material and Method

2.2.1 Case Study: Embryo Transfer Data

To better understand the effects that influence ET pregnancy outcomes, data was
collected from 2015 to 2019 at RuAnn and Maddox Dairy Farms in Riverdale, California, USA,
that milks approximately 4500 lactating Holstein cows and have been doing ET to multiply their
best females since 1982. After cleaning up the initial data for typing errors that could influence
analysis results, a total of 5108 fresh or frozen in vivo derived embryos (IVD) were transferred
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to heifers or lactating cow recipients. It consisted of 4070 recipients, 386 donor cows, 176 sires,
940 different donor-sire combinations. The embryos were transferred by different experienced
practitioners (TECH: T1 (2659), T2 (730), T3 (650), T4 (786), T5 (72), T6 (202)). The response
variable was Pregnancy Diagnosis (PD: 0 - Open (1955), 1 - Pregnant (3153)).

The dates of ET were recorded and divided by seasons of the year (Season: 1 - Sum-
mer (1158; July, August, September), 2 - Autumn (1240; October, November, December), 3 -
Winter (1411; January, February, March), 4 - Spring (1299; April, May, June),). The embryos
transferred were classified according to type (TEEF2: 1 - fresh grade 1, 2 - fresh grade 2, 3 -
frozen-thawed grade 1) and according to the stage of development (embryo_stage: 4 - morula, 5
- early blastocyst, 6 – blastocyst), as described by the International Embryo Technology Society
(Wright, 2001).

The donor cows were individually recorded and divided by status (TYPE: 1 – dry
cow (2703), 2 – heifer (323), 3 – lactating cows (2082)), total performance index (TPI_D) and
information of fertility index (FI_D) were recorded.

All donor sires were recorded and divided by type of semen (SEXED: 1 - not sexed
(4563) or 2 – sexed (545)) and information of fertility index (FI_S). The recipients were indi-
vidually recorded and divided by status (VH_LC: 1 – lactating cow (1314), 2 – heifer (3794))
and information of fertility index (FI_R), total performance index (TPI_R) and daughter preg-
nancy rate (DPR_R) was recorded. The side of corpus luteum (CL) on ET day (CL_side: 1 –
left (2137) or 2 - right(2971)) and the number of days after estrus (DFE: 6, 7, 8, 9 days) were
also recorded.

Initially, we carried out an exploratory data analysis (Tukey et al., 1977), by using
several graphical representations, to gain further insight into the available data and identify
any hidden patterns, trends, and relationships in data before developing statistical methods for
hypothesis testing (confirmatory data analysis).

All the transferred embryos were IVD. The recipients were observed daily for sponta-
neous estrus and received an embryo 6 to 9 days after estrus in the uterine horn ipsilateral to
the CL. Pregnancy diagnosis was conducted by rectal palpation 26 to 40 days after ET (33 to
40 days after estrus).

2.2.2 Statistical Approach

The pregnancy outcome is a binary response of either a success (1) or a failure (0). A
Bernoulli regression model provides a standard framework for the analysis of binary data and is
a particular case of the generalized linear models (McCullagh e Nelder, 1989)

Generalized linear models

Generalized Linear Models involve three components (Nelder e Wedderburn, 1972):

i) A random component, represented by the independent random variables Yi, i = 1, · · · , n,,
which have the same distribution belonging to the exponential family in canonical form,
given by

fY (yi; θi, ϕ) = exp{ϕ−1[yiθi − b(θi)] + c(yi, ϕ)}, (2.1)
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where ϕ > 0 is a constant dispersion parameter, θi is the canonical parameter, b(.) and
c(., .) are known functions. The mean and variance are, respectively, E(Yi) = µi = b′(θi)

and Var(Yi) = ϕb′′(θi) = ϕV(µi), with V(µi) = dµi/dθi called the variance function.

ii) A systematic component represented by the explanatory variables, x1, · · · , xn, included in
the form of a linear sum of the effects as a linear predictor

ηi =

P∑
j=1

xijβj = xTi β i = 1, . . . , n,

or,

η = Xβ,

where η is the vector of linear predictors, X the design matrix of the model (n× p) and β
is the vector (p× 1) of parameters to be estimated.

iii) A link function relating the mean to the linear predictor,

g(µi) = ηi,

where g(·) is a real function, monotonous and differentiable (McCullagh e Nelder, 1989).

Therefore, to fit a GLM it is necessary to choose a distribution for the response variable,
the matrix to represent the linear predictor of the model, and a link function.

The estimation of the parameter vector β is by maximum likelihood, and based on a
Fisher scoring algorithm (Nelder e Wedderburn, 1972) results in an iteratively weighted least
squares algorithm and at convergence

β̂ = (XTWX)−1XTWz,

where X is the design matrix of the model, W is a diagonal matrix with elements Wi =
1

V (µi)[g′(µi)]2
, g′(µi) = dg(µi)

dµi
and z is the adjusted response variable with zi = ηi+ g

′(µi)(yi−µi).
The estimates minimize the deviance function given by

Sp = 2(ℓ̂n − ℓ̂p) = ϕ−1Dp (2.2)

= 2ϕ−1
n∑

i=1

[yi(θ̃i − θ̂i) + b(θ̂i)− b(θ̃i)],

where Sp is the scaled deviance, Dp is the deviance; ℓ̂n and ℓ̂p are the maximum of the logarithm
of the likelihood function for the saturated and under study models, respectively and θ̂i and
θ̃i are the maximum likelihood estimates of the canonical parameter, under the saturated and
reduced models. It is a goodness of fit measure of the distance between the observed and fitted
values in units of log-likelihood.

Another goodness of fit measure is generalized Pearson’s statistic X2 defined by

X2
p =

n∑
i=1

(yi − µ̂i)
2

V (µ̂i)
, (2.3)
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where V (µ̂i) is the estimated variance function for the distribution under study (McCullagh e
Nelder, 1989).

When the dispersion parameter ϕ is known, the scaled deviance and the statistic X2
p/ϕ,

follow, asymptotically, a χ2 distribution with (n − p) degrees of freedom. Furthermore, as the
sample size increases, the generalized Pearson statistic converges more quickly to the reference
distribution. However, in practice, in general, deviance and X2 are much greater than the one
specified by the model and can be evidence of overdispersion. Using an inadequate model that
does not account for overdispersion may lead to make overly precise inferences and predictions,
as certainly standard errors will be incorrect and may be seriously underestimated. When
ϕ is unknown there is no formal test for checking the adequacy of the model, which can be
investigated using residuals analysis (Jørgensen, 2002).

2.2.3 Statistical Approach: Data Modelling

Binary data

Let’s assume that the random variables Yi represent an individual binary outcome,
pregnant or open. The basic probability model for the random variable Yi is the Bernoulli
distribution, Bern(πi); it has a probability mass function given by

P (Yi = yi) = πyii (1− πi)
1−yi , i = 1, . . . , n,

where πi is the probability of a successful pregnancy and yi = 0 (open) or yi = 1 (pregnant).
The mean and variance are, respectively, E(Yi) = πi Var(Yi) = πi(1 − πi). Then, a generalized
linear model allows us to model the probability of success in terms of the exploratory variables
xi through

ηi = g(πi) = xTi β, i = 1, . . . , n,

where g is some suitable link function and β is a vector of p unknown parameters. For the
canonical logit link function

ηi = log πi
1− πi

.

For Bernoulli data there is no overall goodness-of-fit test and assessments of model
adequacy can only be made by fitting extended models or by grouping data (Hinde e Demétrio,
1998).

Proportion data

If we have replicate binary variables for each distinct covariate, the individual binary
responses can be grouped to give number of successes out of number of trials and treated as
binomial. Let’s assume that the random variables Yi represent numbers of pregnancies out of
samples of size mi, i = 1, . . . , n. The standard probability model for the random variable Yi is
the Binomial distribution, Yi ∼ Bin(mi, πi), B(mi, πi); it has a probability mass function given
by

P (Yi = yi) =

(
mi

yi

)
πyii (mi − πi)

mi−yi , i = 1, . . . , n,
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where πi is the probability of a successful pregnancy and yi = 0, 1, . . . ,mi. The mean and
variance are, respectively, E(Yi) = miπi and Var(Yi) = miπi(1− πi). The probability of success
can be modelled in terms of the exploratory variables xi through

ηi = log πi
1− πi

= xTi β, i = 1, . . . , n.

For binomial distribution, ϕ = 1, and subject to certain asymptotic conditions, for a
well fitting model we would expect, in an exploratory way, that the deviance, SP = Dp, and the
statistic X2

p to be approximately equal to the residual degrees of freedom.

Overdispersion for binary and proportion data

Overdispersion can arise in various ways, typically through some failure of the basic
model assumptions. The assumptions for the binomial model are independence of observations
and constant probability of success. If one or both of these assumptions failure the variance of the
data will be greater than the variance expected using the binomial model, Var(Yi) > miπi(1−πi),
resulting in overdispersion.

It can be caused by the variability of the experimental material, poor specification of
the linear predictor, excess of zeros, omitted variables in the linear predictor, correlation between
individual responses and cluster sampling, that makes the probability of success not constant
for all observations (Hinde e Demétrio, 1998). In general, it is difficult to infer the precise cause,
or underlying process, leading to overdispersion.

Many different specific models can arise from alternative possible mechanisms for the
underlying process. The simplest way to accommodate overdispersion is to assume some more
general form for the variance function, possibly including additional parameters, leading to the
quasi-binomial model.

Assuming now that the pregnancies are not happening independently or are at some
varying underlying rate (e.g. differences in fertility of the females), contributing additional vari-
ability to the recorded observations, e.g. a two-stage model could be assumed for the response,
that is, the response variable follows a binomial distribution, Yi|Pi ∼ B(mi;Pi), and the parame-
ter itself has a beta distribution Pi ∼ Beta(αi, βi) resulting in a beta-binomial model. The mean
and variance of Yi are, respectively, E(Yi) = miπi and Var(Yi) = miπi(1 − πi)[1 + ϕ(mi − 1)]

(Hinde e Demétrio, 1998).

Generalized linear mixed model

Since we may think that there is a combination of many unexplained sources affecting
the success of a pregnancy we can include a normal random effect at observation level, Ui ∼
N(0, σ2u), in the linear predictor,

ηi = xTi β + ui, i = 1, . . . , n, (2.4)

where Ui is a random effect with variance σ2u and β are the fixed effects, resulting the binomial-
normal model, an example of a generalized linear mixed model (GLMM), allowing to get a
measure of intraclass correlation.
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Another reason for extending the Bernoulli/binomial model is because of the occurrence
of a hierarchical structure in the data caused by a clustering resulted from repeatedly measuring
the outcome on the same experimental unit (e.g. embryos obtained with semen from the same
sire or oocytes from the same cow). The possible correlation between measurements for the
same individual is often accommodated through the inclusion of subject-specific, random effects
(Verbeke e Molenberghs, 2000).

Let Y |u be a vector of n independent responses conditional on U = u with a distribution
that belongs to the exponential family expressed by Equation 2.1. The linear predictor now is

η = Xβ + Zu,

where β is a vector of unknown parameters, u is a vector of unobservable realizations of a
random variable U with U ∼ N(0, G), X and Z are design matrices for the fixed and random
effects.

For the particular case of a binary response variable, we have the Bernoulli-logistic-
normal model defined by

Yij |ui ∼ Bernoulli(πij),

πij =
exp(xTi β + zTi u)

1 + exp(xTi β + zTi u)
, (2.5)

U ∼ N(0, G),

where Yij , is the j-th measurement (j = 1, · · ·, ni) of the i-th cluster (i = 1, · · ·, N).

Combined model

Additionally, overdispersion and correlation between observations may occur simulta-
neously, and models accommodating them at once are less than common. Molenberghs et al.
(2007, 2010) propose a generalized linear model, accommodating overdispersion and clustering
through two separate sets of random effects.

Considering the particular case of proportion data, we assume n independent responses
Yij conditional on the random effects θij and ui, with j-th cluster measurement (j = 1, · · ·, ni)
of the i-th observation (i = 1, · · ·, N), with a binomial distribution and a logistic link. Then

Yi|bi, θij ∼ Binomial(θijkij),

kij =
exp(xTi β + zTi ui)

1 + exp(xTi β + zTi ui)
,

Ui ∼ N(0, G) and θij = Beta(αij , βij).

where Yij , is the j-th measurement (j = 1, ···, ni) of the i-th cluster (i = 1, ···, N), β is a vector of
fixed effect parameters, xTi and zTi are the i-th lines of the fixed and effects design matrices, u is
the vector of random effects, where u ∼ N(0, G), G is the variance-covariance matrix (McCulloch
e Searle, 2001). The resulting model is a beta-binomial-normal model (Molenberghs et al., 2010).

Estimation of the parameters

The estimation of the fixed parameter vector β, and the components of variance of
the matrix G, is done by maximizing the marginal likelihood function, which is obtained by
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integrating the likelihood function with respect to the random effects (Molenberghs et al., 2007,
2010).

All analyses were implemented in the software R (R Core Team, 2018). The parameter
estimates were obtained by maximum likelihood, using the Gauss-Hermite adaptive quadrature
algorithm, implemented in the glmer function of the package lme4 (Bates et al., 2015).

Goodness of fit and diagnostics

After fitting a model to a data set, in addition to the global goodness-of-fit, it is useful
to use some diagnostic plots to detect specific aspects of possible model failure. Typical plots are
the dispersion plots of fitted versus observed values, Pearson or deviance residuals versus fitted
values among others. To check that the residuals are consistent with the variation implied by the
model, an approach is to use the half normal plot with simulated envelope which is implemented
in the hnp package (de Andrade Moral et al., 2017).

