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RESUMO

Probabilidade de completar um passe no futebol americano quadro por quadro

Futebol americano é um esporte cada vez mais popular, com uma audiência crescente em
muitos países do mundo. Nos Estados Unidos existe a National Football League (NFL), onde toda
jogada ofensiva pode ser uma corrida ou um passe, e nessa dissertação o interesse está nos passes. Nem
todas as jogadas de passe são iguais, vários fatores podem influenciar a probabilidade de completar
um passe, como separação do recebedor para o defensor mais próximo, distância entre o passador e o
recebedor, formação ofensiva, placar do jogo e vários outros. Quando se tenta prever a probabilidade
de completar um passe, é essencial saber quem é o alvo do passe. Usando medidas de distância
entre os jogadores e a bola, é possível calcular probabilidades empíricas e prever com alta acurácia
quem será o alvo. A grande questão é: quão provável é um passe ser completado em uma partida da
NFL enquanto a bola está no ar? Foi desenvolvido um algoritmo de aprendizado de máquinas para
responder a essa pergunta baseado nos fatores mencionados. Usando dados da temporada de 2018 da
NFL, foram obtidas probabilidades condicionais e marginais de completar passes, baseadas em um
modelo de floresta aleatoória. Foi feito um procedimento em dois estágios: primeiro, calcularam-se
as probabilidades de cada jogador ofensivo ser o alvo do passe, depois, dado que o jogador é o alvo, é
prevista a probabilidade do passe ser completado baseado no modelo de floresta aleatória. Por último,
a probabilidade geral do passe ser completado pode ser calculada usando a lei da probabilidade total.

Palavras-chave: Aprendizado de máquinas, National Football League, Random forest, Software R
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ABSTRACT

Frame by frame completion probability of an American football pass

American football is an increasingly popular sport, with a growing audience in many
countries in the world. The most watched American football league in the world is the United States’
National Football League (NFL), where every offensive play can be either a run or a pass, and in
this dissertation, it is the pass that matters. Not all pass plays in the NFL are created equal, many
factors can affect the probability of a pass completion, such as receiver separation from the nearest
defender, distance from receiver to passer, offensive formation, game score, among many others.
When predicting the completion probability of a pass, it is essential to know who the target of the
pass is. By using distance measures between players and the ball, it is possible to calculate empirical
probabilities and predict very accurately who the target will be. The big question is: how likely is
it for a pass to be completed in an NFL match while the ball is in the air? We develop a machine
learning algorithm to answer this based on the aforementioned predictors. Using data from the 2018
NFL season, we obtained conditional and marginal predictions for pass completion probability based
on a random forest model. This is based on a two-stage procedure: firstly, we calculate the probability
of each offensive player being the pass target, then conditional on the target, we predict completion
probability based on the random forest model. Finally, the general completion probability can be
calculated using the law of total probability. We present animations for selected plays and show the
pass completion probability frame by frame.

Keywords: Machine learning, National Football League, R Software, Random forest
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1 INTRODUCTION

American football is a team sport played by two teams of eleven players on a rectangular field
with goalposts at each end. The game is divided into plays; in each play, one team is the offense and
have possession of the ball, and the other is the defense. The offense tries to advance down the field by
running or passing the ball, while the defense aims to stop the offense’s advancement while trying to take
control of the ball themselves. The most common ways of scoring points are by advancing the ball to
the opponent’s end zone for a touchdown, or kicking the ball through the opponent’s goalposts for a field
goal. The team with more points at the end of the game wins.

The National Football League (NFL) is the most popular professional league of American
football in the world. It is based in the United States and currently consists of 32 teams, divided into
two conferences of four divisions each. The NFL is the most profitable professional sports league in the
United States, having generated revenue of 15.26 billion U.S. dollars in 2019 (Gough, 2020). Each season
is concluded with the Super Bowl, where the champions of each conference play against each other, and
is one of the largest events of the year in the United States, with a growing audience around the world.
Super Bowl LV, which was played on February 7th, 2021, had an average viewership of almost 100 million
in the United States plus an estimated 30 to 50 million viewers worldwide. Although it is still a small
viewership compared to the world’s most significant events in the world like the FIFA World Cup Finals,
it is a number that is growing every year (Richter, 2021).

The main difference between this paper and similar works on the topic, such as that of Yurko
et al. (2020), is that we focused specifically on passing plays in the NFL, and present more detailed
results, such as providing a way to calculate real time completion probabilities, given that it is possible to
obtain the tracking data in real time as well. This is mainly relevant for entertainment purposes, as the
audience could be very excited to watch completion probabilities unfolding on screen at the same time as
plays are happening. We used data from the 2018 NFL season to model and predict probabilities of pass
completion, as well as to estimate probabilities for each eligible player of the offense to be the target at
each play.

The definition of a pass completion follows: a pass is complete (by the offense) in the field of
play, at the sideline, or in the end zone if a player, who is inbounds:

– a. secures control of the ball in his hands or arms prior to the ball touching the ground; and

– b. touches the ground inbounds with both feet or with any part of his body other than his hands;
and

– c. after (a) and (b) have been fulfilled, performs any act common to the game (e.g., tuck the ball
away, extend it forward, take an additional step, turn upfield, or avoid or ward off an opponent),
or he maintains control of the ball long enough to do so.

We started by cleaning the data and creating the variables we were interested in including in
our model (mostly distance measures) to obtain empirical probabilities for each of the offensive players
to be the target of the play in every frame, from the moment of the pass until the final outcome. Using
statistical models, we obtained the probabilities of pass completion given that a specific player was the
target. Then, through the law of total probability we estimated the probability of pass completion for
the play as a whole (Zwillinger and Kokoska, 1999).

In Chapter 2, we introduce the data set, along with the mathematical definition of the metrics we
created. We also present an exploratory data analysis for contextualization, and the statistical modeling
tools used. In Chapter 3, we present and discuss our results. Finally, in Chapter 4 we make our final
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considerations about our work and draw some conclusions and insights about how our results can be
helpful and how they may be improved even further in future works.
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2 MATERIALS AND METHODS

The R software (R Core Team, 2021) was used to read the data, build the models, generate
the plots and every other computational implementation needed. Many packages were used to obtain
the results needed; to manipulate the data we used the tidyverse suite of packages (Wickham et al.,
2019), to easily implement the cross-validation for the models we used the caret package (Kuhn, 2020),
to fit the random forests we used the randomForest package (Liaw and Wiener, 2002), and to create
animations of the plays we used the gganimate package (Pedersen and Robinson, 2020).

