A indústria de Pellet de madeira para uso interno e exportação no Brasil

Roberto Scorsatto Sartori

Tese apresentada para obtenção de título em Doutor em Ciências. Área de concentração: Bioenergia

Piracicaba
2022
A indústria de Pellet de madeira para uso interno e exportação no Brasil
versão revisada de acordo com a resolução CoPGr 6018 de 2011

Orientadora:
Prof. Dra. SUANI TEIXEIRA COELHO

Tese apresentada para obtenção de título em Doutor em Ciências. Área de concentração: Bioenergia

Piracicaba
2022
Sartori, Roberto Scorsatto

A indústria de Pellet de madeira para uso interno e exportação no Brasil / Roberto Scorsatto Sartori - - versão revisada de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2022.

119 p.

Tese (Doutorado) - - USP / Escola Superior de Agricultura “Luiz de Queiroz”. Universidade Estadual de Campinas. Universidade Estadual Paulista “Julio de Mesquita Filho”

SUMÁRIO

RESUMO ... 5
ABSTRACT ... 6
1. INTRODUÇÃO .. 7
 1.1. Justificativa e originalidade .. 10
2. OBJETIVOS ... 11
 2.1. Estruturação do estudo .. 11
3. REVISÃO NARRATIVA DA LITERATURA ... 15
 3.1. Tecnologias na bioenergia moderna ... 17
 3.2. Produtos da madeira para bioenergia ... 20
 3.3. Rastreabilidade e Certificação ... 23
 3.3.1. Padrões socioambientais para o insumo ... 24
 3.3.2. Sistemas de gestão da qualidade dos Pellet .. 26
 3.4. Políticas de desenvolvimento de mercados de bioenergia na Europa .. 27
 3.4.1. Desenvolvimento social e econômico com base na Biomassa ... 32
 3.5. Energias renováveis no Brasil .. 35
4. ANÁLISE DO FLUXO COMERCIAL DE PELLET ... 43
 4.1. Metodologia e fonte de dados de exportação e importação ... 44
 4.2. Análise dos fluxos de exportação entre os anos de 2013 e 2019 .. 45
 4.2.1. Consumo residencial de Pellet de madeira em países selecionados 50
 4.2.2. Uso industrial de Pellet de madeira em países selecionados .. 56
 4.2.3. Impactos da Pandemia de Covid 19 no mercado de energia de Biomassa 57
5. OTIMIZAÇÃO PARA PRODUÇÃO DE MADEIRA SERRADA E ENGENHEIRADA ASSOCIADA A PELETIZAÇÃO .. 61
 5.1. Metodologia e fonte de dados .. 62
 5.1.1. Dados utilizados e premissas .. 64
 5.1.2. Pesquisa Operacional e Programação Linear .. 67
 5.1.3. Método Simplex ... 70
 5.2. Estruturação do Modelo ... 72
 5.2.1. Cenários considerados ... 75
5.2.2. Análise da modelagem .. 77

6. RESULTADOS E DISCUSSÃO .. 83
 6.1. Prioridades do setor florestal - resultados da Modelagem .. 85
 6.2. Geração de energia .. 87
 6.3. Incentivos .. 89
 6.4. Viabilidade econômica ... 91
 6.5. Mercado para Biomassa de madeira ... 92

7. CONCLUSÕES .. 95

8. CONSIDERAÇÕES FINAIS ... 97

REFERÊNCIAS ... 99

APÊNDICE ... 113

ANEXOS .. 115
RESUMO

A indústria de Pellet de madeira para uso interno e exportação no Brasil

A diversificação da matriz energética em diversos países objetiva maior acesso e garantia de fornecimento de energia com menores taxas de emissão de gases de efeito estufa (GEE). Tais estratégias são orientadas por acordos internacionais e políticas energéticas nesses países. Nesse contexto, o uso moderno de biomassa florestal vem sendo cada vez mais utilizado, e com seu inegável potencial aliado ao desenvolvimento tecnológico atinge cada vez mais eficiência de conversão. A peletização da madeira contribui diretamente para essa conversão e também é desejável dos pontos de vista logístico e da padronização e classificação por meio de certificações. O Brasil, apesar de uma grande vocação florestal ainda tem uma indústria incipiente para o Pellet, mas já comercializa o produto para uso residencial e industrial no mercado europeu. Este trabalho discute a inserção da produção de pellet na indústria de processamento de madeira sólida no Brasil, a partir dos usos dos resíduos gerados no processamento de produtos intermediários da indústria de madeira para construção, móveis, entre outros. Foi proposta a aplicação de um modelo de otimização dos resultados marginais, a partir da produção e comercialização de madeira engenheirada (finger joint e madeira colada) e seus subprodutos. Os resultados mostraram que os resíduos gerados na perda de volumes nos produtos principais, são uma oportunidade para agregação de valor no processamento de resíduos. Foram estabelecidos 10 cenários de aplicação do modelo de otimização para análise, nos quais puderam-se identificar oportunidades financeiras aos produtores e evidenciar os benefícios da inclusão da produção de Pellet. Verificou-se nesta análise que uma estrutura que não comercializa os resíduos de madeira após o seu processamento, pode deixar de absorver até o dobro de receitas da condição inicial. Por outro lado, ao associar-se a peletização a uma estrutura de processamento de toras, esta poderia atingir um retorno adicional que varia entre 73% e 99%, a depender do volume produzido de Pellet. Desse modo, conhecer a experiência internacional acerca da produção desse produto, em conjunto às análises das especificidades do desenvolvimento nacional nesse setor, fornecem subsídios aos gestores públicos para a formulação de políticas de promoção da bioenergia, estimula práticas de agregação de valor ao produto com a comercialização de resíduos e favorece a consolidação da indústria de Pallet de madeira para uso interno e exportação no Brasil.

Palavras-chave: Pellet, Energia da madeira, Otimização, Exportação
ABSTRACT

The wood pellet industry for internal use and for export in Brazil

The diversification of the energy matrix in several countries aims for greater access and a guaranteed energy supply with lower greenhouse gas emissions (GHG). These strategies are guided by international agreements and energy policies within these countries. In this context, the modern use of forest biomass has been increasingly used, and with its undeniable potential alongside technological development it consistently attains higher conversion energy. The pelletization of wood contributes directly to this conversion as well as being desirable in terms of logistics, standardization, and classification through certification. Despite its great forestry resources Brazil still has an emerging pellet industry, however sales to Europe for residential and industrial use are already in place. This paper discusses the insertion of pellet production into the solid wood processing industry in Brazil using waste generated from the processing of intermediate products for construction, furniture, among others. The results from applying the model in a case study show that the additive value as well as the volume of the waste generated from the principal products outline an opportunity for more waste processing. 10 scenarios were identified for the model from which options for producers and benefits of pellet production can be identified. The results show that a lack of commercialization of waste after production results in up to double the cost revenue. Considering the same structure for processing logs for pelletization of waste an additional return would be between 73% and 99% depending on the pellet production volume.