Model selection - Inference for components of variance

To test random terms, useful asymptotic test is the likelihood-ratio test (LR) that are
based on comparing the values of likelihood functions of two nested models, having the same
set of fixed-effect parameters, but different sets of covariance parameters. The likelihood ratio
statistics is given by

LR = −2[logLik(reduced model) - logLik(complete model)].

where logLik is the logarithm of the likelihood function.
When there is no parameter on the boundary of the parametric space, LR ∼ χ2

ν , where
ν is the difference in number of degrees of freedom between the two models. LR has a distribution
that is a mixture of χ2’s when there are parameters on the boundary of the parametric space
(Self e Liang, 1987). In the case of component of variance models with independence between
the random effects as in our case the mixture of χ2’s is given by

k′∑
m=0

2−k′
(
k′

m

)
χ2
m. (2.6)

Akaike (AIC) and Bayesian (BIC) Information Criteria are used when the two models
being compared are non-nested AIC (AKAIKE, 1973; Schwarz, 1978),

AIC = −2logLik+ 2p and BIC = −2logLik+ log(n)p.

where p is the number of fitted parameters and n is the number of observations.

Model selection - Inference for fixed effects

After choosing a model for random terms, to test for fixed effects we can use the
likelihood-ratio test (LR) that are based on comparing the values of likelihood functions of
two nested models, having the same set of random-effect parameters, but different sets of fixed
parameters.
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Akaike (AIC) and Bayesian (BIC) Information Criteria can be used when the two
models being compared are non-nested (AKAIKE, 1973; Schwarz, 1978).

To help with the selection of a model the drop1 function from stats package computes
all the single terms in the scope argument that can be added to or dropped from the model, fit
those models and compute a table of the changes in fit. It gives a comparison of models based on
the AIC criterion and when using the option test=“F” adds a “type II ANOVA” (using Anova
function from the car package). The hierarchy is respected when considering terms to be added
or dropped: all main effects contained in a second-order interaction must remain, and so on.

2.3 Results and Discussion

2.3.1 Exploratory analysis

In order to understand the generating process of the data and to visualize possible
interactions between factors, before fitting models some descriptive analyses are presented. An
initial examination of the dispersion plots of pregnancy data (0/1) versus the fertility indices
(FI) of the donor cows, and recipient cows with a superimposed smooth curve Figure 2.1 shows
that there is some suggestion that only the extreme values of FI for the recipient cows can
affect the probability of success with a small difference for Heifer and lactating cow. The plot
is constructed using a simple loess, local polynomial, smooth. However, these plots do not take
into account the possible correlation between FI and other covariates.

Figure 2.1. Embryo Transfer Data: Pregnancy data (0/1) versus fertility index of the (A)
recipient (lactating cows and heifers) and (B) donor (dry cow, heifer, lactating cow) with super-
imposed smoother (–) and pregnancy estimated probability (–)

The plot of average pregnancy rates versus days after estrus, by embryo stage in Fig-
ure 2.2A, shows that ET 7 and 8 after estrus resulted in better pregnancy rates for the three
levels of the embryo stage, being better for blastocyst and worse for morula, while for on days
6 and 9 after estrus it is not so clear. The plot of average pregnancy rates versus days after
estrus, by type of embryo in Figure 2.2B, shows that embryo transfer on days 7 and 8 after
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estrus resulted in better pregnancy rates for the three levels of the type of embryo, being better
for fresh grade 1 and worse for fresh grade 2. No evidence of interaction between these factors
is seen in both plots.

Figure 2.2. Embryo Transfer Data: A) Average pregnancy rates versus days after estrus, by
embryo stage; B) Average pregnancy rates versus days after estrus, by type of embryo transfer

Bar plots for observed average pregnancy success rates for each level of the categorical
covariates (CL_side, TYPE, TEEF2, embryo_stage and DFE) are presented in Figure 2.3.

Figure 2.3. Embryo Transfer Data: Observed average pregnancy success rates for each level
of the categorical covariates

A boxplot of the frequency of the numbers of pregnant cows versus seasons of the year,
by pregnancy diagnosis (Figure 2.4A) and frequency of the number of pregnant cows versus
seasons of the year, by type of semen (Figure 2.4B), showed evidence of no differences in the
results for the periods of the year in which the transfers were made.
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Figure 2.4. Embryo Transfer Data: A) Frequency of numbers of pregnant cows versus seasons
of the year, by pregnancy diagnosis (PD); B) Frequency of the number of pregnant cows versus
seasons of the year, by type of semen

Simple and partial correlation coefficients between the FI, TPI and DPR of donor and
recipients are presented in Figure 2.5A suggest high association between FI and DPR, moderate
association between TPI and FI and DPI and FI, and very small association for those variables
between donor and recipient cows, as expected.

We have in Figure 2.5B approximate densities for the values of these fertility indexes
for donor and cows, showing a symmetric distribution. After the measure of the degree of
association between the covariates, it is observed in Figure 2.5C that there was no dependence
relationship between the indexes, this result was corroborated by Figure 2.5D, since there is no
evidence of a linear relationship between them. Positive high correlations between FI, DPR and
TPI to both recipient and donor cows are expected since DPR is part of the FI formula and FI
is included in the TPI formula (H.A, 2017).

Figure 2.5. Embryo Transfer Data: A) Simple (black) and partial correlations (red - negative
associations; blue - positive associations); B) Densities of the fertility indexes of the donor
and recipient cows, respectively; C) Residual plot between donor cow and recipient cow; D)
Dispersion plot between the fertility indexes of the recipient cow versus donor cow, and a linear
regression line based on the Gaussian model (gray). Values with (*) indicate that they were
tested at the 5% significance level
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2.3.2 Models

Let be Y a binary response variable classified by Preg (Y = 1) and Open (Y = 0). We
assume the Bernoulli distribution with probability π of a success (pregnancy) and the logit link
function.

For the first model (M1) we include in the linear predictor only the fixed effects (Season,
Tech: Technician, SEXED: Type of semen, Type: Type of donor cow, (VH_LC: Status of
the recipient cow, FI_D: Fertility index of the donor, FI_R: Fertility index of the recipient,
TEEF2: Type of embryo, Embryo_stage: stage of development de embryo, CL_side: Side
of corpus luteum on ET day, DFE: Number of days after estrus) and the some interactions
(between Season, VH_LC and TEEF2, between TEEF2, Embryo_stage and DFE). Then the
linear predictor can be expressed by

η = log π

1− π
= Season ∗VH_LC ∗ TEEF2+ CL_side

+ TEEF2 ∗ Embryo_stage ∗DFE+ Type

+ Sexed+ Tech+ FI_R+ FI_D (2.7)

There is a clear lack of fit of the Bernoulli model with the linear predictor (2.7), model
M1, as evidenced by the half normal plot of probability with simulation envelope half-normal
plot in Figure 2.6, where many of the deviance residuals are outside of the simulated binomial
envelope. A possible explanation may be due to the omitted variables in the linear predictor
since the random effects were not taken into account.

Figure 2.6. Embryo Transfer Data: Half-normal plots of deviance residuals with simulated
envelope for model M1

For the second model M2 we add in the linear predictor (2.7) of M1, the random normal
effects for donor cow (N(0, σ2d)), recipient cow (N(0, σ2r )) and for sire (N(0, σ2d)), recipient cow
(N(0, σ2s)), resulting a Bernoulli-normal model. Other submodels (M3 to M8), using the same
fixed effects in the linear predictor as in equation (2.7) but varying the included random effects
were fitted and the results are presented in Table 2.1.

From Table 2.1 we see that the -2loglik statistics has the smallest value for models M2
and M3, while the smallest AIC is for M6 and smallest BIC is for M1.
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Table 2.1. Results of fitting various models to the ET data, using the same fixed effects in the
linear predictor as in Equation 2.7 but varying the included random effects

Model Fixed Random -2loglik df AIC BIC
M1 eq (2.7) none 6616.823 5041 6750.823 7188.907
M2 eq (2.7) Donor, Recipient, Sire 6611.747 5038 6751.747 7209.447
M3 eq (2.7) Donor, Recipient 6611.747 5039 6749.747 7200.908
M4 eq (2.7) Donor, Sire 6613.140 5039 6751.140 7202.301
M5 eq (2.7) Recipient, Sire 6614.843 5039 6752.843 7204.004
M6 eq (2.7) Donor 6613.140 5040 6749.140 7193.763
M7 eq (2.7) Recipient 6614.844 5040 6750.844 7195.466
M8 eq (2.7) Sire 6616.823 5040 6752.823 7197.445

For comparing the models from Table 2.1 we obtained the differences of the values
of -2loglik for the nested models (Table 2.2) and used the likelihood ratio test for testing the
components of variance. To test just one component of variance (H0 : σ

2
1 = 0), we will compare

the calculated value with a mixture of chi-squares (see Equation 3.10) given by

1∑
m=0

2−1

(
1

m

)
χ2
m =

1

2
χ2
0 +

1

2
χ2
1 = 1.921

while for two components of variance (H0 : σ
2
1 = σ22 = 0), is

2∑
m=0

2−2

(
2

m

)
χ2
m =

1

4
χ2
0 +

1

2
χ2
1 +

1

4
χ2
2 = 3.419

and for three (H0 : σ
2
1 = σ22 = σ23 = 0), is

3∑
m=0

2−3

(
1

m

)
χ2
m =

1

8
χ2
0 +

3

8
χ2
1 +

3

8
χ2
2 +

1

8
χ2
3 = 4.664.

Table 2.2. Difference of values of -2loglik for the nested models from Table 2.1

M1 M2 M3 M4 M5
M2 5.076 (3)
M3 5.076 (2) 0.000 (1)
M4 3.683 (2) 1.393 (1)
M5 1.980 (2) 3.096 (1)
M6 3.683 (1) 1.393 (2) 1.393 (1) 0.000 (1)
M7 1.979 (1) 3.097 (2) 3.097 (1) 0.001 (1)
M8 0.000 (1) 5.076 (2) 3.683 (1) 1.980 (1)
Where (1), (2) and (3) are the number components of variance

The likelihood ratio test show that the best model is M6, the one with linear predictor
with Equation 2.7 added by the random effect for donor.

As a next step we tried to reduce the linear predictor for models M3, M6 and M7 testing
for the fixed effects. Using the Anova function from the car package, we can see, from Table 2.3,
that the effects of Season, Technician (TECH), type of semen (SEXED), status of the recipient
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cow (VH_LC), fertility index of donor cow (FI_D), and interactions were not significant. Then
the reduced linear predictor is given by

η = log π

1− π
= CL_side+ Type+ FI_R+ TEEF2

+ Embryo_stage+DFE. (2.8)

Using the drop1 function from stats package the reduced linear predictor is given by

η = log π

1− π
= CL_side+ Type+ FI_R. (2.9)

Table 2.3. Analysis of Deviance Table for the Models

M3 M6 M7
Source Df Pr(>Chisq) Pr(>Chisq) Pr(>Chisq)
Season 3 0.7093 0.6868 0.7799
Tech 5 0.1329 0.1376 0.1308
Sexed 1 0.5689 0.5577 0.5400
Type 2 0.0403 * 0.0390 * 0.0406 *
VH_LC 1 0.0548 0.0569 0.0556
FI_D 1 0.5715 0.5575 0.6676
FI_R 1 0.0205 * 0.0192 * 0.0199 *
TEEF2 2 0.0000 *** 0.0000 *** 0.0000 ***
Embryo_stage 2 0.0183 * 0.1627 0.0226 *
CL_side 1 0.0307 * 0.0303 * 0.0295 *
DFE 3 0.0000 *** 0.0000 * 0.0000 ***
Season:VH_LC:TEEF2 17 0.3899 0.3741 0.3759
TEEF2:Embryo_stage:DFE 27 0.6759 0.7923 0.7625
P-value significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’

Table 2.4 shows the values of -2loglik statistics, AIC and BIC, considering the reduced
linear predictors with Equation 2.8 and Equation 2.9, and different random effects.

Table 2.4. Results of fitting various models to the ET data, using different fixed effects in the
linear predictor and varying the included random effects

Model Fixed Random -2loglik df AIC BIC
M9 eq (2.8) none 6676.744 5096 6700.744 6779.207
M10 eq (2.8) Donor, Recipient 6672.193 5094 6700.193 6791.733
M11 eq (2.8) Donor 6672.995 5095 6698.995 6783.996
M12 eq (2.8) Recipient 6675.499 5095 6701.499 6786.500
M13 eq (2.9) none 6784.399 5103 6794.399 6827.092
M14 eq (2.9) Donor, Recipient 6779.558 5101 6793.558 6839.328
M15 eq (2.9) Donor 6780.369 5102 6792.369 6831.600
M16 eq (2.9) Recipient 6783.083 5102 6795.083 6834.314

For comparing the models from Table 2.4, we obtained the differences of the values of
-2loglik for the nested models (Table 2.5) and used the likelihood ratio test for testing the linear
predictors with Equation 2.8 versus Equation 2.9 and also to test the components of variance.
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Table 2.5. Difference of values of -2loglik for the nested models from Table 2.4

M9 M10 M11 M12 M13 M14
M10 4.551 (2)
M11 3.749 (1) 0.802 (1)
M12 1.245 (1) 3.306 (1)
M13 107.655 (7)
M14 107.365 (7) 4.841 (2)
M15 107.374 (7) 4.030 (1) 0.811 (1)
M16 107.584 (7) 1.316 (1) 3.525 (1)
Where (1), (2) and (7) are the number components of variance

The likelihood ratio tests show that the best model is M11, the one with linear predictor
with Equation 2.8 added by the random effect for donor cow, which also gives the smaller AIC
as shown in Table 2.4. The half-normal plot in Figure 2.7 shows evidence of an adequate model
with all of the observed deviance residuals lying within the simulated envelope.