2.1 NFL data

The data utilized in this paper was obtained from the Kaggle analytics competition NFL Big
Data Bowl 2021 (Kaggle, 2020), and is available at https://www.kaggle.com/c/nfl-big-data-
bowl-2021/data. The competition used NFL’s Next Gen Stats data that includes the position and
speed of every player on the field during each play. The data contains tracking, play, game, and player
information for all possible passing plays during the 2018 regular season, except from three games of week
1, for a total of 253 games. Passing plays are considered to be the ones on which a pass was thrown,
the quarterback was sacked, or any one of five different penalties was called (defensive pass interference,
offensive pass interference, defensive holding, illegal contact, or roughing the passer).

The data is hierarchical by nature, consisting of game data, play data within each game, and
tracking data within each play. Besides that, we also have player data. The utilized variables from each
data level are:

– Game data: game identifier code, and the three-letter abbreviation codes of the home and visitor
team;

– Player data: player identification number (unique across players), player name, and player position
group (e.g. quarterback (QB), running back (RB), linebacker (LB), wide receiver (WR), defensive
back (DB), safety (S), tight end (TE) and defensive lineman (DL), totaling 8 categories);

– Play data: game identifier code, play identifier code, play description, game quarter (categorical,
1 to 5, with 5 representing overtime), down (categorical, 1 to 4), distance needed for a first down
(in yards), three-letter abbreviation codes of possession team and which side of the field is the
line-of-scrimmage, yard line at line-of-scrimmage, formation used by possession team (e.g. shot-
gun, wildcat, jumbo, “I” formation, pistol, singleback and empty backfield, totaling 7 categories),
number of defenders in close proximity to line-of-scrimmage, number of pass rushers, dropback ca-
tegorization of quarterback (e.g. designed rollout left, designed rollout right, traditional, scramble,
scramble rollout right, scramble rollout left and unknown, totaling 7 categories), home and visiting
team scores prior to the play (in points), time on clock of play (in minutes and seconds), NFL cate-
gorization of the penalties that occurred on the play, and outcome of the passing play (C: Complete
pass, I: Incomplete pass, S: Quarterback sack, IN: Intercepted pass, totaling 4 categories);

– Tracking data: Player position along the long axis of the field (0 - 120 yards), player position along
the short axis of the field, (0 - 53.3 yards), tagged play details (moment of ball snap, pass release,
pass catch, tackle, etc., totaling 41 categories), player identification number, player name, player
jersey number, player position group (QB, RB, LB, WR, DB, S, TE and DL), team of corresponding
player, frame identifier for each play (starting at 1), game identifier code, play identifier code, and
direction to which the offense is moving (left or right).

https://www.kaggle.com/c/nfl-big-data-bowl-2021/data
https://www.kaggle.com/c/nfl-big-data-bowl-2021/data
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The variable that indicates the direction to which the offense is moving was used to flip the
coordinates x and y when the direction was left, so the plays always align with the direction of the
offense’s target end zone. A tutorial post on the Kaggle competition forum (Bliss and Lopez, 2020)
contained initial code to read and merge the databases and flip coordinates (https://www.kaggle.com
/tombliss/tutorial).

2.1.1 Data manipulation

First and foremost, all the plays that presented any problem in the database were removed from
the data. For example: unusual pass plays like fake punts or fake field goals that did not have a specific
offense formation would have a missing value in this variable, or even some plays had clear problems such
as not having tracking information of the ball or some players. All plays whose result was a sack were also
removed, because although they are considered passing plays by the NFL, a pass does not actually take
place. Plays that had a penalty in them were also removed because most of them would have missing
values for several variables and we cannot be sure what the penalty is during plays, since the referees
only announce the penalties after the play is over.

The play description variable was very important. It describes what happened in the play, for
example: “(15:00) M.Ryan pass short right to J.Jones pushed ob at ATL 30 for 10 yards (M.Jenkins).”.
This contains the name of the player who passed the ball, the player who received the pass, and other
characteristics of the play. From these descriptions, using string manipulation we were able to extract the
name of the passer in every play and the name of the target in most of the plays. There were, however,
some incomplete passes which did not state the name of the target on the play. In these cases the eligible
receiver closest to the ball at the moment of the play being considered an incomplete pass was considered
the target. Moreover, plays that were not meant to be attempted passes to a target (e.g. spikes – when
the quarterback simply throws the ball to the ground for the clock to stop, and throwaways – when the
quarterback is very pressured by the defense and throws the ball away to avoid a sack) could be easily
identified because key words such as “spiked” or “threw away” would be present in the text. These plays
were also removed from the data.

For the remaining plays we used the variable that tags the play details on every frame (moment
of ball snap, pass release, pass catch, tackle, etc.) to determine in which one the forward pass begins and
in which one there is an outcome to the play, such as completed pass, incomplete pass or interception.
Finally, we filtered only the frames in between these events.

The original database contained 18 309 388 rows, each representing a player within a frame
within a play, with rows representing defensive players and the ball on every frame. The total number
of plays was 19 239, with 1 247 711 frames. When applying the filters mentioned above, the database got
reduced to 1 012 954 rows, having a maximum of 5 rows for the same frame, representing only the possible
receivers of a play, and a total of 16 445 plays with 203 091 frames.

It is important to state that the original database contained one row for each player (offensive
and defensive), and one row for the ball, in each frame for all the plays present. Since our goal is to reach
probabilities only for the offensive players that are the possible targets of the passes (which are only 4 or
5 per frame), we condensed the information about the defensive players and the ball on the rows of the
potential targets. This already contributes to a reduction of almost 66% of the rows from the original
database. Almost 81% of the reduction in the number of total frames is caused by the removal of the
frames before the pass begins and after the pass has an outcome.

The 14.5% reduction in the number of plays were caused by the removal of plays that resulted
in sacks, unusual plays, penalties, spikes, throwaways or plays with problems in the data, mentioned
above.

https://www.kaggle.com/tombliss/tutorial
https://www.kaggle.com/tombliss/tutorial
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2.2 Statistical Theory

In this Section we will cover the basic theoretical explanation behind the main statistical topics
used throughout this paper.

2.2.1 Logistic Regression

Following Dobson and Barnett (2018), when we want to model a binary variable, which is
the completion or incompletion of a pass, we can use a generalized linear model (GLM). Let P = Y

η ,
represent the proportion of successes Y obtained within a total number of independent trials η. We
assume that Y ∼ Binomial(η, π), which yields E(Y ) = ηπ, where π is the probability of success. We have
E(P ) = π, and we can model the probability π as

g(π) = x⊤β, (2.1)

where g(π) is a monotone and differentiable link function, x is a vector of explanatory variables and β is
a vector of parameters.

For the logistic regression model, we have that the canonical link function is g(π) = logit(π) =
log

(
π

1−π

)
, yielding

log
(

π

1− π

)
= x⊤β, (2.2)

which can be rewritten as

π =
exp(x⊤β)

1 + exp(x⊤β)
. (2.3)

This is called a logistic regression model.