Keywords: Pellet, Wood energy, Optimization, Export
1. INTRODUÇÃO

A geração de energia a partir de biomassa tem se disseminado mundialmente. Em países desenvolvidos, usinas que utilizam o carvão tem sido substituídas e/ou parcialmente alimentadas por biomassa. As ações nesse sentido já representam ganhos de escala e mais segurança no fornecimento de energia, pois a biomassa é uma fonte alternativa viável à queima de combustíveis de origem fóssil (HOEFNAGELS, 2014; DIAZ-CHAVES, 2015; ESCOBAR, 2016). Além disso, essa conduta na geração de energia combinada aos plantios e tecnologias de captura e armazenamento de CO₂, são uma das poucas maneiras de remover quantidades substanciais de CO₂ da atmosfera (ESCOBAR, 2016). Tanto os países consumidores quando os produtores de biomassa veem nessa nova oportunidade para a geração de energia, uma alternativa viável para alcançar o estabelecido nos acordos internacionais da agenda do clima.

A peletização, por sua vez, tem se mostrado uma tecnologia vantajosa na geração e fornecimento de energia (MISSAGIA et al, 2011). Trata-se do processo de compressão de qualquer combustível sólido a fim de se obter melhores condições para sua queima. Por consequência, ocupam menor espaço e favorecem a logística. Seja no caso das biomassas da agricultura ou da silvicultura, a geração de energia se torna cada vez mais dinâmica por meio da peletização.

Apesar do paralelo desenvolvimento de Pellet derivados de resíduos da agricultura (ex. resíduos da produção de girassol, óleo de palma e cana de açúcar), a madeira representa a maior parte da produção, com cerca de 10 milhões de toneladas (JUNGINGER, 2020). A densidade da madeira prensada, poder calorífico (alta energia), bem como o baixo teor de cinzas associado a alta quantidade de carbono (46,9%) são as justificativas desse desempenho (MISSAGIA et al, 2011). Soma-se a estas condições que os resíduos da agricultura também apresentam maiores taxas de compostos inorgânicos, os quais são indesejáveis na queima dos Pellet (ESCOBAR, 2016)

A Agência Internacional de Energia (IEA), atribuiu ao mercado de Pellet de madeira como o mais dinâmico dentre todas as commodities do setor de bioenergia. Parte desse dinamismo é devido às políticas e incentivos, que tem como propósito viabilizar a utilização de Pellet em substituição às fontes derivadas de combustíveis fósseis (IRENA, 2018; FRITSCHKE et al, 2019; JUNGINGER et al. 2019; THRÄN et al.2019).

Os mercado de Pellet é dividido em dois, com dinâmicas e exigências diferentes; para uso residencial, utilizado para queima em fornalhas (lareiras) de aquecimento de ambientes ou
por meio de alavancas internas que conduzem água por canos aos cômodos de casas ou edifícios comerciais ou; para uso industrial, comum na geração de energia elétrica, mas também pode ser utilizado para aquecimento, processos de secagem ou na associação com outros combustíveis (tais como o carvão mineral, resíduos da colheita e processamento de produtos agrícolas), também denominados como co-combustão.

Na Europa Central, onde o mercado de Pellet residencial já era consolidado há mais de duas décadas, a demanda por esse produto foi impulsionado pela crescente demanda de sua utilização na co-combustão e produção de energia. De acordo com Kristofel et al, (2016), o aumento do consumo de Pellet por esses países tem exigido dos mesmos um maior aumento das importações. Isso se deve ao fato de que 90% de toda matéria-prima para a produção de Pellet na Europa Central é proveniente de serrarias e empresas moveleiras. Segundo Junginger (2020), o suprimento da produção a partir de resíduo já está no limite de destinação.

No entanto, o mercado de Pellet não cresce só na Europa. De acordo com a International Renewable Energy Agency (IRENA, 2021), os fluxos internacionais desse produto são cada vez maiores, sendo que mais de um terço do aumento global no consumo teria ocorrido no Leste e Sudeste Asiático. Em 2015, a Coreia do Sul, a despeito de sua pequena produção, já se colocava entre os principais importadores de pellet de madeira com 1,5 milhão de toneladas por ano, ou seja, 9% das importações globais (THRÄN, 2019). No mesmo sentido, o Japão apresenta grande potencial no cenário de mercados emergentes fora União Europeia (UE). Espera-se que, no futuro, a Ásia promova ainda mais oportunidades de crescimento.

Diversas análises das experiências internacionais - na Europa, América do Norte e Ásia - demostraram caminhos para o uso e produção e comercialização de madeira para energia na forma de Pellet pelo Brasil. Mas a história recente também evidencia que esse mercado criou certa dependência das políticas que as determinaram (THRÄN et al.2019), gerando incertezas em momentos de instabilidade político-econômicas. Em países da África, onde a desigualdade e o respeito às populações tradicionais são desafios ainda maiores que no Brasil, a perspectiva da produção para comercialização na Europa é uma possibilidade ainda distante, devido as barreiras técnicas do mercado.

No Brasil, pesquisadores em energia tem discutido mecanismos e políticas públicas no intuito de contribuir com a estruturação de uma matriz energética mais limpa, com resposta em um modelo que contempla de forma mais significativa a geração de energia a partir de biomassa. No entanto, apesar de existirem várias vantagens no uso de biomassa para geração de energia, os setores da economia, com potencial para suprir essa demanda, ainda
apresentam entraves à sua adoção (GOLDEMBERG; COELHO; REI, 2002; COELHO et al., 2003; COELHO; GOLDEMBERG, 2013; COELHO, et al. 2021).

Dado o exposto e com vistas a promoção da quebra dessas entraves, surgiu a seguinte pergunta de pesquisa: poderia a aplicação de um modelo de otimização nos processos de produção de Pellet maximizar resultados financeiros em empresas de processamento de madeira sólida no Brasil e apoiar as políticas nacionais de importação e exportação?

A hipótese é de que o modelo de otimização pode apresentar em seus resultados uma relação positiva entre agregação de valor de produto e geração de resíduos secos (como a “maravalha” e “cavacos”, por exemplo) em unidades de desdobro de toras ou no processamento de madeira serrada. Nesse contexto, foi proposta a construção de uma modelagem de otimização como instrumento de decisão e consequente impulso da produção, baseados em resultados dos pontos de vista financeiro e econômico em empresas do segmento de processamento de madeira sólida, bem como o ganho ambiental indireto com a melhor utilização dos recursos florestais. Assim, evidenciando o Pellet como uma oportunidade de negócio no Brasil, que pode ser pautado como política pública.

As vantagens de se aderir à peletização estão bem difundidas na literatura científica mundial, no entanto, ainda existem poucos estudos com a perspectiva do Brasil. Ainda sim, três deles devem ser elencados: o compilado Task 40 do IEA, que reuniu vários artigos com enfoque nos Pellet, inclusive um deles organizado por Walter (2011); o estudo de viabilidade econômica de Quéno (2015); e os trabalhos de Escobar (2014; 2016), os quais tiveram enfoque no potencial técnico-econômico e ambiental para produção e comercialização pelo país.

Como contribuição às discussões nessa temática, esse estudo propõe apresentar as possibilidades de inserção da produção de Pellet de madeira para uso interno e exportação no Brasil. Primeiro, foram analisadas evidências históricas sobre o uso da madeira para fins energéticos, nas quais foram consideradas as experiências de países onde este uso transitou da queima da madeira não processada para a peletização, organizadas em uma análise de fluxo comercial entre os continentes. Além disso, um estudo de caso foi conduzido e analisado para determinar as vantagens da aplicação de um modelo de otimização durante o processamento de madeira em uma empresa da região sul do Brasil.
1.1. Justificativa e originalidade.