Figure 2.7. Embryo Transfer Data: Half-normal plots of deviance residuals with simulated
envelope for model M11

2.3.3 Estimates

The chosen model M11 involves the response variable Y , that can assume the values 0
(Open) or 1 (Preg), that has a Bernoulli distribution with probability π of a success (pregnancy)
and the logit link function with the linear predictor

η = log π

1− π
= CL_side+ Type+ FI_R+ TEEF2

+ Embryo_stage+DFE+ Z (2.10)

where Z is the the random effect for donor cow, Z ∼ N(0, σ2d). The estimates for the parameters
for models M9, M10, M11 and M12 are presented in Table 2.6, in order to show the differences
in estimation between them. It is important to note that the coefficients with a positive sign
contribute to increase the chance of a pregnancy.
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Table 2.6. Parameters estimates with their respective standard errors (SE), and components
of variance

M9 M10 M11 M12
Param. Est. (SE) Est. (SE) Est. (SE) Est. (SE)
Intercept 0.2791 (0.0869)∗∗ 0.2833 (0.0932)∗∗ 0.2775 (0.0917)∗∗ 0.2861 (0.0890)∗∗

Type_H −0.2281 (0.1224) −0.2370 (0.1293) −0.2336 (0.1275) −0.2327 (0.1249)
Type_M 0.0323 (0.0612) 0.0343 (0.0665) 0.0327 (0.0657) −0.0344 (0.0624)
FI_R 0.0449 (0.0197)∗ 0.0459 (0.0202)∗ 0.0452 (0.0198)∗ 0.0456 (0.0201)∗

CL_side_R 0.1324 (0.0589)∗ 0.1348 (0.0604)∗ 0.1326 (0.0594)∗ 0.1350 (0.0602)∗

TEEF2_1 0.4292 (0.0759)∗∗∗ 0.4446 (0.0803)∗∗∗ 0.4362 (0.0786)∗∗∗ 0.4400 (0.0782)∗∗∗

TEEF2_2 −0.0343 (0.0851) −0.0373 (0.0885) −0.0377 (0.0872) −0.0338 (0.0869)
Emb_st_5 0.1705 (0.0714)∗ 0.1824 (0.0740)∗ 0.1815 (0.0729)∗ 0.1719 (0.0728)∗

Emb_st_6 0.3069 (0.1434)∗ 0.3255 (0.1480)∗ 0.3204 (0.1459)∗ 0.3135 (0.1461)∗

DFE_6 −0.3052 (0.0756)∗∗∗−0.3008 (0.0779)∗∗∗−0.2976 (0.0766)∗∗∗−0.3089 (0.0772)∗∗∗

DFE_8 −0.0419 (0.0699) −0.0397 (0.0721) −0.0398 (0.0711) −0.0416 (0.0713)
DFE_9 −0.5727 (0.1425)∗∗∗−0.5891 (0.1471)∗∗∗−0.5822 (0.1446)∗∗∗−0.5813 (0.1456)∗∗∗

AIC 6700.744 6700.193 6698.995 6701.499
-2loglik 6676.744 6672.193 6672.995 6675.499

σ2d − 0.0369 0.0383 −
σ2r − 0.0695 − 0.0863

Significance (∗∗∗p− value < 0.001,∗∗p− value < 0.01,∗p− value < 0.05);
σ2
d (donor_cow) and σ2

r (recipient)

The recipient fertility index was significant in model M11 from Table 2.6, confirming
what was seen in Figure 2.1 and the positive coefficient shows that as fertility index increases,
the chance of a positive result of pregnancy after ET increases.

Table 2.6 also shows evidence of significant differences in pregnancy rates for CL_side,
and embryo stage. Fresh grade 1 embryos have a higher chance of pregnancy success when
compared to grade 2 fresh or frozen. Embryos transferred 7 and 8 days after estrus have a
higher change of pregnancy success than those transferred 6 and 9 days.

2.4 Final remarks

Embryo transfer is a powerful technology for bovine genetic improvement, primarily to
propagate the genes of females with superior genetic values and lineage. Many variables can
affect pregnancy outcomes. High pregnancy rates can be achieved with good quality embryos,
transferred by an experienced embryo transfer technician, to well selected and managed recipients
7 or 8 days after estrus. Embryo transfer studies are usually not planned experiments but
observational data which are very unbalanced and heterogeneous.

The aim of this work was to analyze data from ET, in which the Preg (Y = 1) and
Open (Y = 0) outcomes described in subsection 2.2.1. Statistical analysis for binary data can
be performed using the Bernoulli distribution, which has the assumption of constant probability
of success, and is a particular case of a GLM (Nelder e Wedderburn, 1972).



27

The convenience of using GLMs does not necessarily imply goodness of fit. The model
M1 gave a lack of fit to the ET data, probably due to variables not included in the model, causing
erroneous interpretation. Moreover, the probability of success was not constant in this study,
since the occurrence of pregnancy is influenced by characteristics related both to the embryo
and the recipient cow, that is, some females are more likely to be pregnant than others.

Several models were fitted to the ET incorporating one or more random effects at the
levels of donor cow, recipient cow and sire in the linear predictor, to try to accommodate possible
sources of variation and correlation, with a Bernoulli-logistic-normal model being proposed. The
absence of significance in some covariates can be explained by the presence of multicollinearity
between them (Gujarati e Porter, 2011).

There is not a recipe for fitting statistical models for this type of dataset. Every dataset
presents its own peculiarities which may guide the statistical analyses one way or another.
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3 A NEW APPROACH TO EMBRYO VIABILITY DATA ANALYSIS USING
COMBINED MODELS

Abstract

Generalized Linear Models are extensively used to analyze proportion data. However,
correlation structures and the presence of overdispersion in the data cannot be accommodated
by the standard binomial model. Thus, extensions such as the Binomial-logistic-normal hier-
archical model and the combined Binomial-logistic-normal-beta model are used in this work to
take into account overdispersion and correlation. The motivation for this work was an embryo
production data for which the response variable of interest was the ratio of the number of viable
embryos by the of total embryos, defined as the embryo viability rate. The aim was to identify
the factors that influence the production of the viable embryo in vivo. The main results suggest
that the combined model gave the best fit, and was able to capture the extra variability and
correlation, satisfactorily.

Keywords: Binomial Distribution; Overdispersion; Viable Embryo.

3.1 Introduction

Superovulatory treatment is the crucial phase to the viability of the embryo production
in vivo technique, and embryo transfer (ET) (Bó e Mapletoft, 2013). This is characterized by the
intramuscular or subcutaneous application of decreasing doses of follicle stimulating hormone
(FSH) in the animal, being administered twice daily throughout the process (Laster, 1972).
Naturally, in a fertile bovine female, every 21 days, only one oocyte is released to fertilization,
that is, featuring low annual reproductive rate (Sartori et al., 2009). Thus, the main objective
of the superovulation technique is to increase the oocytes number. Consequently, the amount
of embryos that can be collected and transferred is also increased.

Although considerable progress has been made in reproductive efficiency of bovine fe-
males, and subsequently improved genetic utilization of the herd, most of the embryos produced,
later, will not be viable for the embryo transfer process. The probability of success for a viable
embryo is influenced by many factors related to the donor cow (reproductive history, fertility
index, somatic cell count and milk production) and the type of semen of the sire donor. More-
over, environmental factors also directly affect these reproductive traits, such as the seasons
of the year (Thatcher et al., 2001; Sartori et al., 2002a; Hansen, 2009; Wiltbank et al., 2006;
Andreu-Vázquez et al., 2012).

Given the number of factors involved, the unpredictability of the viable embryo numbers
is one of the main obstacles for the embryo transfer technique. However, it is still unknown how
each of these factors contributes to the variability observed in the response to the superovulation,
and in the production of embryos. Therefore, it is important the identification of which of these
effects are really contributing to provide information and make possible the increase in the
efficiency of the embryo production in vivo technique, and consequently in embryonic viability.

The binomial distribution, a member of the exponential family and a particular case of
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a generalized linear model (Nelder e Wedderburn, 1972), is a starting point for the analysis of
proportion data. For this very simple model we assume that events happen independently, singly,
and at random with some constant probability of success. However, the embryo proportions are
overdispersed, and the variability of the data is larger than the variability specified by the
binomial model (Hinde e Demétrio, 1998). The response variable number of viable embryos out
of a total number of embryos have two extra-variability sources, one caused by the heterogeneity
of the animals (overdispersion) and the other by the hierarchical structure caused by random
effects of donor and sire (correlation between observations) (Lindsay, 1986; Breslow e Clayton,
1993; Molenberghs et al., 2012).

Many different specific models for overdispersion can arise from alternative possible
mechanisms for the underlying process (Hinde e Demétrio, 1998). The simplest way is to assume
some more general form for the variance function, possibly including additional parameters,
leading to the quasi-binomial model. Another way is to assume a two-stage model for the
response, that is, to assume that the basic response model parameter itself has some distribution
having as a typical example the beta-binomial model. An alternative model arises from the
inclusion of random effects in the linear predictor of the model as the Binomial-normal model
an example of a generalized linear mixed model (GLMM), allowing to get a measure of intraclass
correlation.

Furthermore, overdispersion and correlation between observations may occur simulta-
neously, and models accommodating them at once are less than common. A combined model
can be used to accommodate overdispersion and clustering through two separate sets of random
effects, of gamma and normal type, respectively (Molenberghs et al., 2007, 2010).

The aim of this paper is to propose models that best fit to the embryonic viability
rate with a binomial response, and describe ways to analyze these type of data with the goal of
identifying which factors influence the viability of embryos.

In this work we review and compare methods for analyzing proportion data with par-
ticular focus on potential applications in agricultural research. In subsection 3.2.1 we provide a
motivation data set. In subsection 3.2.3 we present some models used for the analysis of pro-
portion data, while subsection 3.2.4 discusses model selection and diagnostics. The motivation
data set is analyzed in section 2.3. Some general considerations are presented in section 2.4.
The scripts developed in the software R (R Core Team, 2018) are presented in the Appendix.

3.2 Material and Methods

3.2.1 Case Study: Embryo Production Data

To better understand the genetic indexes effect, obtained by genomic evaluation, and
other possible factors that interfere on the viable embryo production rate, observational studies
were performed at Ruann and Maddox Dairy Farm in Riverdale, California (USA), between
years from 2012 to 2018. The response variable consisted of the ratio of the number of viable
embryos by the total number of embryos, per donor cow, characterizing the embryo viability
rate.

For the selection of animals were considered the ones with the highest genetic values of
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the breed, using 454 donor cows and 261 donor sires, repeating the best crosses (donor cow ×
donor sire), totaling 1457 observations.

The embryo production was performed in vivo, a process in which the donor females
were submitted to the superovulation protocol based on the use of the follicle stimulating hor-
mone (FSH), started between days 7 and 10 after estrus detection. Artificial insemination (AI)
was performed between 12 and 24 hours after the first detection of estrus, according to the
guidelines of the Manual of the International Embryo Transfer Society (IETS, 2010).

All the collected embryos were obtained non-surgically by Sugie’s adapted system
(Kanagawa et al., 1995). This closed system consists of equipment with three way that at-
taches one liter of DPBS to perform uterine lavage, a millipore® filter to retain the embryos,
and a two-way catheter, which will be fixed in the uterus to wash. After epidural anesthesia of
the donor, the catheter is fixed in the final third of the right uterine horn, where approximately
10 washes are performed with 50 ml of DPBS. Repeat the same procedure on the other horn.

The specialized filter for the transport of the embryos was sent after collection to the
laboratory. The structures found were put in a maintenance solution and maintained at envi-
ronments temperatures. The number of embryos recovered were counted, and those considered
viable, separated and evaluated, for later use in the embryo transfer process. Only morulae and
blastocysts classified with grade I, II and III were considered viable (Wright, 1981; Thompson
et al., 1998).

Additionally, it was obtained the information of fertility index of donor cow (FI); total
donor cow performance index (TPI); daughters pregnancy rate of donor cow (DPR); donor cow
somatic cell score (SCC: ×1, 000/ml); milk production (Milk - milk averages in pounds); life
stage of the donor cow (TYPE: 1 - dry cow (D: 587), 2 - heifer (H: 198) and 3 - lactanting
cow (M: 672)); category of cow response to stimulation of superovulation ( TYPE_2: 1 - Good
(616), 2 - Big (64), 3 - Fair (550) and 4 - Poor (227)); embryo viability rate (viable embryos
number / total embryos produced number); type of semen (SEXED: 1 - not sexed (1242) and 2
- sexed (215)); donor cow and donor sire.

In Fig. 3.1, we have the scatter plot of the proportions of viable embryos versus each
of the continuous explanatory variables (FI, TPI, DPR, Milk, SCC) of the donor cow.

Figure 3.1. Embryo Production Data: descriptive graph for the variables referring to the donor
cow that are continuous in nature
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The data of the embryo production were recorded and divided by seasons of the year:
1 - Summer (279: July, August, September); 2 - Autumn (374: October, November, December);
3 - Winter (385: January, February, March) and 4 - Spring (419: April, May, June).