2.2.1.1 Other link functions

As an alternative to logistic regression, we can use other link functions as g(π). In this paper
we used two others that are very often used in the literature: the probit and the complementary log-log
link. The probit link takes the form

g(π) = Φ−1(π),

where Φ(.) represents the cumulative distribution function of the standard normal distribution. The
complementary log-log link takes the form

g(π) = log[− log(1− π)],

and is based on the cumulative distribution function of the Gumbel distribution.
These are all binomial generalized linear models, which are easily implemented in R by using

the glm() function.

2.2.2 Random Forests

Random forests (RF) were introduced by Breiman (2001) as an extension of regression or
classification trees (Breiman et al., 1984), which are based on decision trees. Each individual regression
tree is built from the original sample by bootstrap resampling and is grown based on m randomly selected
variables from a total of M explanatory variables. A tree is created by an iterative process that partitions
the data in several regions by doing a recursive binary splitting. In each step the predictor and its cutpoint
are selected such that splitting the space into new regions leads to the greatest possible reduction in the
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residual sum of squares, and this process is repeated until a stopping criterion is reached. The prediction
of the tree will be the average of the response variable on the region the observation is assigned.

A classification RF is an ensemble learning method that builds many classification trees and
evaluates their overall performance together. We avoid the impact of outlier trees because the volume of
trees we are building is massive. The best value for m can then be determined via cross-validation.

Suppose we have the training data {(x1, y1), ..., (xn, yn)}, where xi is a vector of the explanatory
variables, and yi is the response variable. We want to find a function f : X → Y . In summary, a RF:

(i) selects a number of observations randomly from the original sample, with replacement, which forms
a bootstrap sample;

(ii) for each subset, selects m < M random variables from the overall M explanatory variables.

For a binary response variable, a class prediction is produced for each tree, and the RF prediction
probability is the proportion of one of the classes on these predictions. The number of trees in the forest
is also a value that can be changed, but as the default value in the package randomForest (Liaw and
Wiener, 2002) on R is 500, and testing higher values did not produce better results, we decided to
maintain this number in our work.

2.2.3 Discriminant Analysis

Discriminant analysis is a multivariate classification technique that separates observations in
groups and allocates new ones in one of the predefined groups. Discriminant analysis is exploratory
by nature. This technique aims to describe the differential features of the observations algebraically.
Discriminant functions are found, which separate the populations as best as possible (Johnson and
Wichern, 2007).

We used two types of discriminant analysis: linear and quadratic. They both require that
predictors follow a multivariate normal distribution. The Linear Discriminant Analysis (LDA) has an
assumption that the predictor data from each class may have different means, but the same covariance
structure, while in the Quadratic Discriminant Analysis (QDA) they are allowed have different covariance
structures.

LDA is a generalization of the Fisher Linear Discriminant. It can be used for more than two
classes, but in this paper we only have the need for two. We obtain the decision boundary between
the two classes and every new observation is allocated to one of the classes based on the vector x of
explanatory variables associated with them.

The probability of a observation belonging to group k conditional on observing x satisfies:

P (k | x) ∝ πkf(x | µk,Σk), (2.4)

where πk is the probability of an observation to belong to class k, µk and Σk represent the vector of
means and the covariance matrix of x on class k, respectively. But in LDA we have to assume that both
classes have the same covariance structure, which means that when maximizing Equation 2.4, we obtain:

δk(x) = log(πk) + x⊤Σ−1µk − 1

2
µ⊤

k Σ
−1µk. (2.5)

For each class k, these are called the linear discriminant functions. For two classes k and l, the decision
boundary is where δk(x) = δl(x). For a new observation, we calculate these values and see which is
greater, and that is the class to which it will be allocated.

For QDA, the difference is that each class is allowed have a different covariance structure, which
means we get different functions known as quadratic discriminant functions:
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δk(x) = log(πk)−
1

2
log|Σk| −

1

2
(x− µk)

⊤Σk
−1(x− µk). (2.6)

The conclusions are the same as in LDA. QDA provides more flexible (non linear) boundaries than LDA,
but by doing that requires the estimation of more parameters.

In R, we used the functions lda() and qda() from package MASS (Venables and Ripley,
2002) to implement LDA and QDA, respectively.

2.2.4 Cross-Validation

Cross-validation, also known as out-of-sample testing, can be any of several similar model
validation techniques for assessing how the results of a statistical analysis will generalize to an independent
data set (Stone, 1974). These techniques are mainly used in settings where the goal is prediction, to
give an insight on how the model will perform when applied to an independent dataset (i.e., an unknown
dataset). The goal of cross-validation is to avoid overfitting and selection bias (Cawley and Talbot,
2010). It works by:

– Separating the data in several partitions;

– In each step a model is trained with most of the data;

– The model is tested with the remainder of the data by computing the predictions of these observa-
tions that weren’t used to train it;

– In the end, all observations will be left out to be tested on exactly one step, thus giving us predictions
of all observations without using them in the model that predicted it.

In this thesis, we have one realization of the response variable for each frame in each play.
However, since the frames that belong to the same play are dependent, it is best to consider each play
as group of frames, and to use the Leave Group Out Cross-Validation (LGOCV) technique, using plays
as the grouping factor. This means that all frames within a play were held out in one of the folds. It is
necessary to split the data in k-folds, and as a general rule, most authors and empirical evidence suggest
that k = 5 or k = 10 are the most preferred values.

In summary, the goal of cross-validation is predictive power, rather than estimation of a par-
ticular structural or causal parameter. Since the method uses out-of-sample comparisons rather than
in-sample goodness-of-fit measures, it ensures that we obtain unbiased comparisons of the fit.

2.2.5 Receiver Operating Characteristic curves

A receiver operating characteristic (ROC) curve is a graphical technique that illustrates the
diagnostic ability of a binary classifier system as its discrimination threshold is varied. The sensitivities
(True Positive Rates) and specificities (True Negative Rates) for different values of a continuous test
measure are first tabulated to produce a ROC curve. This results, essentially, in a list of various test
values and the corresponding sensitivity and specificity of the test at that value. Then, the graphical
ROC curve is produced by plotting true positive rate on the y-axis versus false positive rate on the x-axis
for the various values tabulated (Hoo et al., 2017).

A ROC curve similar in shape to the identity line y = x produces false positive results at the
same rate as true positive results. Therefore, we expect a diagnostic test with reasonable accuracy to
have a ROC curve in the upper left triangle above the y = x identity line. The area under the curve
(AUC) is a global measure of the ability of a model to discriminate whether a specific condition is present
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or not present (Zou et al., 2007). An AUC of 0.5 represents a test with no discriminating ability (i.e.,
no better than chance), while an AUC of 1 represents a test with perfect discrimination.