O uso de madeira para energia tem certa representatividade na matriz energética nacional, mas é caracterizada, principalmente, pelo uso de madeira para co-geração e geração de energia na indústria de celulose, nos processos de redução do ferro nas guzeiras e na co-combustão com outros resíduos agrícolas, com destaque para o bagaço de cana. A utilização da madeira para geração de energia poderia ser ampliada, haja vista que a vocação florestal e desenvolvimento das técnicas da silvicultura no Brasil alcançam um dos maiores índices de produtividade do mundo (IBÁ, 2020).

No entanto, a vocação florestal e a viabilidade de produção por si só, não garantem o fortalecimento da incipiente indústria de Pellet de madeira no Brasil. Apesar dos quase 8 milhões de hectares de florestas plantadas e a disponibilidade de resíduos de quase 10 milhões de toneladas de madeira serrada (IBÁ, 2020). Para que a produção de Pellet aumente no Brasil, ainda é necessário compreender a melhor forma de utilização dessa madeira e que, a partir desses achados, possam ser desenvolvidas políticas públicas de estímulo a inserção dessa produção nos segmentos do setor florestal.

A originalidade deste estudo reside na análise do potencial do Brasil como produtor e exportador de energia moderna, focado na proposta de maior inserção da peletização da madeira sólida e traz um comparativo entre as atividades comerciais de nível internacional e participação do Brasil nesse fluxo de mercado. Ainda, com a aplicaçao de um modelo de otimização, sugere-se um aprofundamento na discussão sobre os temas adjacentes sobre o uso moderno madeira e, dessa forma, conferir uma proposta inovadora que apoie as discussões sobre peletização na indústria brasileira e a implementação de políticas públicas que favorecem a entrada do Brasil neste fluxo. Além disso, em uma perspectiva histórica, pouco se discutiu a respeito da agregação de valor à cadeia com a comercialização de resíduos e as possibilidades de aproveitamento energético do setor florestal, principalmente voltados para a exportação de Pellet.
2. OBJETIVOS

O objetivo geral desta tese é apresentar oportunidades para a inserção da indústria de Pellet no segmento de processamento de madeira sólida de reflorestamento com a comercialização nos mercados interno e externo.

Os objetivos específicos são:

a) Apresentar revisão narrativa sobre as experiências e políticas internacionais e do Brasil no uso de madeira e Pellet para geração de energia.

b) Analisar o fluxo comercial do Pellet no mundo e a dinâmica da produção de energia moderna a partir da madeira no Brasil.

c) Propor modelo de otimização linear (Simplex) para produção de madeira engenheirada – com os métodos de “finger joints” e madeira colada – associados a produção de Pellet derivado dos resíduos secos de processamento.

2.1. Estruturação do estudo

O escopo desse estudo foi delimitado de acordo com a identificação das potencialidades do mercado brasileiro de Pellet, identificadas nas informações da análise do mercado internacional. Buscou-se aqui, por meio de entrevistas guiadas por um questionário semiestruturado (APÊNDICE), extrair informações de empresas nacionais especializadas em processamento de madeira sólida, com o intuito de elaborar um modelo de otimização que orientasse a maximização dos ganhos de produção. Para isso, conduziu-se aqui uma investigação quantitativa e qualitativa, por meio da exploração de documentos e dados secundários que subsidiariam a análise acerca da ascensão da produção de Pellet no contexto brasileiro, não só pela ótica das experiências internacionais, mas principalmente pela realidade operacional desses produtores.

Desse modo, foi possível estabelecer as similaridades e disparidades entre as experiências nacional e internacional da indústria do Pellet de madeira, as quais, somadas a experiência do autor como pesquisador observador do setor florestal, serviram como ponto de partida para o desenvolvimento da modelagem de otimização aplicada em um estudo de caso.

Portanto, o desenho do estudo foi organizado em uma estrutura de 4 partes. A primeira - Capítulo 3 - apresentará uma revisão narrativa da literatura, que compilará o histórico das experiências internacionais no uso de energia moderna de madeira e sintetizará os aspectos técnicos a respeito dos Pellet. O objetivo da revisão é fornecer uma visão geral da evolução da indústria do Pellet no cenário internacional e apresentar os principais indicadores dessas
políticas públicas e das decisões econômicas que contribuíram (ou não) para o desenvolvimento do consumo e produção de produtos de biomassa, em especial o Pellet.

Foram consultados na base de dados da CAPES Periódicos, artigos científicos em língua inglesa e portuguesa, que apresentassem em seus resumos as características físicas da biomassa, sua logística, padronização e exigências socioambientais de mercado. A ideia é identificar o como essas variáveis influenciam o desenvolvimento do mercado interno e externo do Pellet nesses países.

O Capítulo 4 apresentará a análise do fluxo de mercado internacional de Pellet de madeira, que trata dos aspectos chave para estabelecer o posicionamento do Brasil no mercado de exportação em relação ao mundo. Dessa forma, foi possível apresentar um panorama causal do ranking e elencar suas principais conexões.

Para fortalecer essa análise, foi realizada uma busca de dados da UN-Comtrade (UN Comtrade | International Trade Statistics Database) no período entre 2013 e 2019. A discussão sobre os fluxos mostram uma perspectiva diferente daquelas utilizadas na literatura, a qual considera produção, consumo e importação dos países. Pretende-se, portanto, ampliar a discussão que direcionarão as políticas públicas de apoio ao comércio de Pellet a partir da madeira no Brasil.

O Capítulo 5, denominado “Modelagem de Otimização”, tem origem na experiência como observador participante do autor e também pela realização de entrevistas para obtenção de dados das indústrias de processamento de madeira de reflorestamento. Pretende-se identificar os impactos financeiros e econômicos consequência da agregação de valor aos produtos (do ponto de vista da qualidade e aprimoramento do produto) e um maior volume de resíduos gerados. Isso se deve ao fato de que a madeira passará por mais processos de usinagem e, por consequência, o valor do produto pode ser mais interessante ao empreendedor.

Por fim, o Capítulo 6, “Resultado e Discussão” apresentará uma discussão dos resultados, em que serão analisados os achados da revisão narrativa da literatura e seus principais elementos que subsidiaram o desenvolvimento da modelagem de otimização. Ainda, foram elencados os paralelos entre a literatura brasileira existente e casos bem-sucedidos da aplicabilidade de estratégias similares que alavancaram o mercado de importação e exportação de Pellet no mundo. Para isso, foram utilizados dados dos órgãos oficiais brasileiros, bem como dados reportados por órgãos internacionais, principalmente de alguns países da Europa, Ásia, e dos Estados Unidos. Essa análise foi conduzida com o intuito
de contribuir de forma dialética e servir como ponto de partida para direcionar políticas públicas e ações inovadoras para o uso da madeira de reflorestamento no Brasil.