3.2.2 Exploratory analysis

In order to understand the generating process of the data and and to visualize possible
interactions between factors, before fitting models some descriptive analysis are presented. For
the descriptive analysis of the data, an initial examination of the dispersion plots of the embryo
viability rate by i) fertility index considering somatic cell score, ii) response category, per type
of semen used, iii) total number of embryos produced versus viable embryos number, iv) average
of the fertility index versus the average embryo viability rate, per season of the year and the
donor cow’s life stage. In addition, the quantitative variables of the data set, such as the age
cow, somatic cell score (SCC), total performance index (TPI), daughter pregnancy rate (DPR),
fertility index (FI) and milk production (Milk), were used to obtain the coefficients and graphs
of simple and partial correlations (Demétrio e Zocchi, 2011).

For descriptive evaluation, the graphs are presented in Figure 3.2. It is observed that
in the scatter plot (Figure 3.2A), there is no evidence of a relationship between the proportion of
viable embryos and the total number of embryos, that is, the proportion of embryonic viability
does not depend on the number of embryos obtained at fertilization. In addition, in the Fig-
ure 3.2B, the variability found indicated that there were differences in the embryo viability rate,
regarding the response categories. And when we using non sexed semen, apparently, there were
better results in the response variable. At Figure 3.2C, we have different behaviors observed
throughout the seasons in relation to the averages of the fertility indexes and the life stages of
the donor cow.

Figure 3.2. Embryo Production Data: A) Dispersion plot between the variables total number
of produced embryos and proportion of viable embryos; B) Box-plot of the response category
and embryo viability rate, by type of semen used; C) Averages of fertility indexes and embryo
viability rate, by seasons and life stages of the donor cow
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The estimates of simple and partial correlations can be visualized in the Figure 3.3.
According to the coefficients there is a high, positive and significant relationship between the
FI and DPR variables, which can be explained by the inclusion of DPR in the calculation of
the fertility index. The TPI would be the percentage of milk production and characteristics
of the cow. Thus, the correlation between this covariate and that related to milk production
(Milk) is expected (H.A, 2017). On the other hand, the simple correlation between the FI
and SCC variables showed that there is a negative relationship between them. However, when
we removing possible influences from external factors, it can be noted that there is a positive
association. In Figure 3.4, there is the dispersion plot between FI and SCC wherein the presence
of external factors, apparently, as the somatic cell score decreases, the fertility indexes of the
donor cow increase. Moreover, the densities related to the respective variables are found on the
margins of the graph.

Figure 3.3. Embryo Production Data: Simple correlations (values in black) and partial (values
in colors: red - negative associations; blue - positive associations)

Figure 3.4. Embryo Production Data: Dispersion plot between fertility index (FI) versus
somatic cell score (SCC) considering the response category
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3.2.3 Statistical Approach: Combined Models Structure

Molenberghs et al. (2010, 2017) propose an extension of the generalized linear model,
called combined model, to accommodate overdispersion and clustering through two separate sets
of random effects, of gamma and normal type, respectively. This considers the hierarchical data
structure (observations that are nested by some effect).

Let Yij be a random variable with j-th clustered measurement (j = 1, · · ·, ni) of the
i-th element (i = 1, · · ·, N), and supposing conditionality over random effects u ∼ Nq(0,Σ), we
have the expression

fi(yij |u, β, θij , ϕ) = exp{ϕ−1[yijλij − ψ(λij)] + c(yij , ϕ)}, (3.1)

with conditional mean given by

E(Yij |ui, β, θij) = µcij = ψ(λij) = θijκij , (3.2)

where θij ∼ Θij(υij , σ
2
ij) with mean υij and variance σ2ij and κij = g(xTijβ, z

T
iju) (Molenberghs

et al., 2010).
Assuming that the data comes from binary measures, Bernoulli distribution with lo-

gistic link function is considered for the response variable. Furthermore, for random effects, the
normal distribution is assumed to accommodate the correlation structure in the longitudinally
measured observations, and the beta distribution to accommodate overdispersion. Thus, we
have the Bernoulli-logistic-normal-beta model given by

Yij |θij , ui ∼ Bernoulli(πij)

πij = θij
exp(xTijβ + zTiju)

1 + exp(xTijβ + zTiju)
(3.3)

θij ∼ Beta(a, b)

ui ∼ Nq(0,Σ),

where Σ is the variance and covariance matrix of the q dimensional vector of ui.
However, when we have count data it is appropriate to assume the Poisson distribu-

tion for response variable with logarithmic link function. In addition, for random effects, the
normal distribution is assumed to accommodate correlation and gamma distribution to capture
overdispersion. Thus, the Poisson-normal-gamma model is defined as

Yij |θij , ui ∼ Poisson(πij)

πij = θij exp(xTijβ + zTiju) (3.4)

θij ∼ Γ(a, b)

ui ∼ Nq(0,Σ),

where a and b are the gamma distribution parameters.
The estimation of the parameters is obtained by maximizing the logarithm of the like-

lihood function. Thus, considering binary data, and assuming the distribution is Bernoulli, we
have the probability mass function of Yij conditional on θij , ui expressed by

f(yij |θij , ui) =

[
θij

exp(xijβ + ziju)

1 + exp(xijβ + ziju)

]yij
×

[
1− θij

exp(xijβ + ziju)

1 + exp(xijβ + ziju)

]1−yij

(3.5)
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where β is vector of parameters of fixed effects. Considering the multivariate Gaussian distribu-
tion for the random effects ui in the linear predictor , and the beta distribution for the random
effect θij , we have the joint density function for the contribution of the i-th individual given by

f(yi, θi, ui) =

ni∏
j=1

f(yij |θij , ui)f(ui)f(θij), (3.6)

where conditional independence is assumed, that is, since the dependencies on the random effects
ui and θij were included in the likelihood function.

In this context, the estimation of β′s and the components of variance of matrix Σ by
maximum likelihood, will be obtained integrating the (Equation 3.6) in the parametric space of
ui and θij , in relation to the expression given by

f(yi, θi) =

∫ ni∏
j=1

f(yij |θij , ui)f(ui)f(θij)dui. (3.7)

According Molenberghs et al. (2010) the likelihood function for the Bernoulli-logistic-
normal-beta model, conditioned to the random effect vector θ and with N individuals, will
be

L(β,Σ, a, b|θ) =

N∏
i=1

∫ ni∏
j=1

[
θij

exp(xijβ + zijui)

1 + exp(xijβ + zijui)

]yij

×
[
1− θij

exp(xijβ + zijui)

1 + exp(xijβ + zijui)

]1−yij

× 1√
(2π)ni

1√
|Σ|

exp
(
−1

2
uT
i Σ

−1ui

)

×
θa−1
ij (1− θij)

b−1

B(a, b)
dui. (3.8)

Finally, after considering yij = 0 and yij = 1, in cases where there are binary data
(Rizzato, 2011), we obtain the marginal likelihood function conditioned only to the random
effect of the linear predictor ui as

L(β,Σ, a, b) =

N∏
i=1

∫ ni∏
j=1

(
akij
a+ b

)yij
[
(1− kij)a+ b

a+ b

]1−yij

× f(ui|Σ)dui

=

N∏
i=1

∫ ni∏
j=1

1

a+ b
(akij)

yij [(1− kij)a+ b]1−yij

× f(ui|Σ)dui. (3.9)

The Equation 3.9 does not allow to obtain the estimators analytically, being carried out
by means numerical methods. A possible solution to the integration will be the Gauss-Hermite
adaptive quadrature algorithm. Once the convergence criteria is achieved, the estimates obtained
can be used for statistical inference.

Model selection - Inference for components of variance

To test random terms, useful asymptotic test is the likelihood-ratio test (LR) that are
based on comparing the values of likelihood functions of two nested models, having the same
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set of fixed-effect parameters, but different sets of covariance parameters. The likelihood ratio
statistics is given by

LR = −2[logLik(reduced model) - logLik(complete model)],

where logLik is the logarithm of the likelihood function.
When there is no parameter on the boundary of the parametric space, LR ∼ χ2

ν , where
ν is the difference in number of degrees of freedom between the two models. LR has a distribution
that is a mixture of χ2’s when there are parameters on the boundary of the parametric space
(Self e Liang, 1987). In the case of component of variance models with independence between
the random effects as in our case the mixture of χ2’s is given by

k′∑
m=0

2−k′
(
k′

m

)
χ2
m. (3.10)

Akaike (AIC) and Bayesian (BIC) Information Criteria are used when the two models
being compared are non nested AIC (AKAIKE, 1973; Schwarz, 1978),

AIC = −2logLik+ 2p,

and
BIC = −2logLik+ log(n)p.

where p is the number of fitted parameters and n is the number of observations. The best model
is considered the one that presents the lowest values of AIC and/or BIC.

Model selection - Inference for fixed effects

After choosing a model for random terms, to test for fixed effects we can use the
likelihood-ratio test (LR) that are based on comparing the values of likelihood functions of
two nested models, having the same set of random-effect parameters, but different sets of fixed
parameters

Akaike (AIC) and Bayesian (BIC) Information Criteria can be used when the two
models being compared are non nested (AKAIKE, 1973; Schwarz, 1978).

To help with the selection of a model the drop1 function from stats package computes
all the single terms in the scope argument that can be added to or dropped from the model, fit
those models and compute a table of the changes in fit. It gives a comparison of models based on
the AIC criterion and when using the option test=“F” adds a “type II ANOVA” (using Anova
function from the car package). The hierarchy is respected when considering terms to be added
or dropped: all main effects contained in a second-order interaction must remain, and so on.

3.2.4 Statistical Approach: Data Modeling

Models

Let Y be a random variable given by the number of viable embryos out of the total
(m) number of embryos. The standard distribution assumed is the binomial with probability π
of a success (occurrence of a viable embryo) and the logit link function.
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A reason for extending the binomial model is because of the occurrence of a hierarchical
structure in the data caused by a clustering resulted from repeatedly measuring the outcome on
the same experimental unit (e.g. embryos obtained with semen from the same sire or oocytes
from the same cow). The possible correlation between measurements for the same individual
is often accommodated through the inclusion of subject-specific, random effects (Verbeke e
Molenberghs, 2000). We considered the inclusion of a random effect in the linear predictor with
logistic link function, leading to the binomial-logistic-normal (Williams, 1982), expressed by

Yijklrs|ui ∼ Binomial(mijklrs, Pijklrs)

Pijklrs =
exp(xTijklrsβ + zTijklrsu)

1 + exp(xTijklrsβ + zTijklrsu)

ui ∼ N(0,Σ),

and linear predictor

ηijklrs = log
(

Pijklrs

1− Pijklrs

)
= β0 + β1X1i + β2X2i +

+ β3X3i + β4X4i +

+ β5X5i + β6X6i + τj +

+ δk + φl + αr + γs +

+ ξi(jklrs), (M1)

where β0 is the fixed effect constant, βh with (h = 1, · · · , 6) are, respectively, the regression
coefficients associated with the quantitative variables: X1i fertility index of i-th fixed effect donor
cow, X2i is the somatic cell score of i-th fixed effect donor cow, X3i is the total performance
index of i-th fixed effect donor cow, X4i is the pregnancy rate of the daughters of i-th fixed effect
donor cow X5i is the milk production in pounds of i-th fixed effect donor cow, X6i is the age of
i-th fixed effect donor cow. Moreover, τj is the fixed effect of J-th year (j = 1, 2, 3, 4, 5, 6, 7, 8),
δk is the fixed effect of k-th season (k = 1, 2, 3, 4), φl is the fixed effect of l-th life stage of
donor cow (l = 1, 2, 3), αr is the fixed effect of r-th response category (r = 1, 2), γs is the fixed
effect of s-th type of semen (s = 1, 2), and ξi(jklrs) is the random effect at crossover level, with
ξi(jklrs) ∼ N(0, σ2c ).

Overdispersion and correlation between observations may occur simultaneously, and
models accommodating both at once were proposed through two separate sets of random effects,
of gamma and normal type, respectively (Molenberghs et al., 2007, 2010, 2017) leading to an
unified modeling framework, termed the combined model. Thus, the second model proposed
was the Binomial-logistic-normal-beta distribution, described by

Yijklrs|θijklrs, ui ∼ Binomial(mijklrs, Pijklrs)

Pijklrs = θijklrs
exp(xTijklrsβ + zTijklrsu)

1 + exp(xTijklrsβ + zTijklrsu)

θijklrs ∼ Beta(a, b)

ui ∼ Nq(0,Σ),
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and linear predictor

ηijklrs = log
(

Pijklrs

1− Pijklrs

)
= β0 + β1X1i + β2X2i +

+ β3X3i + β4X4i +

+ β5X5i + β6X6i + τj +

+ δk + φl + αr + γs +

+ ξi(jklrs), (M2)

where the parameters of fixed and random effects were defined in model M1.
Based on the structure of the model M2, we have the following submodels

ηiklrs = log
(

Piklrs

1− Piklrs

)
= β0 + β1X1i + β2X2i +

+ β3X3i + β5X5i + δk +

+ φl + αr + γs +

+ ξi(klrs), (M3)

ηikrs = log
(

Pikrs

1− Pikrs

)
= β0 + β1X1i + β2X2i +

+ β3X3i + δk + φl + αr +

+ γs + ξi(krs), (M4)

where the parameters were defined in the model M1.

