• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.11.2021.tde-12042021-150025
Documento
Autor
Nombre completo
Laura Vicuña Torres de Paula
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Piracicaba, 2021
Director
Tribunal
Lara, Idemauro Antonio Rodrigues de (Presidente)
Araujo, Ana Maria Souza de
Montoya, Carolina Reigada
Título en portugués
Modelos de transição com dados categorizados, em processos de tempo discreto e contínuo, com aplicações à entomologia
Palabras clave en portugués
Controle biológico
Dados categóricos longitudinais
Probabilidades de transição
Processo estocástico
Simulação de dados
Resumen en portugués
Dados com processo estocástico de tempo discreto ou contínuo podem ocorrer, em várias situações experimentais, em particular, em estudos entomológicos para avaliar comportamentos de agentes naturais que combatem pragas. As respostas desses indivíduos podem ser representadas por variáveis categóricas nominais ou ordinais. Dessa forma, este trabalho descreve classes de modelos para variáveis desta natureza, tendo como motivação experimentos desenvolvidos no Laboratório de biologia de insetos da Escola Superior de Agricultura "Luiz de Queiroz" - Universidade de São Paulo, a fim de avaliar comportamentos da microvespa Telenomus podisi e ácaro predador Phytoseiulus persimilis em estudos de controle biológico. Uma característica particular desses experimentos é o fato de descreverem ensaios com medidas repetidas ao longo tempo, uma vez que cada inseto foi avaliado em mais de uma ocasião no decorrer do tempo. Assim, modelos de transição consideram a estrutura de dados longitudinais e processos estocásticos. O trabalho está estruturado em forma de artigos. O primeiro artigo traz uma revisão sobre processo estocástico de tempo discreto e modelos de transição para analisar dados categóricos, bem como propor a utilização da estatística gradiente para verificar a condição de estacionariedade desses modelos. Sob simulação, a estatística gradiente apresentou resultados satisfatórios. Com relação ao estudo de motivação de tempo discreto, a análise permitiu identificar que a microvespa Telenomus podisi evita a competição intraespécie em ovos de Euschistus heros. O segundo artigo traz uma revisão sobre o processo estocástico de tempo contínuo e apresenta-se o modelo de multiestados, a fim de analisar dados categóricos com mensuração do tempo. Nesse artigo, apresentam-se dois experimentos entomológicos. No primeiro estudo sobre ácaro predador Phytoseiulus persimilis, há um maior efetividade ao combate do ácaro Tetranychus urticae em plantas de feijão, quando utiliza-se o composto Beauveria bassiana x Metarhizium robertsii formado por fungos entomopatogênicos. No segundo estudo sobre a microvespa Telenomus podisi, há maior preferência por oviposição em ovos não parasitados de Euschistus heros, por consequência, evita a competição intraespécie.
Título en inglés
Transition models with categorized data, in discrete and continuous time processes, with entomology applications
Palabras clave en inglés
Biological control
Data simulation
Longitudinal categorical data
Stochastic process
Transition probabilities
Resumen en inglés
Data with a discrete or continuous time stochastic process can occur, in several experimental situations, in particular, in entomological studies to evaluate behaviors of natural agents that fight pests. The response actions of these individuals are represented by nominal or ordinal categorical variables. Thus, this work describes methods of models for variables of this nature, motivated by experiments developed at the Laboratory of Entomology and Biological Control of Insects of the School of Agriculture "Luiz de Queiroz" - University of São Paulo, in order to evaluate behaviors of the parasitoid Telenomus podisi and predatory mite Phytoseiulus persimilis in biological control studies. A particular feature of these experiments is the fact that they describe assay with repeated measures over time, since each insect has been evaluated on more than one occasion over time. Thus, transition models consider the structure of longitudinal data and stochastic processes. The work is structured in the form of articles. The first article reviews the stochastic process of discrete time and transition models to analyze categorical data, as well as proposing the use of gradient statistics to verify the stationary condition of these models. Under simulation, the gradient statistic showed satisfactory results. Regarding the discrete time motivation study, the analysis allowed to identify that the parasitoid T. podisi prevents intraspecies competition in Euschistus heros eggs. The second article reviews the stochastic process of continuous time and presents the multi-state model, in order to analyze categorical data with time measurement. In this article, two entomological experiments are presented. In the first study on predatory mite P. persimilis, there is greater effectiveness in combating the mite Tetranychus urticae in bean plants, when using the compound Beauveria bassiana x Metarhizium robertsii formed by entomopathogenic fungi. In the second study on the parasitoid T. podisi, there is a greater preference for oviposition in non-parasitized eggs of E. heros, therefore, prevents intraspecies competition.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-04-14
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.