Por sua vez, as conclusões e considerações finais apresentarão uma síntese da discussão dos principais resultados, suas limitações e propostas para o desenvolvimento de pesquisas acadêmicas futuras, de modo que seja possível inferir a respeito da contribuição desses achados para as áreas do conhecimento em bioenergia, economia e para prospecção de políticas públicas.
3. REVISÃO NARRATIVA DA LITERATURA

O uso da madeira como combustível remonta às primeiras civilizações e, mesmo com o passar do tempo, sempre permaneceu como um valioso recurso energético ao longo dos anos (TILLMAN, 1978). Quase todas as nações do mundo usaram combustíveis de madeira até certo ponto e o uso desta biomassa como combustível tradicional desempenha até hoje um papel significativo nos países em desenvolvimento (HALL, 1997).

O uso da biomassa como combustível ou geração de energia não foi estável ao longo do tempo e enfrentou tendências que ou incentivaram ou restringiram seu uso (TILLMAN, 1978). Principalmente os países mais industrializados, como os da Europa Central, o Japão e os Estados Unidos, objetivaram a diversificação de fontes de energia, tornando-as cada vez mais acessíveis para garantir fornecimento. A madeira passou a ser substituída por carvão e petróleo ao passo que estes também se tornaram mais acessíveis e baratos (AGUILAR, SONG, SHIFLEY, 2011; TILLMAN, 1978). Em 1973, por exemplo, os combustíveis fósseis (como petróleo, carvão e gás natural), representavam 86,7% da oferta total de energia primária mundial e, em 2014, ainda representavam 81,1% dessa oferta (IEA, 2016).

Na atualidade, a bioenergia da madeira representa cerca de 10% do fornecimento total de energia primária mundial e a maior parte desse consumo destina-se para o uso tradicional (coccção e residencial) em países em desenvolvimento (HEINIMÖ, 2009; IEA, 2016; COELHO & GOLDEMBERG, 2015). No continente africano, a queima direta da madeira ainda é realizado em 2/3 de todos os lares (FAO, 2017). No entanto, nos últimos 20 anos, o interesse pela biomassa como uma fonte de energia moderna e, notadamente a biomassa da madeira, tem ressurgido em todo o mundo, tendo seu papel como fonte de energia crescido fortemente na última década (JUNGINGER, 2020).

Esse interesse se deve aos atributos da biomassa, por ser uma fonte de energia natural que utiliza a energia solar, água e o solo para o desenvolvimento e pode ser produzida na maioria dos países. Outro atributo relacionado a biomassa é o potencial de geração de energia com segurança, devido ao seu caráter renovável e por ser menos poluente. Não há mais dúvidas na literatura de que a utilização de energia de biomassa reduz as emissões de gases de efeito estufa (GEE) se comparadas as fontes fósseis. Por isso, a biomassa vem sendo destinada também à produção de combustíveis líquidos para o transporte (KAYGUSUZ, 2011; MCKENDRY, 2002a; PEKSA-BLANCHARD et al., 2007).

É importante, neste ponto, diferenciar o uso tradicional, supracitado, daquele denominado como “aperfeiçoado” e o uso moderno da biomassa para energia. Os países não pertencentes à OCDE, particularmente na Ásia e na África, dependem fortemente do uso
tradicional e não comercial de lenha para atividades domésticas e aquecimento (FAO, 2017). Tais países ainda respondem por 72,3% do fornecimento total de combustíveis renováveis mundiais (dados de 2015) e, desse modo, posicionam-se na liderança do uso de biomassa como energia no mundo (THRÄN; PEETZ; SCHAUBACH, 2019). Vale ressaltar que nem sempre a madeira provém de origem com benefício ambiental e social. Em muitos países o origem da madeira ainda é de desmatamentos e conversão de áreas de floresta natural em outros usos de solo (FAO, 2017b; GOLDEMBERG; COELHO, 2004).

Além disso, o uso tradicional da lenha como combustível para atividades domésticas e para aquecimento geram problemas de saúde, uma vez que podem causar significativa poluição interna nas residências, causando doenças respiratórias principalmente em mulheres, crianças e idosos (GOLDEMBERG; COELHO, 2004). Em contrapartida, o uso aperfeiçoado ou moderno da biomassa deve provir de produção sustentável (resíduos ou restos de plantações sustentáveis), que é convertida por processos tecnológicos em produtos de bioenergia. (GOLDEMBERG; COELHO, 2004; GUO; SUN; GREBNER, 2007).

Segundo Karekesi et al, (2005), a queima direta da biomassa em fornos e fogões são usos “aperfeiçoados” para queima e que além de mais eficientes, mitigam ou anulam os impactos nocivos da queima. Ainda segundo o autor, o uso de tecnologias mais avançadas para geração de eletricidade, calor e biocombustíveis caracterizariam o uso moderno. Apesar de muito simples, o processo de densificação da madeira em Pellet e queima em usinas ou co-combustão, podem ser definidos como uso moderno.

De acordo com Hall et al. (1991):

“Substituir os combustíveis fósseis por biomassa cultivada de forma sustentável e convertida em energia útil com tecnologias de conversão modernas seria mais eficaz na redução do CO atmosférico do que ocorre naturalmente no sequestro de carbono nas árvores”.

A biomassa moderna apresenta um grande potencial para se tornar o mais importante recurso de energia no futuro (BERNDES; HOOGWIJK; VAN DEN BROEK, 2003; GUO; SUN; GREBNER, 2007; HALL, 1997; TUMULURU et al., 2011). Mais especificamente, a energia da madeira, “será crucial para cumprir os Objetivos de Desenvolvimento Sustentável de garantir o acesso à energia acessível, confiável, sustentável e moderna para todos até 2030” (FAO, 2017).
De qualquer forma, o crescimento exponencial do mercado de Pellet dos últimos anos na Europa, e as tendências de crescimento em todo mundo, geram preocupação em relação a disponibilidade de matéria-prima (MONTEIRO; MANTHA; ROUBOA, 2012a; SELKIMÄKI et al., 2010). A escassez de matéria-prima pode aumentar os custos de produção de Pellet, o que representa um risco para a sua continuidade. Segundo MALISIUS et al., (2000), para que se mantenha a competitividade, preço e oferta devem se manter estáveis, condições fundamentais para o futuro do setor de Pellet como um recurso energético.

Por outro lado, há disponibilidade de florestas e resíduos de madeira em vários países. Brasil e Rússia já eram avaliadas como oportunidade de novas plantas para produção dos Pellet de madeira voltados para exportação nos anos 2000 (PEKSA-BLANCHARD et al., 2007). Recentemente, outros artigos referenciaram outros países com potencial, como a China (YUN et al, 2020); o Vietnam (THRÄN; PEETZ; SCHAUBACH, 2019); a Nova Zelândia (JUNGINGER, 2020); a Letônia, Estônia, Brasil (FLETCHER, 2016; AEBIOM, 2019), Japão e Coreia do Sul (JUNGINGER, 2020).

3.1. Tecnologias na bioenergia moderna.

A adoção de novas tecnologias são a chave para o aumento da competitividade da biomassa frente às fontes de energias fósseis. Tais tecnologias permitem maior dinamização dos sistemas em bioenergia, também denominados de bioeconomia. Os principais “targets” da introdução de novas tecnologias procuram reduzir os aspectos negativos da biomassa, garantindo-se abastecimento (quantidade e flexibilidade), transporte mais barato e maior eficiência na conversão e geração de energia (BAIN; OVEREND, 2002; BERNDDES; HOOGWIJK; VAN DEN BROEK, 2003; HALL, 1997; MCKENDRY, 2002a).