Estimation of the parameters

All the analyses were implemented in the software R (R Core Team, 2018). The pa-
rameters estimation of the hierarchical model M1 was performed by means of the maximum
likelihood, obtained by the iterative method of Gauss-Hermite adaptive quadrature, which is
implemented in the function glmer of package lme4 (Bates et al., 2015). On the other hand, the
parameter estimates of the combined models M2, M3 and M4, were obtained by the restricted
maximum likelihood method, which is implemented in the glmmTMB (Brooks et al., 2017). All
significance of the estimated effects were based at the 5% level.

For the comparisons between the models, we used the deviance statistic (-2ℓ), where ℓ is
based on the maximized logarithmic value of the likelihood. In addition, we used the Generalized
Akaike Information Criteria (AIC) (Cordeiro e Demétrio, 2008).

Goodness of fit and diagnostics

After fitting a model to a data set, in addition to the global goodness-of-fit, it is useful
to use some diagnostic plots to detect specific aspects of possible model failure.

To check that the residuals are consistent with the variation implied by the model, an
approach is to use the half normal plot with simulated envelope which is implemented in the
hnp package (de Andrade Moral et al., 2017).
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3.3 Results

In the Table 3.1, we have models proposed in accordance with those described in sub-
section 3.2.4. For the M1 model, the AIC value showed that the adjustment was lower when
compared to the others. When adjusting the M2 model, distributions combinations, it is noted
that both the AIC and the deviance statistics were smaller. While the quality of the fit was
considerably better when compared to M1, as shown by Figure 3.5A and Figure 3.5B. Thus,
based on the adjustment M2 model covariates that did not present evidence of significance were
excluded, resulting in the M3 and M4 models. In the comparison of the reduced models, it high-
lighted the similarity between the values of the selection criteria (AIC and deviance). However,
the verification of the goodness of fit shows that the simplest model will be the most indicated
(Figure 3.5).

Table 3.1. Parameters estimates with their respective standard errors (SE), and variance
components to proposed models

M1 M2 M3 M4
Parameters Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)
β0 1.6405 (1.3940) 0.9436 (0.7480) 2.8870 (0.8283)∗∗∗ 2.7200 (0.7558)∗∗∗

β1 0.1910 (0.1639) 0.1547 (0.1150) 0.2446 (0.1161)∗ 0.2855 (0.1111)∗

β2 −0.5604 (0.3856) −0.4152 (0.2577) −0.7231 (0.2624)∗∗ −0.6891 (0.2552)∗∗

β3 −0.1584 (0.1581) −0.1326 (0.1121) −0.1927 (0.1129) −0.2412 (0.1069)∗

β4 0.0008 (0.0003)∗∗ 0.0006 (0.0005) − −
β5 −0.0002 (0.0001) −0.0006 (0.0006) −0.0001 (0.0001) −
β6 −0.0440 (0.0412) −0.0344 (0.0277) − −
τ2 −0.7021 (0.3552)∗ −0.2536 (0.2806) −0.2212 (0.2823) −
τ3 −0.2783 (0.3114) 0.1108 (0.2633) 0.1793 (0.2649) −
τ4 −0.4644 (0.3132) −0.1020 (0.2581) −0.0467 (0.2587) −
τ5 −0.6351 (0.3126)∗ −0.2495 (0.2528) −0.2035 (0.2519) −
τ6 −0.7161 (0.3176)∗ −0.2370 (0.2543) −0.1700 (0.2537) −
τ7 −0.6378 (0.3357) −0.2621 (0.2636) −0.1786 (0.2623) −
δ1 −0.3000 (0.1302)∗ −0.2212 (0.1060)∗ −0.2264 (0.1064)∗ −0.2147 (0.1059)∗

δ2 −0.1926 (0.1174) −0.2388 (0.0966)∗ −0.2399 (0.0968)∗ −0.2141 (0.0956)∗

δ4 −0.2522 (0.1144)∗ −0.1386 (0.0935) −0.1435 (0.0968) −0.1467 (0.0936)
φ1 −0.0523 (0.2704) 0.0127 (0.1966) −0.3533 (0.1403)∗ −0.4460 (0.1314)∗

φ3 −0.0243 (0.2249) 0.0035 (0.1642) −0.2688 (0.1317)∗ −0.3150 (0.1279)∗

α1 0.6690 (0.1925)∗∗∗ 0.3871 (0.1559)∗ 0.4025 (0.1567)∗ 0.4079 (0.1563)∗∗

α3 0.8512 (0.1991)∗∗∗ 0.5490 (0.1591)∗∗∗ 0.5697 (0.1601)∗∗∗ 0.5716 (0.1602)∗∗∗

α4 0.4639 (0.2364)∗ 0.3320 (0.1851) 0.3575 (0.1862) 0.3750 (0.1862)∗

γ2 −1.2789 (0.1367)∗∗∗ −0.8856 (0.1069)∗∗∗ −0.8626 (0.1075)∗∗∗ −0.8953 (0.1040)∗∗∗

AIC 6183.0690 6102.9000 6036.1000 6034.3000
LogLik −3068.5345 −3004.3000 −3002.1000 −2996.1000
DEV 6137.0690 6008.6000 6004.2000 5992.2000

σ2c 2.1778 0.0112 0.0174 0.0214

Significance (∗∗∗p− value < 0.001, ∗∗p− value < 0.01, ∗p− value < 0.05) and DEV (deviance of model)
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Figure 3.5. Embryo Production Data: Half normal plot with simulation envelope to A) M1
model; B) M2 model; C) M3 model; D) M4 model

In this context, the M4 model was chosen because it presented the better goodness
of fit to dataset. Moreover, the variance component estimated by the proposed model, due to
the random effect of crossing, suggested that there is a greater expression of genetic variance
in this adjustment when compared to the other combined models, indicating a decrease in the
residual variability. Thus, follows in the Figure 3.6, the residual analysis for the M4 model, in
which the assumption of normality was verified, that is, the proposed adjustment is adequate.
Additionally, in the Figure 3.7 we have the graphical representation of the predicted values
versus observed values, considering the significant covariates.

Figure 3.6. Embryo Production Data: Graph of adjusted values versus observed values; and
predicted values versus standardized residuals, respectively
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Figure 3.7. Embryo Production Data: Graphs of predicted values versus observed values for
the M4 model

3.4 Discussion

As suggested by Taneja et al. (2000), the superovulation in cattle consists of the viability
of a female to produce larger numbers of progeny during their reproductive life. Although it is a
very useful technique for the better use genetic of the herd, there are some factors that interfere
in the viable embryos number obtained in the collection process.

For understand the possible influences on the production of embryos (subsection 3.2.1)
the response variable was the ratio between viable embryos number and the total embryos
produced number, characterizing the embryo viability rate.

Studies of correlations between characteristics of interest provide information that may
assist professionals in the efficiency of the embryo production protocol. However, the inter-
pretations through the coefficients of simple correlations, also known as zero order, should be
cautious, since the values obtained do not represent a real measure of cause and effect. The
degree of association presented between two characteristics is being influenced in the presence
of one third, or group of factors, causing big mistakes. Thus, to measure the dependence, or
lack thereof, between two variables in a way that does not have external influences, we use the
partial correlation which is a more informative measure regarding the real relations (Gujarati e
Porter, 2011).

In this context, to analyze the coefficients of the simple correlations among the quanti-
tative variables, described in subsection 3.2.4, we have a negative relationship between the vari-
ables fertility index (FI) and somatic cell score (SCC), indicating evidence that in the presence
of covariables age, total performance index (TPI), milk production (Milk), and dairy pregnancy
rate (DPR), all related to the donor cow, as the SCC values decrease, the FI values are in-
creased. However, the partial correlation among these characteristics, in fact, showed a positive
relationship, that is, as the FI increases, there is elevation in the SCC. This relationship was
not expected because the infection of the mammary gland, or other tissues, has a negative effect
on reproductive efficiency (Ribeiro et al., 2016). Therefore, for cows with high FI values was
expected that they would present low SCC, because this would be a marker of breast health and
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resistance to infections. One possible explanation for the result is that presenting high fertility
indexes, the cow will produce larger numbers of somatic cells, in which it will be more prone to
acquire infections in the mammary glands (mastitis) caused by some microorganism (Machado
et al., 2000; Langoni et al., 2011).

Results of partial correlations, such as positive relation, of strong intensity between
DPR with FI; and TPI with SCC is expected, since the daughter pregnancy rate is 64 % of
the fertility index values, and the somatic cell score, from the cell count, comprises 5% of the
TPI values (H.A, 2017). The association between TPI and SCC, in practice, indicates evidence
that as the degree of infection of the mammary gland increases, there is a reduction in the total
performance index of the donor cow.

Initially, the adjustment of the binomial model to data was performed only with the
fixed effects variables, and the results were not approached in this work. This distribution
presupposes the occurrence of constant success (Myers e Montgomery, 2010).However, the es-
timation of the dispersion parameter was ϕ̂ = 4.31, being greater than specified by the model
(ϕ = 1), showing an overdispersion present in the data set (Hinde e Demétrio, 1998). The
occurrence of the extra variation is due to variability in the success rate since the obtainment of
viable embryos is influenced both genetic features related to the crossing (donor cow × donor
sire) and environmental factors.

Models based on the logistic link function were proposed in different scenarios (Ta-
ble 3.1). Due to the sources of variations and correlations present between the observational
units, we have included the random effect at crossover level in the linear predictor, since besides
assuming that these combinations come from a population with several possibilities, we can con-
sider the genetic variability present in each individual. The authors Breslow e Clayton (1993),
the authors said that not to include random effects in the linear predictor when hierarchical
structures are present (the data have some nesting structure (Agresti, 2018)), may result in bad
fit of the model, and interpretations of the significance of the effects erroneously.

However, the goodness of fit measures calculated under the M1 model, indicated with
5% of significance that the hierarchical model is inadequate, that is, the inclusion of the random
effect only in the linear predictor was not sufficient to capture the extra variability contained in
the data.

Maintaining with the linear predictor structure given in M1, we proposed the M2 model,
which incorporated a random effect multiplicative in the distribution average which will accom-
modate overdispersion. According Molenberghs et al. (2010, 2017),these models characterized
by combined will promote the adjustment of the data when there were two sources of variations,
simultaneously. The absence of significance among the covariates of the model are caused due
to the multicollinearity among the characteristics. Thus, some effects are being canceled in the
presence of other (Gujarati e Porter, 2011).

In this way, extensions of the combined model M2 have been suggested, and the results
were satisfactory. In the evaluations between the M3 and M4 models, the estimated fixed
effects and predicted random effects values indicated that both adjustments behaved similarly.
Equivalence was also observed for the comparison criteria, such as AIC and deviance, differing
in decimal magnitude. However, when verifying the goodness of fit through of the half normal
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probability with simulated envelope, it is assumed that the M4 model was the most appropriate,
since, besides presenting fewer points out of the envelope, it can be said that the simplest model
is as efficient as those that have more parameters. Highlights that, in general, the variables
that were significant in the M3 model remained significant in M4, except for fixed effects of year
and milk production, indicating in this case, evidence that the embryo viability rate remained
constant over time, and that the genetic marker for milk production did not affect the number
of viable embryos.

Evaluations of the reproductive efficiency offer advantages in the selection criteria of
the animals that will integrate into the superovulation protocol. The significance of the esti-
mated effects of the chosen model M4, provided important information. One of them would be
the influence observed in the variable response, regarding the fertility index of the donor cow.
Probably, the success of this index in embryo viability is explained by the fact that several com-
ponents of reproductive efficiency was combined in a single index, such as the female ability to
conceive when heifer, conceive when cow, and the daughters conception of cows, without men-
tioning general ability to return to cycling (show estrus) and maintain pregnancy (H.A, 2017).
Thus, at the 5 % significance level, there is evidence that all these factors would be responsible
for the positive result, indicating that the higher this index, the greater the number of viable
embryos produced. However, when evaluating the daughter pregnancy rate (DPR), singly, this
contributed negatively to the response variable. This result shows that, for the selection of
embryo donors, it is not necessary to consider isolated genetic characteristics, since the positive
effect of FI on the production of viable embryos has been demonstrated.

The stage of animal development involves several moments during the life of the female.
For example, heifers are those that have not yet calved their calves. Lactating cows are those
that are producing milk at the time of collection of embryos. Unlike the dry cows, which have
already procreated, but they are not producing milk. In this context, when analyzing the variable
life stage of the donor, it can be said that there were indications of a decrease in the embryo
viability rate when using dry and lactating cows. These results were corroborated by Demétrio
et al. (2007); Sartori et al. (2009). One possible explanation for this decrease is the fact that
milk production interferes the reproductive physiology, resulting in low fertility (Wiltbank et al.,
2006; Andreu-Vázquez et al., 2012).

Another possible interference factor in the production of viable embryos would be the
season. During the warmer months, as in the summer, the fertility rates of the animals are
lower. This happens due to the thermal stress in the animal, inducing it to a lower quality of
the oocytes, and, consequently, interfering negatively in the embryo production (Thatcher et al.,
2001; Sartori et al., 2002a; Hansen, 2009). We can be observed in the model chosen that the
summer and autumn seasons have been negative in the response. Whereas in the spring this
does not occur. Furthermore, there was significant evidence of better results when performing
embryo production in winter or spring, being these seasons did not differ statistically.

The somatic cell score allows an evaluation of the mammary gland in lactating females,
using as a reference the increase in the concentration of defense cells in the milk, constituting a
reliable indication as to the udder infection level (Laranja e Amaro, 1998). In the M4 model, the
SCC genetic trait was statistically significant in the response variable, showing evidence that
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high SCC values cause a decrease in viable embryo productivity. In this context, the use of this
genetic characteristic in conjunction with others to select donor cows may be effective.