In this paper we chose to evaluate the models through the AUC, computed with the trapezoidal
rule (Robin et al., 2011), as it is one of the most widely used metrics for evaluation of binary classi-
fication problems. The AUC is a robust overall measure to evaluate the performance of score classifiers
because its calculation relies on the complete ROC curve and thus involves all possible classification
thresholds (or cut-off points) (Hanley and McNeil, 1982).

In R we used package pROC (Robin et al., 2011) to calculate the values and package plotROC
(Sachs, 2017) to generate the plots.

2.3 Distance measures

It is noteworthy to mention that any field in the NFL is divided in yards, which is the standard
distance measure for everything in the NFL, so all the distances we calculated in this paper are also in
yards, 1 yard is equal to 0.9144 meters.

The first distance measure we wanted to calculate was the distance of a point (x0, y0), repre-
senting a player, to the line created by the points (x1, y1) and (x2, y2), representing the movement of the
ball or a player from one frame t− 1 to another frame t. We refer to this distance as d.

Let v be a vector perpendicular to the line formed by (x1, y1) and (x2, y2), and given by

v =

[
y2 − y1

−(x2 − x1)

]
. (2.7)

Then let r be a vector from the point (x0, y0) to (x1, y1)

r =

[
x1 − x0

y1 − y0

]
. (2.8)

We can calculate the distance d, which is given by projecting r onto v (Weisstein, 2021)

d = |v · r| =
∣∣(x2 − x1)(y1 − y0)− (x1 − x0)(y2 − y1)

∣∣√
(x2 − x1)2 + (y2 − y1)2

. (2.9)

In Figure 2.1 we visualize the points and the vectors used to calculate the distance d. In R we
created a function to calculate and return the distance d when informing the coordinates of the three
points, using the formula given on Equation 2.9.

(x1, y1)

(x2, y2)

d
(x0, y0)r

v

Figure 2.1. Visual representation of point-line distance d

To calculate the distance between two points on a plane, we used the Euclidean distance between
two points, which for any set of points (x0, y0) and (x1, y1) is given by
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h =
√
(x1 − x0)2 + (y1 − y0)2. (2.10)

In R, h was calculated through the function PointDistance from package raster (Hijmans,
2021), which uses the formula on Equation 2.10. Finally, the last distance-based measure we used was
the distance difference for a player or for the ball between frames t and t− 1, which we refer to as b:

b = ht − ht−1. (2.11)

2.4 Statistical modeling

We mainly separated our work into two big modeling issues, one to determine probabilities of
the offensive players to be the target of the play, and the other to determine the probabilities of the pass
to be completed given that a specific player is the target.

2.4.1 Target prediction

To calculate distances between players and the ball, we used the variables that describe their
coordinates in the field in each frame, and applied them to the equations described in Section 2.3. In some
cases, the ball coordinates in the previous frame were identical to the current frame, which is possibly an
error on the ball tracking; in these situations we considered the coordinates of the previous frame that
had different coordinates to calculate the distance from point (player) to line (ball direction) described
in Equation 2.9. We refer to this distance as d(1). In the case of a player being exactly on top of the line
created by the ball’s coordinates we set the distance to 0.01 to avoid issues of having a distance being 0.

In some plays the ball was still going backwards on the first frames despite the frames being
after the event of a “pass forward”, most likely because of an error in the database or because the passer
was moving backwards when releasing the ball. In these cases we discarded the first few frames until the
ball started moving forward.

From Equation 2.11, we define d(3) as the distance b, which represents the distance difference
between players and ball from previous to current frame, resulting in a negative number if the distance
from a player to the ball decreased in current frame, and a positive number if the distance increased. A
characteristic of this distance is that it can have negative values, so we created a standardised version
d(2) such that d(2) ≥ 1, defined as

d
(2)
ij =

d
(3)
ij + 1 +

∣∣∣min(d(3)
j )

∣∣∣ if min(d(3)
j ) > 0

d
(3)
ij + 1− min(d(3)

j ) otherwise
, (2.12)

where d
(2)
ij and d

(3)
ij represents the distance d(2) and d(3) for player i on frame j respectively, and d

(3)
j

is the vector of all observations of d(3) on frame j. The use of d(2) avoids problems arising from values
equal to or close to zero.

We calculated the probability of a player i being the target for every frame j. We considered
each frame independent, even those in the same play. That is because the distances mentioned above were
used to determine these probabilities, and since on the same play these distances do not change much from
one frame to another, the probabilities for the same player on the same play end up following a natural
dependent pattern. Using the distance variables d(1) and d(2), we calculated an empirical probability of
the form

Pk(T = i | j) =
min(d(k)

j )

d
(k)
ij

× 1∑n
i

min(d(k)
j )

d
(k)
ij

=
1

d
(k)
ij ×

∑n
i=1(d

(k)
ij )−1

, (2.13)
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where k = 1, 2, i = 1, . . . , n represents the players who are the potential targets in the play of frame j,
d
(k)
ij is the distance measure d(k) of player i in frame j, and d

(k)
j represents the vector of values of d(k) for

all potential targets on frame j. This formula guarantees that the sum of the probabilities will be 1 for
every frame, and for example, considering k = 1, guarantees that the closest player to the line projected
by the ball will have the highest probability of being the target, while when k = 2, the player that got
closer to the ball from previous to current frame will have the highest probability of being the target.

To increase the accuracy of our method, we created a weighted combination of probabilities
based on d(1) and d(2), written as

f(W ) = (1−W )P1(T = i | j) +WP2(T = i | j), (2.14)

where the weight W ∈ [0, 1]. The objective is to give more importance to one measure or the other in
each frame, depending on some characteristics of the plays. If we consider that these two metrics have
the same importance in every situation we will have W = 0.5.

We used four different approaches to determine these weights, considering the order statistics
of a metric for one player per frame in the whole database. Let d(4) be the Euclidean distance h between
the players and the ball. The four weights used were:

– W (1), based on the d(3) of the player with the lowest d(1);

– W (2), based on the d(2) of the player with the lowest d(1);

– W (3), based on the d(4) of the player with the lowest d(1);

– W (4), based on the d(4) of the player with the lowest d(2).

The values of W (r), r = {1, 2, 3, 4}, are the same for every player i on the same frame, but
different for every frame j. Therefore we use the indexing W

(r)
j to refer to weight of type r calculated

for frame j. To represent the values of these weights mathematically, we define the matrix

D(k) =


d
(k)
11 d

(k)
12 d

(k)
13 . . . d

(k)
1m

d
(k)
21 d

(k)
22 d

(k)
23 . . . d

(k)
2m

...
...