Podem ser utilizadas as biomassa sólidas, líquidas ou gasosas: sólidos, como madeira, resíduos de madeira e culturas agrícolas; líquidos, como o licor negro e derivados de oleaginosas; gases, obtidos por digestão de resíduos orgânicos, resíduos de aterro ou por gaseificação – combustão incompleta – de biomassa sólida (ATANASIU, 2010; GUO; SUN; GREBNER, 2007; JÄGER-WALDAU et al., 2011; THRÄN, 2017; IEA, 2017b).

As tecnologias para conversão de biomassa podem ser divididas em dois grupos, a termoquímica e a bioquímica: termoquímica, que inclui combustão, pirólise, gaseificação e liquefação e; bioquímica, que abrange a digestão e a fermentação. Para a biomassa lenhosa, a tecnologia mais consolidada é a combustão (JÄGER-WALDAU et al., 2011). Apesar disso, a gaseificação para geração de calor e energia tem recebido atenção considerável nos EUA e na
Europa. Vários estudos foram realizados à cerca da gaseificação, mas apesar da comprovada viabilidade, a contribuição total para a produção de energia por parte desse processo ainda é limitada (FAAIJ, 2006; GUO; SUN; GREBNER, 2007).

Em relação às tecnologias de conversão bioquímica, a digestão é a mais comum e é aplicada, principalmente, para obter biogás de resíduos orgânicos e, além disso, a aplicação de fermentação mais comum é para a obtenção de etanol de safras de açúcar (GUO; SUN; GREBNER, 2007; JÄGER-WALDAU et al., 2011; MCKENDRY, 2002b).

Portanto, a combustão de biomassa pode ser feita de várias formas, gerando várias formas de energia, tais como a energia elétrica, calor, vapor, gases e etc. A Figura 1, mostra as possíveis configurações de caminhos para a biomassa e o uso de energia. No caso da madeira, como dito anteriormente, é mais comum a combustão ou co-combustão (isso inclui os Pellet de madeira).
Figura 1. Possíveis configurações de caminhos para a bioenergia: da biomassa ao uso final de energia.
Fonte: IEA / FAO (2017a)
A escolha do tipo mais adequado de tecnologia de conversão de biomassa deve considerar, o tipo e disponibilidade de biomassa e a forma de energia necessária – energia elétrica elétrica, calor ou combustíveis de transporte (MCKENDRY, 2002b). Tal como no caso dos Pellet de madeira, também é necessária uma adequação para sua utilização em diferentes escalas, de pequenas residências até grandes indústrias (FERREIRA; MOREIRA; MONTEIRO, 2009). Além disso, as normas ambientais e as políticas governamentais também desempenham um papel importante na escolha da tecnologia de conversão (FERREIRA; MOREIRA; MONTEIRO, 2009).

Outro uso interessante e bastante difundido para a combustão dos Pellet de madeira é a co-combustão com combustíveis convencionais, principalmente o carvão. A técnica está sendo aplicada em usinas termelétricas a carvão com vantagens na eficiência da queima. A co-combustão dispõe altos custos de investimento, tal como seria se fosse realizada a conversão total, ao mesmo tempo que reduz emissões de poluentes como CO₂, enxofre e óxidos de nitrogênio (FAAIJ, 2006; GUO; SUN; GREBNER, 2007; MCKENDRY, 2002b).

Se por um lado o combustível preferido para a queima de biomassa em residências e larga escala são os Pellet de madeira, por serem padronizados, mais convenientes para comercializar em grandes quantidades, transportar e comercializar em pequenas embalagens (LIVINGSTON et al., 2016), por outro, o carvão ainda é a opção mais barata na geração de energia elétrica em grande escala. O custo por Megawatt-hora com o uso do carvão e Pellet de madeira seriam de 16 e 22 euros, respectivamente. Uma diferença bastante significativa para uma indústria na qual a produtividade é essencial em razão da intensa competitividade.

Nesse sentido, o estímulo ao uso dos Pellet de madeira ainda é muito dependente do oferecimento de subsídios pelos governos. É essencial, portanto, o entendimento dos respectivos impactos das variáveis que compõem a cadeia produtiva dos Pellet e seus custos subjacentes para que seja possível o estudo da diminuição desses custos. É relevante destacar, ainda, a importância de se analisar a cadeia produtiva como um todo, ao contrário de analisar cada variável individualmente, isso porque cada uma reage de maneira diferente às mudanças, o que muitas vezes significa que a otimização de alguns pode ter um efeito oposto em outros.

3.2. Produtos da madeira para bioenergia

Quando comparado com as demais fontes, como carvão, petróleo e outros, a biomassa da madeira natural apresenta baixa densidade aparente, o que dificulta seu transporte, armazenamento e uso. Os sistemas de densificação, seja as tecnologias de peletização ou
briquetagem podem superar essas limitações (TUMULURU et al., 2010), principalmente em relação aos resíduos de madeira industrial, que geralmente são uniformes e de difícil organização da carga. No entanto, a peletização, uniformiza a carga, melhora o manuseio, a eficiência do sistema de abastecimento e a qualidade destes materiais. A Tabela 1, mostra as características dos produtos de madeira para fins energéticos.

Tabela 1. Características dos produtos de madeira para fins energéticos

<table>
<thead>
<tr>
<th></th>
<th>Madeira fresca</th>
<th>Pellet de madeira</th>
<th>Pellet torreficados</th>
<th>Carvão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umidade (%)</td>
<td>35-50</td>
<td>7-10</td>
<td>1-5</td>
<td>10-15</td>
</tr>
<tr>
<td>Valor Calórico (GJ/T)</td>
<td>9-12</td>
<td>16-18</td>
<td>19-23</td>
<td>23-28</td>
</tr>
<tr>
<td>Densidade aparente (T/m³)</td>
<td>0,2-0,25</td>
<td>0,6-0,68</td>
<td>0,65-0,75</td>
<td>0,8-0,85</td>
</tr>
<tr>
<td>Densidade de energia (GJ/m³)</td>
<td>2-3</td>
<td>9,6-12,2</td>
<td>12,4-17,3</td>
<td>18,4-23,8</td>
</tr>
<tr>
<td>Cinza (% por peso)</td>
<td>Pobre</td>
<td>Pobre</td>
<td>0,4-2,5</td>
<td>9,7-20,2</td>
</tr>
<tr>
<td>Moagem</td>
<td>Pobre</td>
<td>Boa</td>
<td>Boa</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Thrän, Peetz and Schaubach (2017)

Com uma forma compacta de biocombustível sólido e os reduzidos custos de transporte, os Pellet de madeira são muito flexíveis quanto à aplicação, que variam desde aquecimento residencial até grande escala em usinas a carvão. Para este último, a utilização de Pellet de madeira como combustível também é vantajosa em termos de custos de investimento, uma vez que o uso destes requer menos alterações na planta quando comparada com a biomassa não comprimida (HEINIMÖ, 2009).

