• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.11.2012.tde-08082012-143901
Documento
Autor
Nome completo
Maria Joseane Cruz da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2012
Orientador
Banca examinadora
Dias, Carlos Tadeu dos Santos (Presidente)
Pião, Antonio Carlos Simões
Piedade, Sonia Maria de Stefano
 
Título em português
Imputação múltipla: comparação e eficiência em experimentos multiambientais
Palavras-chave em português
Distribuições multivariadas
Imputação múltipla
Interação genótipoambiente- experimentos
Métodos de decomposição
Métodos MCMC
Resumo em português
Em experimentos de genótipos ambiente são comuns à presença de valores ausentes, devido à quantidade insuficiente de genótipos para aplicação dificultando, por exemplo, o processo de recomendação de genótipos mais produtivos, pois para a aplicação da maioria das técnicas estatísticas multivariadas exigem uma matriz de dados completa. Desta forma, aplicam-se métodos que estimam os valores ausentes a partir dos dados disponíveis conhecidos como imputação de dados (simples e múltiplas), levando em consideração o padrão e o mecanismo de dados ausentes. O objetivo deste trabalho é avaliar a eficiência da imputação múltipla livre da distribuição (IMLD) (BERGAMO et al., 2008; BERGAMO, 2007) comparando-a com o método de imputação múltipla com Monte Carlo via cadeia de Markov (IMMCMC), na imputação de unidades ausentes presentes em experimentos de interação genótipo (25) ambiente (7). Estes dados são provenientes de um experimento aleatorizado em blocos com a cultura de Eucaluptus grandis (LAVORANTI, 2003), os quais foram feitas retiradas de porcentagens aleatoriamente (10%, 20%, 30%) e posteriormente imputadas pelos métodos considerados. Os resultados obtidos por cada método mostraram que, a eficiência relativa em ambas as porcentagens manteve-se acima de 90%, sendo menor para o ambiente (4) quando imputado com a IMLD. Para a medida geral de exatidão, a medida que ocorreu acréscimo de dados em falta, foi maior ao imputar os valores ausentes com a IMMCMC, já para o método IMLD estes valores variaram sendo menor a 20% de retirada aleatória. Dentre os resultados encontrados, é de suma importância considerar o fato de que o método IMMCMC considera a suposição de normalidade, já o método IMLD leva vantagem sobre este ponto, pois não considera restrição alguma sobre a distribuição dos dados nem sobre os mecanismos e padrões de ausência.
 
Título em inglês
Multiple Imputations: comparison and efficiency of multi-environmental trials
Palavras-chave em inglês
Decomposition by singular values
Genotype-environment interaction
Monte Carlo via Markov chain
Multiple imputation
Resumo em inglês
In trials of genotypes by environment, the presence of absent values is common, due to the quantity of insufficiency of genotype application, making difficult for example, the process of recommendation of more productive genotypes, because for the application of the majority of the multivariate statistical techniques, a complete data matrix is required. Thus, methods that estimate the absent values from available data, known as imputation of data (simple and multiple) are applied, taking into consideration standards and mechanisms of absent data. The goal of this study is to evaluate the efficiency of multiple imputations free of distributions (IMLD) (BERGAMO et al., 2008; BERGAMO, 2007), compared with the Monte Carlo via Markov chain method of multiple imputation (IMMCMC), in the absent units present in trials of genotype interaction (25)environment (7). This data is provisional of random tests in blocks with Eucaluptus grandis cultures (LAVORANTI, 2003), of which random percentages of withdrawals (10%, 20%, 30%) were performed, with posterior imputation of the considered methods. The results obtained for each method show that, the relative efficiency in both percentages were maintained above 90%, being less for environmental (4) when imputed with an IMLD. The general measure of exactness, the measures where higher absent data occurred, was larger when absent values with an IMMCMC was imputed, as for the IMLD method, the varied absent values were lower at 20% for random withdrawals. Among results found, it is of sum importance to take into consideration the fact that the IMMCMC method considers it to be an assumption of normality, as for the IMLD method, it does not consider any restriction on the distribution of data, not on mechanisms and absent standards, which is an advantage on imputations.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Errata_mariajoseane.pdf (198.02 Kbytes)
Data de Publicação
2012-08-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.