• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.11.2019.tde-03012019-175609
Document
Author
Full name
Djair Durand Ramalho Frade
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2018
Supervisor
Committee
Piedade, Sonia Maria de Stefano (President)
Dias, Carlos Tadeu dos Santos
Lima, Cesar Goncalves de
Pião, Antonio Carlos Simões
Rodrigues, Josiane
Title in Portuguese
Diretrizes para aplicação de inferência Bayesiana aproximada para modelos lineares generalizados e dados georreferenciados
Keywords in Portuguese
Inferência bayesiana
INLA
Modelos lineares generalizados
Abstract in Portuguese
Neste trabalho, exploramos e propusemos diretrizes para a análise de dados utilizando o método Integrated Nested Laplace Approxímation - INLA para os modelos lineares generalizados (MLG's) e modelos baseados em dados georreferenciados. No caso dos MLG's, verificou-se o impacto do método de aproximação utilizado para aproximar a distribuição a posteriori conjunta. Nos dados georreferenciados, avaliou-se e propôs-se diretrizes para construção das malhas, passo imprescindível para obtenção de resultados mais precisos. Em ambos os casos, foram realizados estudos de simulação. Para selecionar os melhores modelos, foram calculadas medidas de concordância entre as observações e os valores ajustados pelos modelos, por exemplo, erro quadrático médio e taxa de cobertura.
Title in English
Approximate Bayesian inference guidelines for generalized linear models and georeferenced data
Keywords in English
Bayesian inference
Generalized linear models
INLA
Meshes
Abstract in English
In this work, we explore and propose guidelines for data analysis using the Integrated Nested Laplace Approximation (INLA) method for generalized linear models (GLM) and models based on georeferenced data. In the case of GLMs, the impact of the approximation method used to approximate the a posteriori joint distribution was verified. In the georeferenced data, we evaluated and proposed guidelines for the construction of the meshes, an essential step for obtaining more precise results. In both cases, simulation studies were performed. To select the best models, agreement measures were calculated between observations and models, for example, mean square error and coverage rate.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-01-10
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.