Nos últimos anos, outra tecnologia a ser combinada com a peletização foi desenvolvida, a torrefação. Os chamados “Torrefied wood-Pellet” (TOPs) apresentam densidade de energia e propriedades de combustão melhoradas em comparação com Pellet brancos convencionais, melhorando também seu armazenamento, manuseio e, potencialmente, a competitividade futura da biomassa como portador de energia renovável (BATIDZIRAI et al., 2014; LIVINGSTON et al., 2016).

O aquecimento doméstico individual por meio das lareiras é um mercado importante em países como Itália, Áustria, Alemanha, Suécia, Bulgária e Eslovénia. Enquanto a Áustria e a Suécia contam com o uso dos Pellet para abastecer sistemas urbanos modernos. Os sistemas urbanos de aquecimento e arrefecimento, do inglês “District Heating and Cooling” (DHC),
parece estar bem alinhado com a aplicação da tecnologia de cogeração combinada de calor e energia, do inglês “Combined Heat and Power” (CHP). Vale ressaltar que o desenvolvimento de sistemas modernos de aquecimento a partir dos Pellet como combustível também alcançou o uso residencial, com uso de lareiras (Figura 2). Estes, em geral, já são automatizados, possuem limpeza de gases catalíticos (FAAIJ, 2006).

Figura 2 – Lareira à pellet de madeira para uso residencial.
Fonte: https://www.thermorossi.com

Diversos autores discutem a eficiência e promoção das CHP (GUO; SUN; GREBNER, 2007; McKENDRY, 2002b), por se tratar de tecnologia simples, mas muito interessante na produção de calor para aquecimento, vapor e/ou água quente (ATANASIU, 2010). O CHP é amplamente aplicado em países escandinavos, na Áustria e na Alemanha, mas também tem contribuição marginal para a composição da produção de energia no Reino Unido, Espanha e Portugal (ATANASIU, 2010; FAAIJ, 2006; THRÄN; PEETZ; SCHaubach, 2019).

Na Bulgária e a Romênia, entretanto, é utilizado principalmente a combustão direta da biomassa florestal (ATANASIU, 2010; FAAIJ, 2006). O mesmo acontece no Brasil, onde a lenha e resíduos de processos, tais como maravalha e cavacos são os mais utilizados em caldeiras, inclusive quando associados a outras biomassas, especialmente o bagaço de cana (consulta pessoal a empresa produtora).

Em Portugal, segundo Ferreira, Moreira e Monteiro (2009), a aplicação de aquecimento urbano pela queima de biomassa de madeira não é habitual. Ocorrem poucas iniciativas em cogeração, em indústrias de papel, madeira e alimentos. Também não são comuns plantas industriais que utilizam CHP. Os autores destacaram desvantagens aparentes, como menor eficiência elétrica e custos mais elevados quando comparados com a aplicação...
da cogeração na Escandinávia e na Áustria. Esse contexto, associado a demanda crescente na Europa Central teria levado Portugal a comercialização da sua produção de Pellet com outros países.

As vantagens na Escandinávia advêm de políticas nacionais de clima e energia aplicadas na década de 1980, quando a cogeração por meio de biomassa decolou. Desde então, apresenta um comércio de escala e eficiência elétrica crescentes ao longo do tempo. Isso, combinado com o notável setor florestal, que proporcionou suprimentos mais competitivos, fortaleceu a madeira para geração de energia naqueles países (HEINIMÖ, 2009; OLSSON; HILLRING; VINTERBÄCK, 2011; VISSER, 2004).

Quanto à qualidade e segurança, os Pellet de madeira dividem-se em dois grandes grupos. Os Pellet usados pela indústria e produção de energia em grande escala não precisam atingir os mesmos padrões de qualidade que o Pellet para uso residencial. No uso industrial, características como cor, geração de cinzas e possível explosões não são critérios tão importantes (ESCOBAR, 2016). Em contraste, os Pellet usados para aquecimento em pequena escala em residências são obrigados a cumprir padrões e são classificados de acordo com suas propriedades técnicas. Ambos os mercados exigem também controles de origem e padrões relacionados a produção desde o insumo até o produto final. Para tanto, o mercado residencial e o industrial estabeleceram certificações que atestam tal conformidade (ALAKANGAS, 2009; QUÉNO, 2015).

Segundo Escobar, J. (2016), diferentes taxas de inorgânicos presentes em algumas espécies florestais as restringem ou pelo menos diminuem sua aceitação no mercado de Pellet. Apesar de não ser o foco deste trabalho, tem-se que levar em conta que aspectos técnicos e características físico-químicas dos insumos na produção dos Pellet podem comprometer sua comercialização, principalmente nos mercados mais exigentes.

3.3. Rastreabilidade e Certificação

O comércio de bioenergia está se tornando cada vez mais globalizado. Principalmente nos setores produtivos, a confiança dos stakeholders nos géneros é essencial para estimular os investimentos (COCCHI et al., 2011). No mesmo sentido é dada importância na transparência dos negócios e mitigação de riscos ambientais para que haja mais incentivos aos investimentos e, no contexto da bioenergia, os riscos mais importantes estão relacionados aos aspectos sociais e ambientais no fornecimento de matéria-prima de biomassa.
Uma ferramenta crítica que apoia a transparência de produtos e práticas em diferentes mercados é a rastreabilidade dos produtos. A rastreabilidade permite “rastrear a história, aplicação ou localização de um item ou atividade por meio de identificações registradas” pela identificação do produto e seu registro de dados desde a produção até o processamento e até a cadeia de distribuição (FAO, 2016). Esse conceito começou a ser utilizado no comércio de produtos de madeira tropical quando os consumidores desconfiavam da origem dos produtos, uma vez que a extração de madeira tropical estava fortemente associada ao desmatamento (FAO, 2016).

Porém a confiança e segurança para consumidores e partes interessadas, parte da confirmação da rastreabilidade por meio de processo independentes ou governamentais de certificação. Para além disso, Silva (2014), define certificação como um conjunto de procedimentos aplicados por uma entidade certificadora para atestar que determinado produto atende a requisitos pré-determinados. A certificação pode ser orientada para aspectos sociais, ambientais, de qualidade, em relação ao produto em si, à forma como é produzido ou ao local em que é produzido ou obtido (MURADIAN; PELUPESSY, 2005; RADOMSKY, 2009). Assim, a certificação envolve algum nível de coordenação, rastreabilidade ou monitoramento de toda a cadeia de abastecimento.

3.3.1. Padrões socioambientais para o insumo

As certificações florestais foram a resposta mais objetiva para mitigar riscos na cadeia de fornecimento de madeira. O FSC (Forest Stewardship Council) foi a iniciativa pioneira, em 1993 reuniu interesses sociais e da iniciativa privada em um acordo que sustentaria relações mais transparentes e independentes no cumprimento de padrões para o manejo florestal. A iniciativa que nasceu com o propósito da conservação das florestais tropicais mais tarde envolveria a produção florestal de todo o setor, desde a silvicultura até a obtenção dos produtos finais, papel, bens de madeira e outros produtos e subprodutos florestais. O FSC ainda é o sistema mais reconhecido dentre as certificações florestais, seguido pelo PEFC (Pan European Forest Council).