One of the characteristics of great importance in artificial inseminations (AI) is the
type of semen. In this process, two types of semen are used. The sexed contains only the
spermatozoa with the ”Y” chromosome, giving rise to the males, or only, the ”X” chromosome,
originating the females. And the non sexed does not change. Both types will be frozen process.
However, even though there is a high number of born of the desired sex, the sexed semen has
lower fertility, since it suffers separation of the spermatozoa by processes that are invasive, which
can cause damages as to its viability and spermatic quality (Seidel Jr, 2003, 2007). Similarly, to
those found in Seidel Jr (2007), there were indications of influence on the embryo viability rate
per semen type, in which negative estimates when performing AI with the sexed type caused a
reduction in the number of viable embryos.

Verification of the cow’s response to the superovulation stimulus is necessary to deter-
mine whether the female was able to respond satisfactorily to the protocol. Thus, the super-
ovulatory response in donors of the Holstein breed was significant, indicating that cows with
adequate responses to superovulatory treatment produced higher estimates in the result of viable
embryo production.

Based on the components of variance presented, it can be seen that the variability
caused by the random crossover effect was higher in the M4 model, that is, this adjustment
enables to reduce the residual variation, which was decomposed and subsequently explained by
genetic variability.

In the practical context, the points that were found outside the simulation envelope
in the half normal probability plot are justified by the presence of uncontrolled factors that
are intrinsic to the sample. For example, donor health (Ribeiro et al., 2016), hormonal profile
(Demétrio et al., 2007), and estrus expression (Pereira et al., 2016). The different ways in which
the superovulation protocol is conducted by professionals should also be considered since can
cause variability.

3.5 Conclusions

The embryo viability rate presented a greater dispersion than expected by the bino-
mial model, in which this extra variation may have been caused by random uncontrolled factors.
Among the proposed models, the binomial-logistic-normal-beta was satisfactorily adjusted, since
the adjustment was able to accommodate both the overdispersion phenomenon and the correla-
tion structures present in the data.

Thus, in order to achieve success in embryo production, the purpose of which is to
obtain larger quantities of viable embryos, for later use in transference processes, it is important
to select females with a high fertility index , since choices based on these values will provide
better results in terms of efficiency in superovulation protocols.
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4 A MACHINE LEARNING APPROACH TO EMBRYO TRANSFER DATA

Abstract

The ability to predict whether an artificial insemination procedure would result in preg-
nancy is of great value in optimizing the breeding strategies employed by dairy producers. In
the past few decades, machine learning algorithms have successfully been applied for predic-
tion tasks in a variety of fields, including animal health and productivity, being therefore very
promising candidates to be used in cattle breeding as well. In this study we have applied several
machine learning algorithms with the purpose of evaluating the performance of those techniques
and ascertain whether it’s possible to predict whether a given insemination event resulted in
pregnancy in dairy cows of the Holstein breed. The resulted analyses indicated that, when ap-
plied to this particular data set, this methodology wasn’t able to produce satisfactory results
with regard to the algorithm performance, since the available data lacked enough observations
to learn the negative class. Besides that, a comparison between classical statistical methods and
these machine learning techniques was carried out, where it was found that, given the issues
found in the data, the use of these techniques is discouraged, being classical statistics more
appropriate for the analysis of this dataset.

Key words: Binary Data; Logistic Regression; Machine Learning; Random Forest; Viable Em-
bryo.

4.1 Introduction

Machine Learning, a branch of the field of artificial intelligence, is a form of predictive
modelling using statistical models to develop predictions that has been defined as the ability of a
computer to learn without being programmed for it. It uses algorithms that analyze some “train-
ing data” first, and then generates outputs based on that analysis. After learning, predicting,
find ways to improve their performance over time.

In order to understand how machine learning methods differ from the traditional work-
flow employed in statistics, it’s useful to take a step back and think about what is a statistical
problem.

In the most general sense, we are presented with some kind of natural process whose
results can be measured and represented by some output variables. We also have another set
of measurable quantities, our input variables, which we suspect to have some effect on our
outcomes. With these in hand, there are two kinds of objectives we might be interested in
achieving: advancing our understanding of how the natural process relates our inputs to our
outputs, or predicting what our response is going to be under a given set of inputs. The manner
in which one usually proceeds towards these goals is then to posit some data generating process, a
statistical model of our original, much more complicated, natural mechanism. It is then through
the study of this simpler model that information on the workings of the initial phenomenon, as
well predictions of its behavior, is drawn. This is the conventional approach in statistics.

The machine learning approach differs in that it foregoes this attempt to conjure a
device that can function as a drop-in replacement of the process at hand. Instead, the latter is
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treated as a black box whose contents can’t be known. The focus then is merely to produce a
function f capable taking our inputs and predicting the outputs associated with it. While, on
the surface, this might seem like a mere abdication of epistemological claims, with little impact
on the statistical practitioner’s work, it actually gives rise to far ranging implications on the
selection of tools (algorithms) to be employed, and the evaluation of the results obtained from
them (Breiman, 2001b).

While media attention has largely focused on a few selected applications of machine
learning, such as its use in marketing analytics, financial forecasting, and autonomous vehicle
navigation, scientific literature abounds with the used cases that seldom receive the public spot-
light. Livestock breeding is one of these fields where such methods have been steadily making
inroads. Aided by an accompanying set of technological advances, which enabled automatic
collection of an unprecedented amount of data on animal health, fertility, and genetic character-
istics, those approaches have yielded a myriad of relevant results to problems such as prediction
of disease, phenotypes, insemination success, and mortality rates (Nayeri et al., 2019).

One such domain which is of particular interest here is that of examining insemination
outcomes. In chapter 2, we have employed Generalized Linear Mixed Models (GLMMs) to
analyse one such case. Therefore, revisiting that same data under the framework of machine
learning algorithms can be useful in order to render clearer the differences in methodology and
compare the results between the already established approaches and these new entrants to the
statistical modelling toolbox.

Throughout this chapter, the most relevant concepts guiding predictive modelling using
machine learning algorithms will be presented, drawing parallels with “traditional” statistical
techniques whenever applicable. The essential theoretical background will be laid out in sec-
tion 4.2, whereas in subsection 4.3.1 we will explore a practical application to the prediction of
successful embryo transfer in bovines, and in section 4.4 we discuss the results obtained through
the lens of prediction “strength” metrics and model interpretability.

4.2 Material and Method

4.2.1 Case Study: Embryo Transfer Data

In this chapter, we used a data set relating to embryo transfer on Holstein-breed cows,
obtained from an observational study conducted at the Ruann and Maddox Dairy Farm in
Riverdale, California, USA. Each data point in the final data set included 15 features and 1
binary response variable (PD) indicating whether the embryo transfer resulted in a pregnancy
diagnosis (Y = 1) or not (Y = 0). The features of the data set consist of the Fertility Indices
(FI) of all animals involved (donor cow, recipient cow, as well as donor sire), season of the year
when the transfer took place (Season), lifecycle stage of the recipient cow (VH_LC), days from
recipient cow’s estrus when the transfer was made (DFE), the corpus luteum hemisphere where
the embryo was implanted (CL_side), type of embryo (TEFF2), embryo development stage
(Embryo_stage), the technician responsible for the procedure (Tech), donor cow lifecycle stage
(Type), and whether the semen used was sexed or not (Sexed). Further details can be found in
subsection 2.2.1.
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Overall, 940 distinct combinations of donor cow and sire were performed. On Table 4.1
a summary view of the features in the data set can be found.

4.2.2 Machine Learning Algorithms

While the machine learning toolbox does borrow many techniques from the library of
statistical methods, its community eventually developed a distinct vocabulary around it. The
first relevant typology is that of the classes of problems where machine learning is typically
employed, in this, two broad classes are of interest here:

* Unsupervised learning: in this setting, the main interest lies in extracting information from
patterns in the data. This can be used both as an end goal in itself or as a step to simplify
the data before applying other techniques.

* Supervised learning: in this setting, the main interest lies in training an algorithm to predict
the response associated with a set of input variables (features). If the response variable is
continuous, it is said that the task is a “regression” one, whereas if it consists of a number
of discrete “classes”, it is said that the task is a “classification” one (Raschka, 2015). Do
note that the fact that these algorithms are usually built with prediction performance in
mind doesn’t mean they can’t be used to obtain quality information about the problem,
the opposite is actually very often the case, as shown in the examples presented by Breiman
(2001b).

Since the problem at hand consists of predicting the outcome of an embryo transfer
event, which can either result in success (a pregnant cow) or failure (non-pregnant), we say that
this is a supervised, classification task.

No systematic approach exists to determine the most suitable machine learning algo-
rithm to apply in a given scenario. The most common procedure is then to select a handful of
suitable algorithms, train them on the data, and then compare their performance to determine
the one with a better fit.

In this work, based on the binary nature of our response variable, we’ve chosen to use
classification algorithms, such as Decision Trees, Random Forest, and Logistic Regression. In
all cases, we’ve used the implementations contained in the popular scikit-learn package for the
Python programming language (Pedregosa et al., 2011).

Decision Trees

Decision trees for classification (or simply classification trees) are built by successively
partitioning the feature space in rectangular subdivisions where the predicted class is constant
throughout. The splitting point s that defines a new partition is chosen by evaluating an impurity
metric, such as cross-entropy or Gini index, for each valid candidate, and greedily choosing the
one that maximizes impurity decrease. With this, we obtain two new subdivisions of the feature
space, defined by the feature values lesser than or equal to s and those greater than it. For each
one, the predicted value associated with it is defined by the majority class of training instances
contained in each region (Song e Ying, 2015).
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The splitting procedure outlined above is repeated until one of many stopping criteria
is met. In the implementation used for this work, these include:

* A hard limit on the maximum depth the tree can reach.

* A minimum number of samples that a node eligible to further splitting has to have.

* Any further possible split would cause a decrease in impurity that is less than a defined
threshold.

According to Trevor et al. (2009), some limitations of decision trees as predictors in-
clude:

* The computational cost of calculating optimal splits in high-cardinality features.

* Decision trees are inherently high-variance. Training a decision tree with the same hyper-
parameters on two different samples of the same population can lead to very different
results.

* The prediction surface obtained by using decision trees is not smooth. This presents difficulties
in applications where it’s expected that the obtained function be smooth or differentiable.

Random Forest

The high-variance issue that decision trees present can be alleviated by combining
multiple trees into an ensemble. Many such procedures exist, but of particular interest is that
of bagging. This technique, introduced in Breiman (1996), consists of generating bootstrapped
samples of the original training set, fitting a model on each sample and taking the bagged
prediction to be the average over all component models’ predictions. In a classification setting,
the output of the bagged model is equivalent to taking the class obtained by majority voting of
the ensemble members, where each individual tree has exactly one vote with equal weight.

This averaging process can be shown to reduce overall classification error as long as the
original, non-bagged, classifier performs better than chance (Raschka, 2015). The result is that
a bagged classifier often presents lower variance than its unbagged counterpart, but without
introducing additional bias (Trevor et al., 2009).

Random forests were proposed by Breiman (2001a) as an improvement to the naïve tree
bagging method. The author’s main insight was that the correlation between pairs of trees in
the ensemble can be reduced by constraining the feature space during the tree-building process,
where, instead of considering all p features of the dataset, each tree in a random forest only
has available a randomly-chosen subset of m ≤ p features to work with. While the degree of
this decorrelation effect and its relationship with m are highly dependent on the structure of
the data generating process, the intuition behind the mechanism can be summarized by the fact
that a given pair of trees is less likely to agree on the classification of a given sample if the more
disjoint the set of features they employ is.

This decorrelation effect helps drive the total variance of the random forest further
down than a naïvely bagged tree ensemble, while still enjoying the property of not introducing
additional bias into the model.
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While inspecting the decision paths of 100 decision trees (that’s the default number
of trees in a forest under scikit-learn’s implementation) is hardly approachable to a human,
random forests are nevertheless still very useful for extracting information about a problem’s
domain. For one, remember that while easily scrutable, decision trees are inherently unstable
and prone to overfitting, a problem that random forests circumvent through bagging and their
clever feature subsetting scheme. But also, random forests enable one to produce a measure of
the relative importance of each feature for the response prediction by summing the impurity
decrease at each split a given feature is involved in over all the trees in the forest (Trevor et al.,
2009).

Logistic Regression

Logistic regression is a well-attested technique in the statistician’s toolbox. While gaus-
sian linear regression works under the assumption that the response variable can be represented
as a continuous value, logistic regression is a method that can be used when Yi ∈ 0, 1, that
is, it is a binary variable. In the generalized linear models, it is necessary to relate the linear
predictor, which contains the independent variables, with the response variable’s mean via a link
function. That way, under the canonical link function given by θ = log(π/(1 − π)) = η = X′β,
where log(π/(1−π)) is the logit link, one obtains that the logistic regression model is expressed
by p(y|x) = exp(X′β)/(1 + exp(X′β)) (Cordeiro e Demétrio, 2008).

In a machine learning setting, logistic regression is frequently used as a classification
model. In order to use it for such ends, one must employ a decision rule that converts the
probabilities output by the model into class values. In a binary classification setting, one common
choice for a such a rule is to define a threshold, usually 0.5, such that ŷ(x) = 1 ⇐⇒ p(y = 1|x) >
0.5 for the positive class, and otherwise ŷ(x) = 0 ⇐⇒ p(y = 0|x) ≤ 0.5. One shortcoming
of such models, however, is that they can’t model nonlinear decision boundaries, therefore it
is prone to misclassification in settings where the classes are not linearly separable (Murphy,
2012).