... . . . ...
d
(k)
n1 d

(k)
n2 d

(k)
n3 . . . d

(k)
nm

 , (2.15)

with d
(k)
ij representing the distance measure d(k) (k = {2, 3, 4}) of player i = 1, ..., n in frame j = 1, ...,m,

where m = 203091 represents the total number of frames in all of our database. Let Z(s) (s = {1, 2}) be
a matrix whose elements are

z
(s)
ij =

1 if mini(d
(s)
j ) = d

(s)
ij

0 otherwise
, (2.16)

where d
(s)
j is the j-th column of D(s). We also define

d(k,s)
∗ = diag{(D(k))⊤Z(s)}, (2.17)

where diag(X) represents the main diagonal of the square matrix X. The indices k and s are both used
to represent distances d(1) to d(4) that are used for matrices D(k) and Z(s), but they are different because
weights W (r) depend on two different distances, as explained on the description of the weights listed
above.

Now let U be the ordered vector of dimension u containing the unique values in d(k,s)
∗ , and a

be a vector of the same dimension u such that the l-th element of a is al =
l−1
u−1 , then

W
(r)
j = al, for the l corresponding to the match Ul = d

(k,s)
∗j . (2.18)
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To make Equation 2.18 more clear, suppose we have 7 frames and d(k)
∗ = {3, 3, 2, 6, 6, 1, 8}, then U =

{1, 2, 3, 6, 8} and a = { 0
4 ,

1
4 ,

2
4 ,

3
4 ,

4
4}, then W (r) = { 2

4 ,
2
4 ,

1
4 ,

3
4 ,

3
4 ,

0
4 ,

4
4}, because we are seeking the l-th

element of a for the l that corresponds to the match Ul = d
(k,s)
∗j .

For each weight, the k and s in these equations will depend on which distance measures the
weights are based on, following the weights listed above. For W (1) we have k = 3 and s = 1 because it
is based on the d(3) of the player with the lowest d(1). Then for W (2) we have k = 2 and s = 1, for W (3)

we have k = 4 and s = 1, and finally for W (4) we have k = 4 and s = 2.
Substituting W

(r)
j in Equation 2.14 we get the probabilities of every player being the target

on frame j based on weights of type r. In practice, what this means for weight W (1) is that the lower
the d(3) of the player with the lowest d(1) is in a frame, we give more importance to the probability
P1(T = i | j), from Equation 2.13, which means that if the player closest to the line projection of the
ball is also getting much closer to the ball itself, we will give much more importance to the probability
calculated from the distance of player to line projection of the ball. Similarly, the higher this distance is,
we give more importance to the probability P2(T = i | j), which means that if the player closest to the
line projection of the ball is getting farther away from the ball itself, we will give much more importance
to the probability calculated from the distance difference between the current and previous frames. The
same line of thought applies for the other weights, but for W (4) it is inverted, meaning that in Equation
2.14, for this type of weight, we have to use f(1 − W (4)), because it is the only one that generates a
distance of the player with the lowest d(2) and not the lowest d(1).

Now that we have a probability of every player being the target in every frame of every play, if
we consider the player with highest probability in each frame to be the predicted target, we can calculate
the accuracy of our method. We do so using each one of the proposed weights. A problem with these
probabilities is that even in situations where a player does not have a chance to be the target anymore,
the probability associated with this player will not be zero. To fix some of the most obvious cases of this
problem, we made an adjustment. We considered that a player is very close to ball when he has d(1) and
d(4) lower than 2 yards, which was a number tested to maximize the accuracy; when this happens, the
probabilities of all the other players that are not within the same distances are added to his probability,
and theirs are set to zero. In the sporadic cases where more than one player very close to the ball, the
probabilities are “transferred” to the one with the highest probability of being the target. Table 2.1
shows the accuracy before and after applying the aforementioned adjustment. The accuracy is calculated
considering that in each frame, the player with the highest probability of being the target is the predicted
target. After that we compare if this player is the real target of the play that frame belongs to, if he is
we have a success, if he is not we have a failure, so the accuracy is the percentage of successes.

Table 2.1. Accuracy of target prediction using different weights, before and after the adjustment of
transferring probabilities when there is at least one player very close to the ball. EW represents equal
weights (W = 0.5 in Equation 2.14)

Weight Accuracy before adjustment Accuracy after adjustment
EW 81.25% 82.67%
W (1) 84.15% 85.48%
W (2) 85.66% 86.68%
W (3) 84.34% 85.23%
W (4) 81.06% 81.89%

Of all plays in the data, the number of frames analysed varies from 1 to 46, but is mainly
concentrated below 20. 75% of the plays consist of 16 or fewer frames, and 95% have 25 or fewer
plays. With this information, we decided to analyse the accuracy considering the frames, both from the
beginning of plays and from the end of plays, to see specifically if the weights tested would have different
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performances in these situations. When looking at these scenarios, we found that in the beginning of the
plays, weight W (2) seems to provide the best accuracy. But when we look at the last frames of the plays,
we see that weight W (3) has a better accuracy than W (2).

This characteristic propelled us to create a new weight combining W (2) and W (3), giving more
importance to W (2) in the beginning of plays but changing to give more importance to W (3) as the play
extends. We used a logistic model to create these new weights. The values to evaluate the model were 1

to 46, which are the minimum and maximum of frames in a play, with asymptote 1, inflection point of the
curve being the mean of number of frames in the plays, which was 13.34183, and for the scale parameter
we performed a grid search with accuracy as our target function, and 2.57 was the value that maximized
the accuracy, so that was the value for the parameter. We called these new weights W (2,3), defined as

W
(2,3)
t =

1

1 + e
(13.34183−t)

2.57

, (2.19)

with t = 1, ..., 46 representing the number of the frame in a play.
Therefore, the final formula we used to calculate the probability of a player i to be the target

of a play in a frame j is

P (T = i | j, t,D(1),D(2),D(4)) = W
(2,3)
t f(W

(3)
j ) + (1−W

(2,3)
t )f(W

(2)
j ). (2.20)

This new and final way to compute the probabilities achieved an accuracy of 86.92%, which was better
than the ones obtained through either of W (2) and W (3), as expected. Although the increased accuracy
doesn’t appear very large in percentage, this final formula predicts correctly on almost 500 frames more
than using only W (2) (the better accuracy from 2.1). The difference between t and j is that t is specific
for each play, varying from 1 to 46 (maximum of frames evaluated in a play), and j is a generic count of
frames on the whole database, from 1 to 203148 (total number of frames on the database).

Figure 2.2 shows the accuracy comparison of all the weights, including W (2,3), looking both
from the angle of the initial frames of each play, and the final frames of each play.