As preocupações com o uso de biomassa não foram menores e também houveram esforços para o desenvolvimento de sistemas de certificação para bioenergia. Os padrões referenciam preocupações com o fornecimento de matéria-prima de biomassa, questões ambientais, aspectos sociais, mudanças no uso da terra, incerteza nas emissões de GEE e complexidade da produção de biocombustíveis (SCARLAT; DALLEMAND, 2011). Nos
Estados Unidos, por exemplo, os esforços começaram em 2007 com a criação do Conselho de Produção de Biomassa Sustentável, do inglês “Council on Sustainable Biomass Production” (CSBP), com o objetivo de desenvolver padrões voluntários de sustentabilidade e um sistema de certificação para a produção sustentável de bioenergia.

Em relação ao uso da madeira, em particular, existem portanto esquemas de certificação florestal consagrados em todo o mundo - o FSC e o PEFC - que atestam que um produto florestal é emitido a partir de um manejo florestal responsável associado a boas práticas socioambientais. Além da Certificação de Manejo Florestal, esses programas também oferecem um módulo de certificação de Cadeia de Custódia, do inglês “Chain of Custody” (CoC), fortemente relacionado à rastreabilidade da madeira durante seus processos de transformação na indústria. O CoC garante a origem da madeira desde o manejo sustentável da floresta ao longo da fabricação e comercialização até o cliente final (FSC, 2017; SIKKEMA et al., 2014).

Apesar da representatividade do PEFC e de suas parcerias com outras iniciativas nacionais de países com tradição florestal (Cerflor, no Brasil, SFI nos EUA e CSA no Canadá), os principais mercados – Europeus, exceto Inglaterra e Bélgica – só compram produtos certificado pelo FSC. Segundo Voivodic (2010), por mais que as iniciativas nacionais sejam instrumentos semelhantes, somente no caso do FSC são mantidos mecanismos internos de governança que legitimam o sistema perante a sociedade civil. O reconhecimento da sociedade civil organizada, notadamente instituições como o Greenpeace e o WWF, são a condição para manutenção do sistema, credibilidade esta que o FSC ainda mantém nos quase 30 anos de sua criação.

Por sua vez, o Programa de Biomassa Sustentável, do inglês “Sustainable Biomass Program” (SBP), é um sistema de certificação voluntária estabelecido em 2013 exclusivamente para biomassa lenhosa para fins energéticos, principalmente para Pellet de madeira e lascas de madeira (“chips”) usados para produção industrial e produção de energia em larga escala. O SBP está comprometido com uma cadeia de suprimentos econômica, ambiental e socialmente sustentável, contribuindo para a economia de baixo carbono e para a legalidade da cadeia.

O SBP reconhece completamente os programas do FSC e PEFC. A proposta do SBP é reforçar os programas de certificação implementados incorporando o componente carbono em seu padrão. No entanto a produção de Pellet sob este certificado ainda é pouco representativa, totalizando no ano de 2020, 1,60Mt de um total certificado de 13,35Mt (SBP, 2020).
3.3.2. Sistemas de gestão da qualidade dos Pellet

Na Europa, o CEN (Comitê Europeu de Normalização) foi formado em 2008 para criar um padrão europeu para biomassa sustentável para aplicações de energia. Desde então, podemos citar vários esforços na definição de critérios e sistemas de certificação sobre a sustentabilidade da biomassa para produção de energia, como o Acordo Técnico da Holanda, do inglês “Netherlands Technical Agreement (NTA), a Certificação Internacional de Sustentabilidade e Carbono, do inglês “International Sustainability and Carbon Certification” (ISCC), a Mesa Redonda sobre Biocombustíveis Sustentáveis, do inglês “Roundtable on Sustainable Biofuels” (RSB), e o ISO PC/248, que desenvolveu a ISO 13065:2015 como um padrão global sobre sustentabilidade de biomassa e cadeia de custódia (SCARLAT; DALLEMAND, 2011).

Por sua vez, passaram a existir esquemas de certificação para a qualidade dos Pellet de madeira. O sistema alemão DINplus foi um dos precursores do ideal da gestão da qualidade interna nos produtores e previa uma auditoria externa anual (VIVARELLI, 2009). Foi inicialmente utilizado na Alemanha, França, Bélgica e Suíça na produção e comercialização no próprio país e um pouco mais tarde por produtores orientados para a exportação, como Portugal e Polónia. Outros padrões para biomassa também foram desenvolvidos na Holanda, Áustria e Suécia (SCARLAT; DALLEMAND, 2011; VIVARELLI, 2009), mas logo seriam substituídos por um padrão único.

Com o ideal de uma padronização em toda Europa, o Comitê Europeu de Normalização foi formado (SCARLAT; DALLEMAND, 2011). O ponto de partida foi a elaboração da norma europeia EN 14961-2, na qual são incorporados critérios para a produção e classificação dos Pellet de madeira. Quando as Normas EN entraram em vigor, aquelas normas nacionais precisaram ser retiradas ou adaptadas a então denominada ENplus (MONTEIRO; MANTHA; ROUBOA, 2012b).

No caminho da globalização dos padrões, a ISO 17225-2:2014 especifica padrões para a obtenção de qualidade para os diversos produtos de madeira para queima. O padrão internacional é dividido em sete partes, sendo o número 2 destinada à classificação dos Pellet de madeira. Por sua vez, organizações com maior consumo de energia renovável podem adotar outros sistema da ISO, por exemplo a série ISO 50.000 abrange o desempenho energético das organizações. A implementação desta norma visa reduzir as emissões de GEE e outros impactos ambientais relacionados à energia, bem como promover resultados em cadeia nos custos. Outro exemplo, a ISO 13065:2015 pode ser integrada a adoção de outras
normas e remete ao uso de biomassas orgânicas. Os padrões vêm sendo aprimorados para atender cada vez mais aos critérios que minimizam impactos sobre o aquecimento global.

Vale ressaltar que, por se tratar de uma certificação de sistema de gestão e qualidade do produto, o cumprimento do padrão nas normas ISO e ENPlus não reflete diretamente em um desempenho técnico e socioambiental da produção e da origem da biomassa, por isso é comum que as empresas associem tais certificações a outras certificações dos insumos. Por exemplo, no caso da madeira, à certificação florestal.

Portanto, a padronização dos Pellet para o mercado europeu foi um exemplo de medida estratégica e necessária para orientar a produção e comercialização do Pellet. Como esta, alguns trabalhos acadêmicos referenciaram ações e objetivos que seriam benéficos a cadeia de valor desse produto. O próximo subtópico trará alguns desse trabalhos, pois foram elencados como instrumentos interessantes para melhor entendimento e orientação de medidas nos países que desenvolveram a indústria de Pellet.

