• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.11.2020.tde-12022021-181349
Documento
Autor
Nome completo
Janaína Marques e Melo
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2021
Orientador
Banca examinadora
Lara, Idemauro Antonio Rodrigues de (Presidente)
Freitas, Silvia Maria de
Spyrides, Maria Helena Constantino
Título em português
Modelos para dados categorizados ordinais de ensaios sensoriais com delineamento em blocos incompletos
Palavras-chave em português
Análise multivariada
Análise sensorial
Bebida prebiótica
Efeitos aleatórios
Logitos cumulativos
Resumo em português
Dados categorizados e ordinais ocorrem em várias situações experimentais e, em particular, em estudos sensoriais para avaliação de um produto. Nesse contexto, este trabalho descreve uma classe de modelo para variável resposta desta natureza, tendo como motivação um experimento sensorial, desenvolvido na Universidade Federal do Ceará, para avaliação de formulações de bebidas probióticas com suco de uva e amêndoa de castanha de caju. Uma característica particular desse experimento foi o fato do mesmo corresponder a um ensaio com blocos incompletos, uma vez que, cada julgador não avalia todas as formulações de bebidas. Assim, para considerar a estrutura do delineamento é usada a abordagem dos modelos de efeitos mistos. O trabalho está estruturado na forma de artigos. O primeiro artigo traz uma revisão dos modelos para dados categorizados ordinais. A análise dos cinco atributos sensoriais: aroma, corpo, doçura, sabor e impressão global foram feitas por meio da análise de correspondência e do modelo de chances proporcionais com efeito aleatório para provador, sendo ajustado um modelo para cada atributo. Essa análise permitiu identificar as melhores formulações de bebidas, sendo destacada a bebida com 6% de açúcar e 44% de suco de uva. No segundo artigo, apresenta-se a contribuição dessa tese, por meio de um modelo "multi" multivariado de efeito misto, visto que cada modelo em separado já corresponde a uma análise multivariada pela natureza da variável. Nesta abordagem, todos os atributos foram analisados simultaneamente em um modelo único. Os métodos estão centrados na teoria da máxima verossimilhança. Embora o modelo utilizado para a análise única seja o de chances não proporcionais de efeito misto, tal abordagem permitiu concluir que a bebida composta por 6% de açúcar e 43% de suco de uva, obteve uma maior aceitabilidade, representando assim, uma unicidade de análise estatística.
Título em inglês
Models for ordinal categorized data from sensory analysis with incomplete block design
Palavras-chave em inglês
Cumulative logit
Multivariate analysis
Prebiotic beverage
Random effects
Sensory analysis
Resumo em inglês
Categorized and ordinal data occur in various experimental situations and, in particular, in sensory studies to evaluate a product. In this context, this paper describes a model class for a variable response of this nature, motivated by a sensory experiment, developed at the Federal University of Ceará, to evaluate formulations of probiotic beverages with grape juice and cashew nuts. A particular feature of this experiment was the fact that it corresponds to an assay with incomplete blocks, since, each judge does not evaluate all beverage formulations. Thus, to consider the design structure, the mixed effects models approach is used.The work is structured in the form of articles. The first article provides a review of the models for ordinal categorized data. The analysis of the five sensory attributes: aroma, body, sweetness, flavor and global impression were made through the correspondence analysis and the proportional chance model with random effect for the panelists, adjusting a model for each attribute. This analysis allowed the identification of the best beverage formulations, highlighting the beverage with 6% sugar and 44% grape juice.In the second article, the contribution of this thesis is presented, through a mixed effect multivariate "multi" model, since each separate model already corresponds to a multivariate analysis by the nature of the variable. In this approach, all attributes were analyzed simultaneously in a single model. The methods are centered on the maximum likelihood theory. Although the model used for the single analysis is that of non-proportional chances of mixed effect, this approach allowed us to conclude that the beverage composed of 6% sugar and 43% grape juice, obtained a greater acceptability, thus representing a uniqueness of statistical analysis.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-02-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.