2.4.2 Completion probability

Now that we have probabilities of each eligible offensive player being the target, we can calculate
the conditional probability of the pass to be completed given that a player is the target. Using the law of
total probability we can then compute the probability of a pass being completed for each frame of every
play. We write

P (C) =

n∑
i=1

P (C | T = i)P (T = i), (2.21)

where P (C) is the completion probability, n is the number of players that can be the target on a given
play, P (T = i) is the probability of player i being the target, calculated through Equation 2.20, and
P (C | T = i) is the completion probability given that player i is the target. The computation of
P (C | T = i) is the focus of this section.

The response variable for the models we tested was a binary variable with levels “I” and “C”,
representing the result of the play to be an incomplete or a complete pass, respectively. Pass interceptions
were considered incomplete passes. We used 32 explanatory variables, listed below:

– Play data:

– Game quarter (factor, with levels 1 to 5, the last one representing overtime);

– Down (factor, with levels 1 to 4);

– Distance needed for a first down (numeric);
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Figure 2.2. Accuracy of Target prediction from the (a) beginning of plays, or (b) end of plays, i.e.,
proportion of frames that the player with highest probability of being the target really was the target.
EW represents equal weights (W = 0.5 in Equation 2.14)
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– Formation used by possession team (factor, with 7 categories);

– Number of defenders in close proximity to line-of-scrimmage (numeric);

– Number of pass rushers (numeric);

– Dropback categorization of quarterback (factor, with 7 categories);

– Time on clock of play, in seconds (numeric);

– Yard line at line-of-scrimmage from 1-99 (numeric);

– Offensive team score prior to the play (numeric);

– Defensive team score prior to the play (numeric);

– Indicator if the offensive team is playing at home (logical);

– Distance from passer to given target at the moment of pass (numeric);

– Player data:

– Player position of the given target (WR, RB, TE, QB and defensive player (DEF)) (factor,
with 5 categories);

– Player position of the closest defensive player (LB, DB, S, DL and offensive player (OFF))
(factor, with 5 categories);

– Player position of the second closest defensive player (LB, DB, S, DL and OFF) (factor, with
5 categories).

– Frame data:

– Distance from given target to line projection created by the ball (numeric);

– Distance from given target to the ball (numeric);

– Distance difference in current and previous frame from given target to the ball (numeric);

– Distance from closest defensive player to line projection created by the ball (numeric);

– Distance from closest defensive player to the ball (numeric);

– Distance difference in current and previous frame from closest defensive player to the ball
(numeric);

– Distance from second closest defensive player to line projection created by the ball (numeric);

– Distance from second closest defensive player to the ball (numeric);

– Distance difference in current and previous frame from second closest defensive player to the
ball (numeric);

– Distance from closest defensive player to line projection created by the given target (numeric);

– Distance from closest defensive player to the given target (numeric);

– Distance difference in current and previous frame from closest defensive player to the given
target (numeric);

– Distance from second closest defensive player to line projection created by the given target
(numeric);

– Distance from second closest defensive player to the given target (numeric);

– Distance difference in current and previous frame from second closest defensive player to the
given target (numeric);
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– Distance from given target to the nearest sideline (numeric).

The closest defensive player mentioned was considered to be the closest defensive player to the
line projection of the given target, and the second closest defensive player is the closest defensive player
to the given target in Euclidean distance. When the same player is the closest by both metrics, we
considered the second closest defensive player to be the second closest in Euclidean distance.

In Figure 2.3, we demonstrate the correlation between some of these explanatory variables and
the completion or incompletion of a pass, where the y axis in all plots represent the completion percentage,
i.e., the percentage of frames corresponding to the metric in the x axis where the result of the play was
a completed pass.

To summarise all our work, Figure 2.4 shows the step-by-step algorithm of what we would have
to do if we obtain a new play to calculate probabilities.
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Figure 2.3. Plots of six different variables versus the completion percentage of passes, showing the
correlation between explanatory and response variables. The continuous variables displayed on the x axis
were discretized in intervals, and the size of the points correspond to the number of frames belonging to
each interval



23

Organize new play data

Calculate distances d(1), d(2)
and d(4)

Update W (2), W (3) to
include the new frames

Create target probabilities
based on Equation 2.20

Predict pass completion
probabilities with Random

Forest model

Given predicted target General probability
with total probability law

Figure 2.4. Step-by-step algorithm of how to calculate pass completion probabilities for new observations

All R code utilized in this paper is made available at https://github.com/gustavopompeu/N
FLPassCompletion.

https://github.com/gustavopompeu/NFLPassCompletion
https://github.com/gustavopompeu/NFLPassCompletion
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3 RESULTS

3.1 Models for completion probability

We tested several different models: Random Forests, Logistic Regression, Binomial Regression
with Probit link, Binomial Regression with complementary-log-log link, Linear Discriminant Analysis
and Quadratic Discriminant Analysis. The objetive was to know which one would have the best overall
performance. To train these models we used Leave Group Out cross-validation (LGOCV) with 5 or 10

folds, using plays as the grouping factor, meaning that all frames within a play were held out in one of
the folds. To train the models, only the data corresponding to the real target of the plays were used,
meaning we have one observation per frame. To compare the models, we used the test results from the
LGOCV. Table 3.1 shows these results. Since we are interested in prediction probabilities, we didn’t
check the assumptions that are necessary for some models, such as the multivariate normality for the
discriminant analysis, and multicolinearity for the GLMs.

Table 3.1. Comparison between all the different models tested, sorted by AUC (area under the ROC
curve) in descending order, as well as computational time taken to run the cross-validation procedures.
“cloglog”is the complementary log-log link

Method Folds AUC Time
Random Forest 10 0.8829 ∼3.88 hours
Random Forest 5 0.8825 ∼1.78 hours

GLM (logit link) 10 0.7874 2.00 mins
GLM (logit link) 5 0.7877 56.16 secs

GLM (probit link) 10 0.7861 5.04 mins
GLM (probit link) 5 0.7864 2.08 mins

LDA 10 0.7840 1.09 mins
LDA 5 0.7843 32.35 secs

GLM (cloglog link) 10 0.7814 6.30 mins
GLM (cloglog link) 5 0.7816 2.94 mins

QDA 10 0.7487 38.58 secs
QDA 5 0.7462 21.02 secs

For each tree within the Random Forest algorithms we allowed subsets containing between 5
to 20 variables to be chosen at every split, and we obtained the best results based on the AUC when
this number was 15. This corresponds to the mtry argument within the function randomForest() from
package randomForest (Liaw and Wiener, 2002) in R. The values shown in Table 3.1 for the method
Random Forest are referent to the value of mtry = 15. From the Table we can see that the performance
of this metric does not change much for the same method when comparing between 5 or 10-fold cross-
validation, as expected, because the K-fold is just a validation strategy. However, there is a large difference
between some of the methods, and the Random Forest models were vastly superior to the other methods,
but were associated to larger computational burden (although not that large, since four hours is not a long
time considering such a big dataset). We therefore chose the Random Forest model to draw our results.
The ROC curve of the Random Forest model based on the 10-fold leave-group-out cross-validation can
be seen in Figure 3.1.