Model Evaluation Methods

One of the most important steps in ascertaining a ML algorithm’s reliability is the
validation of results. Some of the metrics proposed in Raschka (2015), which are also used in
this work, are:

i) Confusion Matrix: helps understand a classifier’s performance. For binary classification tasks,
it has four entries. The rows denote the number of samples that truly belong to each class,
whereas the columns contain the number of samples that were predicted by the classifier to
belong to a class. Therefore, we have in the main diagonal the number of True Negatives
(TN) and True Positives (TP) respectively, whereas the off-diagonal contains the number
of False Positives (FP) and False Negatives (FN).

ii) Accuracy: Is the percentage of correct predictions, calculated with (TP +TN)/(TP +TN +

FP + FN).
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iii) Precision: Is the percentage of samples predicted to belong to the positive class which were
correctly classified, with formula given by TP/(TP + FP ).

iv) Recall: Also known as sensitivity, is the percentage of values belonging to the positive class
that were correctly classified TP/(TP + FN).

v) F1: Is the harmonic mean of precision and recall, being calculated with (2 ∗ precision ∗
recall)/(precision+ recall).

vi) Receiver Operating Characteristic (ROC) Curve: is the probability curve displaying the
classifier’s performance, showing how true positive rate (sensitivity) behaves under chang-
ing false positive rate (inverse specificity) . Inverse specificity is given by 1 - specificity,
with specificity defined by TN/(TN + FP).

vii) Area Under the ROC Curve (AUC): represents how well the algorithm is able to separate
the different classes. The higher the AUC, the better the model is able to predict the
classes. Therefore, a well-performing algorithm must have an AUC value close to 1.

4.3 Results

4.3.1 Data Analysis

We begin by checking the balance between the classes in the target variable. This
is important, because the algorithm needs to be trained on a reasonable amount of samples
for each class in order to learn the relationships between them and the input variables. The
relevant literature suggests that the minority class should comprise at least 10% of the training
data, otherwise additional processing might be necessary in order to fit a model with adequate
performance (He e Garcia, 2009). In Figure 4.1 we can observe that there’s no significant
unbalancing between classes, with the majority class representing about 62% of the samples.
Therefore, we can conclude that the data set contains a healthy amount of samples for both the
success and failure classes and there’s no need to apply techniques specific to unbalanced data.

Figure 4.1. Embryo Transfer Data: Bar plot illustrating the balance between classes in the
target variable

Regarding our numerical features, we can see in Figure 4.2 a pair plot relating the
fertility indices of the donor and recipient cows, as well as the donor sire. On the main diagonal,
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the histograms for each fertility index, colored by pregnancy success, can be seen, whereas the
other elements contain pairwise scatterplot relating the fertility indices of different animals.
From this, we can draw that no fertility index alone presents enough information to adequately
distinguish between the two classes, as the histograms for both are completely overlapping, but
also that the inspection of pairwise interactions between them similarly displays no obvious
structure which could be exploited to classify our observations.

Figure 4.2. Embryo Transfer Data: Scatterplot matrix for the continuous features with regards
to the target variable (open/pregnant status)

On the other hand, in Figure 4.3 we can observe the pairwise relationships between
different categorical variables with regards to pregnancy success rates. It should be noted that,
while some pairings are associated with success rates of upwards to 75% (ie. highly informative
of pregnancy success), none have scores significantly lower than 50% (ie. highly informative of
pregnancy failure). This means that while some combinations could be exploited by an algorithm
to learn what factors contribute to positive conception outcomes, when it comes to learning
combinations of factors that lead to negative outcomes, it would have to rely on combinations
that are very weakly associated with them at best, or essentially behave like noise at worst (ie.
that have very low information content pointing towards either success or failure). We believe
this state of affairs to be one of the reasons why we stumbled upon the problems to be discussed
in section Model Results.
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Figure 4.3. Embryo Transfer Data: Pregnancy success rates for pairwise combinations of
categorical variables levels
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4.3.2 Model Results

For the evaluation of algorithm performance, the dataset was split into a training and a
validation set. Two split proportions were tested, the first using an 80:20 training to validation
instances ratio, the second using a 70:30 one. For each splitting scheme, the same procedure
two-step was carried out for all models, it consisted in first using the training set to perform a
10-fold cross validation, then fitting the model against the whole training set and assessing its
performance using the validation one. The number of folds was chosen to be 10 because it’s the
recommended value on the relevant literature (Raschka, 2015).

The mean AUC scores and their standard deviations, as obtained from the cross-
validation procedure from all available features, except for the donor sire’s fertility index, which
has been discarded for the same reasons as presented in chapter 2, as well as the results for the
test set can be seen in Table 4.2. The AUC of predicting conception outcomes for all the models
was the highest for Random Forest and Logistic Regression. Furthermore, when comparing the
two dataset splitting schemes, it can be observed that both behave in a similar manner, differing
only in slight AUC performance fluctuations. For the purposes of interpreting whether a given
AUC value is acceptable, Hempstalk et al. (2015) suggests considering a number between 0.5
and 0.75 to be fair, and above this to be a good fit.

Table 4.2. Summarized results for 10-fold cross validation applied on the training set for
different algorithms, including the AUC’s mean value (“CV-Fold”) and its standard deviation
(“SD”) over all folds. The values under “Test” correspond to the validation carried out on the
hold-out test data, considering all features

80:20 Split 70:30 Split

Algorithm CV-Fold SD Test CV-Fold SD Test
Decision Tree 0.51∗ 0.02 0.52 0.50 0.02 0.52a
Random Forest 0.59∗ 0.03 0.56a 0.58∗ 0.03 0.56
Logistic Regression 0.57∗ 0.03 0.56 0.58∗ 0.03 0.55a
∗ p-value ≤ 0.05: t-test significance of difference from an AUC of 0.5
a p-value ≤ 0.05: t-test significance of difference between CV-Fold and Test-set AUC scores.

When it comes to the significance of the results obtained, the Decision Tree model was
the only one to fail, in the 70:30 scenario, in obtaining a cross-validation AUC score significantly
different from 0.5 (baseline), the value which characterizes a random-guessing classifier. When
comparing the CV-Fold results to those on the test set, it was found that the models exhibited
alternating results depending on the proportion of samples used for training, with the Decision
Tree and Logistic Regression displaying consistent performance for the 80:20 split, whereas
Random Forest was the one to achieve this in the 70:30 experiment. At any rate, the fact that
Logistic Regression and Random Forest were top performers in predicting conception outcomes
had been previously observed in Hempstalk et al. (2015), where the difficulties in improving the
results obtained from the Random Forest were attributed to the high number of non-informative
features in one of their datasets. In the case of the dataset used in this study, we have already
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highlighted in subsection 4.3.1 how many pairwise combinations of categorical features, such
as the type of embryo versus season of the year, exhibited similar issues, being particularly
noninformative of failures in obtaining a pregnancy.

For comparative ends, the reduced models proposed in chapter 2 will be tested. Be-
sides that, since there was no pronounced difference in performance between the two splitting
strategies, only the 80:20 split will be used in the next sections. The features used for each
model can be seen in Table 4.3.

Table 4.3. Features considered for each of the reduced models

Model Features considered
Reduced 1 Type, CL_side, FI_R, TEEF2, Embryo_stage, DFE
Reduced 2 FI_R, Type, CL_side

On Figure 4.4, we have plotted the ROC curves obtained for both reduced models, as
well as the one built using all available features (Full set). As can be seen, the “Reduced 1” set of
features presents a slight performance improvement across all the range for Logistic Regression,
as well as exhibiting a better behavior around the 0.2-0.5 false positive rate range for Random
Forest. Meanwhile, the “Reduced 2” set performed the poorest, overlapping over several points
with the “Baseline”, which denotes the line of no discrimination, representing the performance
of a classifier that operates by random guessing.

Figure 4.4. Embryo Transfer Data: comparison of ROC curves for Logistic Regression and
Random Forest, respectively, using different feature subsets

Apart from the ROC curve charts, we have also compiled several other classification
performance indicators for each of the models, which can be seen in Table 4.4. These help putting
in perspective some of the behaviors observed on the ROC curves, but can also highlight the
perils of adopting any one scalar metric as the sole indicator of an algorithm’s performance. For
instance, the models trained with the “Reduced 2” set had metrics either only slightly worse,
or, in some cases, even better than those obtained from the other feature sets. Despite that, it
has been seen that they had performed extremely poorly on the ROC curve.
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Moreover, the discrepancy between precision and recall for the Random Forest algo-
rithm indicated that it has “learnt” to classify samples as disproportionately belonging to the
positive class. This behavior means that it is successfully able to guess when an insemination
event resulted in pregnancy, which accounts for the high recall, but at the cost of incurring too
many false positive errors, which in turn lead to the relatively low precision score. This inability
in capturing the patterns indicative of a conception failure leads us to, once again, suspect the
lack of such information in our dataset, as first mentioned in subsection 4.3.1, has hindered the
model training process.

Table 4.4. Performance metrics for the models obtained using different sets of features

Logistic Regression (LR) Random Forest (RAF)

Metrics Full set Reduced 1 Reduced 2 Full set Reduced 1 Reduced 2
Accuracy 0.60 0.60 0.57 0.60 0.60 0.59
AUC 0.59 0.60 0.53 0.58 0.60 0.52
F1 0.67 0.67 0.70 0.75 0.75 0.74
Precision 0.66 0.65 0.60 0.60 0.60 0.60
Recall 0.69 0.69 0.84 1.00 1.00 0.99

The only metric that has consistently replicated the behavior seen in the analysis of
the receiver operating characteristic plot was AUC, which is itself obtained by integrating over
the ROC curve. This unreliability of performance metrics built from the confusion matrix, as
well as the usefulness of the ROC curve as a model diagnostic tool had already been observed
in Hamel (2009).

4.3.3 Ranked Predictions

It is generally expected that a model would output more extreme scores to those in-
stances where it has a high confidence in their predicted classes. In order to study to what
degree our models agree with or defy that assumption, we have ranked the records in the test
set by their prediction scores for each class and evaluated the classification accuracy under sev-
eral percentiles. The result of this procedure is in Table 4.5, where the 5% percentile contains
the highest scores, being accumulated up until the 25%, shown separately for each class.

When observing the top rows of the table, corresponding to the observations with the
highest scores towards the pregnancy success class, it can be seen that the cumulative accuracy
for increasing percentiles doesn’t show expressible variation. The only exceptions being the
LR models for the “Full set” and “Reduced 2” feature sets, which display the aforementioned
expected property of being highly assertive for the observations they attributed a high chance
of success. Nevertheless, the accuracies for up to the top 25% positive class scores remain
reasonably high.
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Table 4.5. Prediction accuracy of each model over classification score percentiles for each class

Positive class (Y = 1)

Logistic Regression (LR) Random Forest (RAF)

Percentiles Full set Reduced 1 Reduced 2 Full set Reduced 1 Reduced 2
5 0.69 0.59 0.67 0.65 0.71 0.60
10 0.69 0.62 0.68 0.69 0.65 0.62
15 0.65 0.66 0.68 0.67 0.66 0.63
20 0.68 0.63 0.63 0.65 0.70 0.64
25 0.66 0.64 0.62 0.64 0.71 0.64

Negative class (Y = 0)
5 0.58 0.58 0.25 – 1.00 0.00
10 0.55 0.58 0.31 – 1.00 0.00
15 0.51 0.58 0.44 – 1.00 0.00
20 0.49 0.55 0.39 – 1.00 0.00
25 0.51 0.57 0.40 – 1.00 0.00

When examining the equivalent data for the negative class, however, a much more
problematic behavior is seen. While the LR models displayed modest results throughout, despite
not being very assertive even in the top percentiles, the RAF models produced rather inconsistent
values. That can be attributed to the fact that they had very few samples predicted to have
resulted in pregnancy failure. In fact, the RAF obtained from the full set predicted that not one
single sample would have that result, thus the missing data for that model in the table, while
the ones built using reduced 1 and 2 had, respectively, 2 and 10 samples in total predicted for
that class, which explains the extreme accuracy values obtained from them. This corroborates
the behavior discussed before, and further reinforces that the models aren’t able to determine
when a given insemination event is unlikely to result in a pregnancy for the recipient cow.

4.4 Discussion

The ability to predict the results of embryo transfer procedures by using machine learn-
ing algorithms wasn’t entirely successful. The first problem was actually encountered before a
single model was fit to the data, when a preliminary analysis showed that almost no combina-
tion of pairs of features revealed a pattern that could be exploited to correctly separate the two
classes under study. There, it was also found that even in the cases where some information
could be garnered, it was overwhelmingly in favor of predicting the positive class. While con-
cerning, those findings weren’t enough to, a priori, rule out the possibility of applying machine
learning, as some of the most sophisticated algorithms are known to be capable of extracting
information from interactions arising from many features, as well as, recognizing underlying
patterns that are not evident under mere visual inspection of the data. In this context, random
forests in particular are one such example of model where the literature largely agrees as being
able to autonomously learn feature interactions (Trevor et al., 2009; Wright et al., 2016), despite
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there being controversies surrounding whether these are accurately represented under common
feature importance evaluation methods, which could hurt the model’s overall interpretability
(Wright et al., 2016).