Figure 3.2 shows the importance of the variables in the Random Forest model, and we can see
that the most important variables are without a doubt all the distances we calculated, mainly the distance
difference in current and previous frame from given target to the ball (DistRealDiffT), the distance from
closest defensive player to the given target (DistRealClosestT), and the distance from given target to the
ball (DistRealT), which are the three most important. The two variables that are not distances, but are
on the top half of the importance measure, are the time on clock of play, in seconds (gameClockSec), and
the yard line at line-of-scrimmage (FieldPosition).
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Figure 3.1. ROC curve for the Random Forest model, based on 10-fold leave-group-out cross-validation.
The numbers inside the plot represent thresholds (cut-off points) for the probabilities.

3.2 Completion probabilities for Random Forest model

The results presented in this section are derived from the test subsets created by the cross-
validation. We have 4 or 5 offensive players that can be the target in every play, which means 4 or 5

observations per frame. We were interested in the probabilities P (C | T = i) described in Equation 2.21
for us to be able to calculate P (C) as well.

For example, in the first play of the game between the Philadelphia Eagles and the Atlanta
Falcons on week 1, which was a completed pass from Matt Ryan to Julio Jones for a 10 yard gain, we
present the probabilities for the first frame after the pass started in Table 3.2. With these probabilities
we have that for this frame P (C) = 0.579.

Table 3.2. Probabilities of players being the target P (T = i) and the completion probability given
that the player is the target P (C | T = i), for the first frame after the pass started of the first play of
the game between the Atlanta Falcons and the Philadelphia Eagles on week 1

Player P (T = i) P (C | T = i)
Julio Jones 0.477 0.786

Mohamed Sanu 0.101 0.480
Devonta Freeman 0.314 0.436

Austin Hooper 0.049 0.190
Ricky Ortiz 0.059 0.158

Given that this play was indeed a completed pass, it’s expected that for the last few frames
the only player with a probability to be the target is the one that really was the target. This results in
P (C) = P (C | T = i) for i being the player that was the real target, which in this play was Julio Jones.



27

Figure 3.2. Variable importance from the Random Forest model, sorted by the total decrease in node
impurities from splitting on the variable, averaged over all trees. The node impurity is measured by the
Gini index.
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He had P (C | T = i) = 0.524 in the last frame before the event of pass completed. This is demonstrated
in Table 3.3. So our model calculated that the probability of Julio Jones catching the ball on the last
frame before the catch as being 52.4%.

Table 3.3. Probabilities of players to be the target and the completion probability given that the player
is the target, for the frame when it was considered a completed pass in the first play of the game between
the Atlanta Falcons and the Philadelphia Eagles on week 1

Player P (T = i) P (C | T = i)
Julio Jones 1.000 0.524

Mohamed Sanu 0.000 0.252
Devonta Freeman 0.000 0.472

Austin Hooper 0.000 0.462
Ricky Ortiz 0.000 0.400

Having the probabilities for all the frames in between, we can make animations to demonstrate
the evolution of the probabilities during any play. In Figure 3.3 we see four frames of this Julio Jones
(#11) reception, beginning with the frame described in Table 3.2, and ending with the one in Table 3.3.
The information we can see on each frame are the completion probability P (C), the shirt number of the
player who is the predicted target (player with highest P (T = i) in the frame), the completion probability
given predicted target, which is the P (C | T = i) for player i with the highest P (T = i) in the frame,
and the number of the frame. To see the animated GIF of this whole play, click here (if you are reading
this dissertation on PDF).

An example of an animation of a play that was a very probable pass completion can be seen
in Figure 3.4. It happened on week 2 in the game between the Cleveland Browns and the New Orleans
Saints, and it was a 23 yard pass from Tyrod Taylor (#5) to Rashard Higgins (#81). To see the animated
GIF of this whole play, click here (if you are reading this dissertation on PDF).

Another example, this time of an incomplete pass that indeed had a very low completion
probability can be seen in Figure 3.5, where in a week 16 game between the Pittsburgh Steelers and the
New Orleans Saints, Ben Roethlisberger (#7) tried a deep pass to JuJu Smith-Schuster (#19) but was
not successful. To see the animated GIF of this whole play, click here (if you are reading this dissertation
on PDF).

In Figure 3.6 we can see effectively how the completion probability we calculated is very relevant
by plotting it versus the completion percentage, which is the percentage of plays where the pass was
completed. When we use the completion probability per frame, we have multiple observations for the
same play, so the completion percentage represents the proportion of frames corresponding to a play that
resulted in a completed pass. When we use the average completion probability, the completion percentage
represents the proportion of plays that resulted in a completed pass.

In Table 3.4 we show the Pearson’s correlation coefficient and the Lin’s concordance correlation
coefficient for all the four situation shown in Figure 3.6. Lin’s concordance correlation coefficient (CCC)
(Lin, 1989) measures the agreement between two variables to evaluate reproducibility. It combines
measures of both precision and accuracy to determine how far the observed data deviate from the line of
perfect concordance (that is, the line at 45 degrees on a square scatter plot). Lin’s coefficient increases
in value as a function of the nearness of the data’s reduced major axis to the line of perfect concordance
(the accuracy of the data) and of the tightness of the data about its reduced major axis (the precision of
the data). In R, we used function CCC() of package DescTools to calculate it.

From this Table, we can see that the results are far better when comparing P (C | T = i) to
the completion percentage than when comparing P (C), this shows that our probabilities to determine
the player most likely to be the target are working very well. Another conclusion that we can draw is
that analysing the probabilities frame by frame is better than computing an average probability of all

https://media.giphy.com/media/iYoDq3oRw1JIPWLllQ/giphy.gif
https://media.giphy.com/media/TFRTXh6kRrlyHbH3ZB/giphy.gif
https://media.giphy.com/media/onDmdMN2ilBzGD0X9H/giphy.gif
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Figure 3.3. Frames 39, 43, 48 and 52 of a Julio Jones (#11) reception in the first play of the game
between the Atlanta Falcons and the Philadelphia Eagles on week 1 with information on the probabilities.
The ball is represented in brown, the offense in red and the defense in blue.

Table 3.4. Pearson’s correlation coefficient and Lin’s concordance correlation coefficient for all the
different setups in Figure 3.6

Probabilities Correlation Concordance
P (C) per frame 0.978 0.958

P (C | T = i) per frame 0.998 0.998
Average P (C) per play 0.958 0.903

Average P (C | T = i) per play 0.980 0.942



30

Figure 3.4. Frames 45, 49, 54 and 58 of a Rashard Higgins (#81) reception in the game between the
Cleveland Browns and the New Orleans Saints on week 2. The ball is represented in brown, the offense
also in brown and the defense in gold.

frames on a play. This shows that our model is obtaining very accurate results even in the beginning of
plays, most likely because the variables of distance to projection of the line made from the ball or the
players are a very good indicator if the pass is going in the right direction and if the offensive player is
well guarded by the defense or not.

For the training results, if we consider a 0.5 threshold for predictions if a pass will be completed
or not for the predicted target on every frame, we get a 95.8% accuracy in predicting the results of the
plays.

3.2.1 Next Gen Stats

NFL player tracking, also known as Next Gen Stats, is the real-time location data capturing,
speed and acceleration for every player, every play on every inch of the field. Sensors throughout the
stadium track tags placed on players’ shoulder pads, charting individual movements within inches (NFL
Next Gen Stats, 2021). The player tracking data used in this work was obtained by the NFL Next Gen
Stats, and this work in general was inspired by it. During the broadcast of NFL games, many different
statistics obtained by the Next Gen Stats team are shown on screen for the audience.

Documented statistics of completion probability calculated by the NFL Next Gen Stats are very
hard to find. The only data we found from the 2018 season are presented in an article on the NFL website
(The Next Gen Stats Analytics Team, 2018), where they talk about the three most improbable
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Figure 3.5. Frames 38, 48, 57 and 67 of an incomplete pass from Ben Roethlisberger (#7) to JuJu
Smith-Schuster (#19) in the game between the Pittsburgh Steelers and the New Orleans Saints on week
16. The ball is represented in brown, the offense in yellow and the defense in gold.

catches of the first week (https://www.nfl.com/news/next-gen-stats-introduction-to-completi
on-probability-0ap3000000964655). These are the only plays we can compare the results from our
work with, but unfortunately, one of these three plays is from one of three games that are missing from
the database (Denver Broncos vs. Seattle Seahawks), so we have results from our model only for two of
these plays.

Figure 3.7 shows four frames of the first play described in the NFL article, a 39-yard touchdown
pass from Aaron Rodgers (#12) to Geronimo Allison (#81) in the game between the Green Bay Packers
and the Chicago Bears.

In the data we used, the frame in which the play was deemed a completed pass was frame 80,
the last one shown in Figure 3.7. From our approach, we obtained a 62.4% completion probability. But if
we consider a few frames earlier, such as frame number 75, displayed in Figure 3.8, we see that the ball is
already in range of Geronimo Allison and the completion probability is just 24.8%. To see the animated
GIF of this entire play, click here (if you are reading this dissertation on PDF).

The other play we can compare with the article is a touchdown from Tom Brady (#12) to Rob
Gronkowski (#87) for the New England Patriots against the Houston Texans. We show four frames of
this play in Figure 3.9. We can see that the final completion probability obtained from our framework
was 28.8%. To see the animated GIF of this whole play, click here (if you are reading this dissertation
on PDF).

https://www.nfl.com/news/next-gen-stats-introduction-to-completion-probability-0ap3000000964655
https://www.nfl.com/news/next-gen-stats-introduction-to-completion-probability-0ap3000000964655
https://media.giphy.com/media/5S0uAVk2gyVgxp072w/giphy.gif
https://media.giphy.com/media/1JlGpszyaDUuHdatBS/giphy.gif
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Figure 3.6. (a) General completion probability (P (C)) per frame, (b) Completion probability given
predicted target (P (C | T = i), i representing the player with the highest P (T = i) in the frame) per
frame, (c) Average general completion probability per play and (d) Average completion probability given
predicted target per play versus completion percentage

The Next Gen Stats article does not mention at which point of the play the probabilities shown
were calculated; it could be at the moment of the catch, or the lowest probability reached during the
play, or even an average of the whole play. Also, it could be a general probability (similar to our P (C))
or specific to the players cited (similar to our P (C | T = i)). To cover all these possibilities, we made a
plot showing the evolution of our calculated completion probabilities for all the frames during the pass
(see Figure 3.10), for both the Geronimo Allison and the Rob Gronkowski touchdowns.

We can conclude from Figure 3.10 that our framework produced higher probabilities than the
NFL Next Gen Stats in almost every possible scenario, and since both plays were completed passes, our
framework provided a very competitive performance when compared to Next Gen Stats, with a more
detailed output.
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Figure 3.7. Frames 50, 60, 70 and 80 of the Geronimo Allison (#81) touchdown for the Green Bay
Packers versus the Chicago Bears on week 1. The ball is represented in brown, the offense in green and
the defense in navy.

Figure 3.8. Frame 75 of the Geronimo Allison (#81) touchdown for the Green Bay Packers versus the
Chicago Bears on week 1. The ball is represented in brown, the offense in green and the defense in navy.
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Figure 3.9. Frames 35, 40, 45 and 50 of the Rob Gronkowski (#87) touchdown for the New England
Patriots versus the Houston Texans on week 1. The ball is represented in brown, the offense in blue and
the defense in red.
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Figure 3.10. Evolution of completion probabilities P (C) and P (C | T = i) for all the frames during the
pass in the (a) Geronimo Allison and (b) Rob Gronkowski touchdowns from week 1 games
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4 DISCUSSION

We calculated completion probabilities of most passing plays in the NFL 2018 season. A very
relevant point is that to obtain a completion probability, we only need information on the current frame
and previous ones, meaning that we do not need to know how or when the play will end. This allows us
to compute the probabilities for a play in real time, given that we have enough computational power and
can obtain the necessary information (such as the coordinates of the players in the field).

If the vertical coordinates of the ball were also available, this could certainly be used to improve
our framework even further. Sometimes, the ball could be very close to a player when looking at the
available x and y coordinates, but in reality, the ball is very high up in the air and going in the direction
of a player further up in the field.

Our empirical probabilities of players being the target of the play proved to be very effective,
even in the initial frames of the passes. The distance from players to the line projection of the ball was
essential to obtain these good results.

The Random Forest model proved to be vastly superior to the other ones tested to predict the
completion probabilities, even though it took a lot more time to compute. The results obtained were
extremely good when comparing to the real completion percentage of the passes, as shown in Figure
3.6. We could not find the same data for other seasons, which unfortunately made expanding our work
through more games and seasons impossible.

Further work would include an improvement on how to determine during plays if a player still
has a chance to be the target or not, and possibly utilize information not available on the data to create
variables to differentiate specific players based on their historical performance on the NFL and college
football.
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