About the experiments carried out in this study, it could be seen that varying the
training to test samples ratio didn’t meaningfully affect model performance. Also, when the
result of the same feature selection procedure carried out on chapter 2 was used in the machine
learning models, it was found that, even though the selection scheme took into account the
features that would optimize the performance of a model with a very different structure, at least
one of the subsets obtained from the procedure resulted in an improvement for the machine
learning models as well.

The results were, similarly, not so great when the minimal set (Reduced 2) was used
for either for machine learning or Generalized Linear Mixed Models (GLMM) . For the random
forest models in particular, it was observed that even though they’d behave a little less conser-
vatively, predicting more samples as belonging to the negative class, their discriminative ability
as evaluated on the ROC curve suffered greatly. However, the Reduced 1 subset resulted in
a performance gain both for Random Forests as well as for GLMMs. However, for the latter
model, the improvement can be attributed to the fact that it has the ability to incorporate ad-
ditional information as random effects in the linear predictor (Breslow e Clayton, 1993), rather
than relying solely on the values of fixed effects features for a given sample, as is the case for
the machine learning model employed in this work.

In order to bring clarity on the obtained results, a literature review was carried out
in order to find other works which have attempted to use machine learning methods for a
similar purpose. In that spirit, two other notable works were found dealing with the problem
of predicting conception outcomes in bovines with machine learning, Shahinfar et al. (2014);
Hempstalk et al. (2015). In these, both authors present a largely overlapping selection of ML
algorithms. They differ in that the former relied on extensive datasets with over 100, 000 data
points each, comprising many herds in US-based dairy farms, which used exclusively Holstein-
breed cows in a year-round mating system. The latter in turn, used a dataset of approximately
6, 500 insemination records collected from Irish research farms, which employ a seasonal mating
system and where Holstein-Friesian animals are predominantly, but not exclusively, used.

With this evidence in hand, we find that our results are largely in line with both.
Hempstalk et al. (2015) in particular, despite obtaining models with better performance indica-
tors, has also found that logistic regression outperformed all other algorithms, including random
forest, and that in their models there was an overwhelming tendency to misclassify negative
samples.

The fact, then, that logistic regression performed better for both classes, despite not
being able to model nonlinear decision boundaries, reinforces the fact that there are still no
definitive rules to determine beforehand which machine learning technique will better fit a given
data set, or if any will fit at all. In the end, all the researcher can rely on for that is their past
experiences working with similar data and performing rigorous empirical testing.
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4.4.1 Statistics versus Algorithms

In the generalized linear mixed models’ methodology, there is the possibility of taking
into account both fixed as well as random effects. The possibility of including both of these
effects in the linear predictor becomes particularly useful when dealing with binary data, given
that those frequently display a variance that is much bigger than the one specified by the model,
a phenomenon also known as overdispersion (Breslow e Clayton, 1993).

The application presented in chapter 2 was able to satisfactorily accommodate the
dispersion present in the data set, by fitting a Bernoulli-logistic-normal model. Meanwhile,
the machine learning community hasn’t devoted as much attention to the potential benefits of
enriching their random forest algorithm with random effects. This can be seen in the comparisons
carried out throughout this work, where, even though there was a similarity between the results
obtained from both methodologies, the GLMM has performed better, due to having a structure
with the ability to incorporate both fixed as well as random effects.

Some approaches to take them into account do exist, and it is reported that the mixed-
effects machine learning models, that is, those obtained by incorporating random effects, outper-
form those that only consider fixed effects (Ngufor et al., 2019). However, there are other studies
that claim no expressive improvement could be extracted by adding such effects (Fokkema et al.,
2021).

It is understood then, that there is a severe lack of understanding regarding how random
effects should be correctly implemented in machine learning, besides that, how the mixed-effects
models obtained should be benchmarked, and the exact scenarios where they should be employed
to extract a tangible benefit, evidencing, in this case, that this idea remains an unconsolidated
field, where additional research is needed in order to develop a systematic understanding of its
nuances.

While the machine learning community hasn’t been as enthusiastic in adapting existing
algorithms to take random effects into consideration, there exist some evidence exists that not
only it is possible, but also that the mixed-effects machine learning models obtained by doing it
exhibit improved performance when tested in a variety of datasets (Ngufor et al., 2019).

4.5 Conclusions

The machine learning algorithms employed in this study have been found to have only
moderate success at predicting the outcomes of embryo transfers. In this regard, it was found
that all of these techniques used in this study were able to predict much more adequately the
cases of success rather than those where the transfer didn’t result in pregnancy. Furthermore, the
successful application of a generalized linear mixed effects model to the same problem indicates
that the addition of random effects to machine learning algorithms could bring great benefit to
their performance, but the scant amount of research devoted to these models poses a significant
barrier to their widespread adoption.

With this, while machine learning algorithms remain a valuable tool for data science,
there still abound many applications where classical statistical models are capable of delivering
better results, especially when there’s not enough data for a machine learning algorithm to be
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able to learn the set of behaviors that characterizes each class.
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5 FINAL CONSIDERATIONS

The work exposed some extensions of the Generalized Linear Models, with application
in zootechnical data. In the analyses performed in chapter 2, from the study of embryo transfer,
and the pregnancy response variable was evaluated. It was concluded that there was a lack of
adjustment by the Bernoulli model, and it was explained by the possible absence of variables in
the linear predictor. However, it can be said that when adjusting the Bernoulli-logistic-normal,
we have satisfactory results were obtained in the modeling.

In chapter 3, whose variable response was embryo viability, from the study of embryo
production, a feature present was the phenomenon of overdispersion, which was adjusted through
the binomial-logistic-normal-beta model.

For chapter 4, we have revisited the embryo transfer data used in chapter 2 now us-
ing the tools of machine learning. There, a comparison was made, where the results weren’t
entirely satisfactory, due to the methodology being use not being able to accommodate all the
particularities of the data set.

Another conclusion was that in the process of reproductive biotechnology the phase
related to the production of embryos, the indices of the donor cows were important to obtain
better results regarding the embryo viability rate. On the other hand, in the transfer phase, only
the recipient cow indexes were significant for success in the pregnancy. Moreover, there were
disagreements regarding the seasons, since for the production of embryos the factor influenced
the response variable. Whereas, in the embryo transfer process the pregnancy condition was not
altered by the time.

In general, for future works, studies related to variance and covariance structures should
be approached in order to better understand the possible dependencies among the covariates
of the model. In addition, simulation studies will be necessary to understand the proposed
methodologies. Furthermore, when it comes to the machine learning techniques, we believe an
in-depth study could be carried out on the possibility of including random effects in order to
extract better results than the ones obtained in this work.
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APPENDIX

Appendix A - R Script

Verifying the effects of fertility indices - donor and recipient

#####################################################################
vh_lc_avg <- dadosTransform %>%
group_by(VH_LC) %>%
dplyr::summarise(avg_pd = mean(PD))

receptora <- ggplot(dadosTransform, aes(x = FI_R, y = PD)) +
geom_point() +
geom_smooth(method = "loess", span = 0.5, se=FALSE) +
geom_hline(aes(yintercept=avg_pd), vh_lc_avg, color="red") +
labs(x = "Recipient Fertility Indexes ",
y = "Probability of Pregnancy") +
facet_wrap(~ VH_LC)

#####################################################################
type_avg <- dadosTransform %>%
group_by(Type) %>%
dplyr::summarise(avg_pd = mean(PD))

doadora <- ggplot(dadosTransform, aes(x = FI_D, y = PD)) +
geom_point() +
geom_smooth(method = "loess", span = 0.5, se=FALSE) +
geom_hline(aes(yintercept=avg_pd), type_avg, color="red") +
labs(x = "Donor Fertility Indexes ",
y = "Probability of Pregnancy") +
facet_wrap(~ Type)

Models considered in the analyses - Chapter 2

#####################################################################
# Fixed effects model
Mod1 <- glm(cbind(PD, 1-PD) ~ VH_LC + CL_side + FI_D + FI_R +
Season + Tech + Sexed + Type + TEEF2 + Embryo_stage + DFE +
Season:VH_LC:TEEF2 + TEEF2:Embryo_stage:DFE,
family = binomial, data = dadosTransform)

# Significance analysis
anova(Mod1, test = "Chisq")
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summary(Mod1)

# Model selection
AIC(Mod1)
BIC(Mod1)
deviance(Mod1)
-2*(logLik(Mod1))
Anova(Mod1)
drop1(Mod1, test="Chisq")

#####################################################################
# Random and fixed effects models
Mod2 <- glmer(cbind(PD, 1-PD) ~ Season + Tech + Sexed + Type + VH_LC +
FI_D + FI_R + TEEF2 + Embryo_stage + CL_side + DFE + Season:VH_LC:TEEF2 +
TEEF2:Embryo_stage:DFE + (1|Donor_Cow) + (1|Recipient) + (1|Donor_Sire),
family = binomial,
data = dadosTransform,
glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e4), boundary.tol = 1e-3))

# Significance analysis
anova(Mod2, test = "Chisq")
summary(Mod2)

# Model selection
AIC(Mod2)
BIC(Mod2)
-2*(logLik(Mod2))
Anova(Mod2)
drop1(Mod1, test="Chisq")

Models considered in the analyses - Chapter 3

#####################################################################
Mod1<- glmer (resp ~ FI + SCC + DPR + TPI + MILK + Age + Time +

Season + Type + Type_2 + SEXED + (1|Donor_Sire) + (1|Donor_Cow),
family = binomial (link=logit),
data = dados,
glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e4), boundary.tol = 1e-3))

# Significance analysis
summary(Mod1)

#####################################################################
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Mod2 <- glmmTMB(resp ~ FI + SCC + DPR + TPI + MILK + Age + Time +
Season + Type + Type_2 + SEXED + (1|Donor_Sire) + (1|Donor_Cow),
family=list(family="betabinomial",link="logit"),
data = dados,
control = glmmTMBControl(optCtrl = list(iter.max=1e3, eval.max=1e3)))

Appendix B - Python Script

#####################################################################
# Defining the variables: target and features

target = 'PD'

features_full_geral = ['Tech', 'VH_LC', 'CL_side', 'Embryo_stage', 'Sexed',

"Season", "Type", "FI_R", "FI_D", "DFE", "TEEF2"]

features_full = ['Embryo_stage',"Type", "FI_R", "FI_D", "FI_S", "DFE", "TEEF2"]

features_redux_1 = ['Type', 'CL_side', "FI_R", "TEEF2", "Embryo_stage", "DFE"]

features_redux_2 = ['FI_R', 'Type', "CL_side"]

Constructing the proposed algorithms - Chapter 4

#####################################################################
# Train-test: splitting 80-20
## For 70-30 this process is similar

dfTrain, dfTest = train_test_split(dados[features_full + [target]], test_size=0.2,
random_state=20220614)

dfTest.PD[dfTest.PD == 1].count()

#####################################################################
# Encoding categorical features

dfTrainDummies = pd.get_dummies(dfTrain, drop_first=True)

dummy_features_full = dfTrainDummies.drop(columns="PD").columns

dummy_features_redux_1 = [feat for feat in dummy_features_full
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if (feat in features_redux_1)
or (feat.split("_")[0] in features_redux_1)
or ("_".join(feat.split("_")[0:2]) in features_redux_1)]

dummy_features_redux_2 = [feat for feat in dummy_features_full
if (feat in features_redux_2)
or (feat.split("_")[0] in features_redux_2)
or ("_".join(feat.split("_")[0:2]) in features_redux_2)]

#####################################################################
feature_sets = models = {
"full": dummy_features_full,
"redux_1": dummy_features_redux_1,
"redux_2": dummy_features_redux_2
}

#####################################################################
# setting proposed algorithms

models = {
"DT": DecisionTreeClassifier(),
"RAF": RandomForestClassifier(),
"LR": LogisticRegression()
}

#####################################################################
# fitting models

scaler = StandardScaler()

training_scalers = {k: StandardScaler().fit(dfTrainDummies[v])
for k, v in training_sets.items()}

scaled_training_sets = {k: v.transform(dfTrainDummies[training_sets[k]])
for k, v in training_scalers.items()}

#####################################################################
df_features = scaler.transform(dfTrainDummies[feature_sets["full"]])

df_response = dfTrain[[target]][target]

#####################################################################



73

for model in models.values():
model.fit(df_features, df_response)

Cross Validation

#####################################################################
def evalModel(model, X, Y):

Kfold = StratifiedKFold(n_splits = 10, shuffle = True)

cv_results = cross_val_score(model, X, Y, cv = Kfold, scoring = "roc_auc",
n_jobs = 8)

return cv_results

#####################################################################
# Result: validation function's output when applied to the proposed models

results = {name: evalModel(model, df_features, df_response) for (name, model)
in models.items()}

#####################################################################
# Baseline: simplest model

df_response.sum() / df_response.shape[0]

#####################################################################
# Training metric for the algorithms

for name, result in results.items():
print(f"{name}: {result.mean()} +- {result.std()}")

#####################################################################
# Box plot for cross validation on the training set

boxResults = pd.DataFrame(results).melt()
(
ggplot(boxResults, aes("variable", "value"))
+ geom_boxplot(color = "#1F3552", fill="#4271AE", alpha=0.7, outlier_shape =".",
outlier_color="steelblue")
+ xlab("Models")
+ ylab("AUC")
+ ggtitle("Algorithm comparison")
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)

#####################################################################
# ROC e AUC

roc_viz = ROCAUC(models[benchModel])

roc_viz.fit(df_features, df_response)

roc_viz.score(dfTestFeats, dfTest[target])

roc_viz.poof()
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