3.4. Políticas de desenvolvimento de mercados de bioenergia na Europa.

A União Européia (UE) e o Reino Unido utilizam Pellet, que em muitos casos vêm de países em desenvolvimento, para a produção de eletricidade, bem como para uso residencial e industrial (THRÄN; PEETZ; SCHAUDBACH, 2019; UASUF; BECKER, 2011). Como região, a Europa é a maior consumidora e é de longe a maior produtora de Pellet de madeira do mundo. em 2015, a produção da UE correspondeu a 54% da produção global e em 2019 correspondeu a 45% (AEBIOM, 2019)), seguida da América do Norte (responsável por 35% da produção global no mesmo período, e em 2019 diminuiu para 31,4% (AEBIOM, 2019)). A Alemanha e o Reino Unido foram responsáveis por 19,5% e 10,6%, respectivamente, de toda

A Diretiva de energia renovável europeia de 2009, do inglês “European energy directive” (RED), 2009 / EC / 28, estabeleceu a meta de que todos os países membros da UE aumentem para 20% a participação de energias produzidas a partir de fontes renováveis dentre o consumo final bruto, esperou-se que este número tivesse sido alcançado até 2020 e foi definido o uso de energia renovável para eletricidade, aquecimento e resfriamento como opções para atingir a meta (PARLAMENTO EUROPEU, 2009). Muitos países tiveram ações para tal objetivo e confirmaram parte das estimativas e projeções de 2009, representando quase 12% do consumo final bruto de energia da UE (SCARLAT; DALLEMAND; BANJA, 2013).

Cada estado-membro da UE teve que elaborar um plano de ação nacional para as energias renováveis, incluindo um planejamento específico do uso da biomassa como combustível (PARLAMENTO EUROPEU, 2009). Assim, os estados membros da UE publicaram em 2011 os planos individuais sobre como estão projetando alcançar essa meta no “National Renewable Action Plans” (NREAPs) (HOEFNAGELS et al., 2014). A grande maioria deles indica que a biomassa sólida e, em particular, a biomassa florestal, continuarão como uma das principais fontes de bioenergia na União Europeia (ATANASIU, 2010).

Assim, com o intuito de atingir tais objetivos, os NREAPs dos estados europeus focam na maior presença de energias renováveis no setor industrial, por exemplo, com o aumento nas plantas de CHP, de co-combustão e de centrais elétricas dedicadas à queima de Pellet (FAAIJ, 2006). Entretanto, o aumento neste setor, que se caracteriza pelas suas grandes escalas, levanta preocupações sobre o fornecimento de biomassa, uma vez que alguns países vêm se tornando cada vez mais dependentes da biomassa importada, especialmente de Pellet de madeira (FAAIJ, 2006). Éste é o caso em países como Bélgica, Holanda e Reino Unido, que relataram um problema de demanda estrutural nas importações de enormes quantidades de Pellet de madeira entre 2004 e 2005, uma vez que, na ocasião, medidas públicas, como tarifas feed-in, foram implementadas para apoiar usinas de co-combustão em grande escala (HEINIMÖ, 2009).

cenário de política no continente em relação à energia e ao clima, sobretudo no enquadramento do Acordo Climático de Paris de 2015, no qual houve um comprometimento da UE no avanço ainda maior e mais próximo de uma redução de pelo menos 40% das emissões de GEE até 2030. A nova diretiva é considerada mais ambiciosa, devido às orientação para a UE no âmbito da promoção de energias renováveis e fixa uma meta vinculativa à nível da União de, pelo menos, 32% de energia renovável.

Esta nova diretiva entrou em vigor no dia 1 de janeiro de 2021 e coube aos Estados membros a definição de suas respetivas contribuições para o planejamento do alcance da meta estabelecida. Os Estados, através de seus planos nacionais integrados sobre energia e clima e, de acordo com suas especificidades, precisam apresentar esses resultados até o ano de 2030. Para a UE, o Acordo de Paris pode ter surtido o efeito de incorporar ainda mais a regulamentação do clima e das energias renováveis da UE na UNFCCC, a UE se comprometeu com uma meta obrigatória de pelo menos 40% de redução doméstica nas emissões de GEE até 2030 em comparação com 1990 (LEAL-ARCAS; MINAS, 2016).

Mesmo considerando que a União Europeia venha estimulando a bioenergia desde os anos 1980 e que quase todos os seus países se comprometeram com acordos energéticos comuns, cada estado escolheu diferentes abordagens para promover a bioenergia de acordo com condições naturais específicas, com a estrutura do sistema energético e com as prioridades políticas do setor agrícola e florestal (FAAIJ, 2006). Em uma escala global, essas distinções são ainda maiores.

Os países nos quais foram implementadas fortes políticas nacionais de apoio e enquadramento legal ao desenvolvimento da bioenergia, ocupam atualmente posições de destaque na utilização industrial da biomassa para fins energéticos, especialmente CHP (FAAIJ, 2006). Na Suécia, o desenvolvimento do mercado de biomassa e CHP foi subseqüente à implementação de um forte imposto sobre o carbono; A Alemanha teve apoio financeiro para estabelecer indústrias de biodiesel e CHP; bem como outros programas, em especial na Dinamarca, Áustria e Finlândia, que mostraram resultados substanciais (FAAIJ, 2006).

A oferta de biomassa para geração de bioenergia também é um fator central nas discrepâncias significativas entre os setores de bioenergia dos países. A Escandinávia, como um todo, é a região líder em bioenergia, tanto no que diz respeito à sua contribuição na matriz energética do país como no avanço da tecnologia, e se deve, em grande parte, ao forte setor florestal, seja pela abundante oferta de biomassa na região, seja pelas suas capacidades de inovação (FAAIJ, 2006). Diferenças podem ser notadas ao comparar a Escandinávia em
relação a outros países que também possuem grandes ambições em bioenergia mas que apresentam menor matéria-prima de biomassa, como Alemanha, Holanda e Reino Unido (FAAIJ, 2006).

Ainda na Suécia, a maioria de suas usinas de Pellet está próxima a serrarias e indústrias de madeira e móveis; esse bom fornecimento de matéria-prima de qualidade foi um fator importante para o forte desenvolvimento da produção de Pellet no país (MALISIUS et al., 2000; SELKIMÄKI et al., 2010). Apesar disso, o potencial da biomassa como recurso energético depende não apenas do seu potencial de oferta, mas depende também de ser competitivo dentre outras fontes de energia considerando a demanda energética (BERNDES; HOOGWIJK; VAN DEN BROEK, 2003).

Conforme demonstrado em um estudo de caso do mercado de Pellet em Portugal, os primeiros incentivos à produção de Pellet tinham como objetivo o melhor aproveitamento dos abundantes resíduos da exploração florestal no país (NUNES; FREITAS, 2016). A principal ameaça à manutenção florestal em Portugal são os incêndios (AIFF, 2014), além disso, um fator essencial na prevenção de incêndios é a limpeza das florestas. Esta atividade, entretanto, é cara e gera grandes quantidades de resíduos florestais (AIFF, 2014; DGRF, 2006; MONTEIRO; MANTHA; ROUBOA, 2012a).

Diante disso e do potencial econômico dos resíduos florestais, a Estratégia Nacional para as Florestas, criada em 2006, prioriza o desenvolvimento de um mercado para o melhor aproveitamento da biomassa florestal, utilizando-a como fonte de energia e, portanto, agregando valor à matéria-prima e incentivando as energias renováveis ao mesmo tempo (DGRF, 2006). No entanto, esse tipo de matéria-prima não apresentou viabilidade econômica, principalmente devido aos seus altos custos de transporte para as usinas de Pellet, além disso, a indústria de Pellet de madeira estabelecida atualmente está competindo pelo fornecimento de matéria-prima com outras indústrias florestais.

Apesar do impressionante ritmo de crescimento da produção de Pellet de madeira em Portugal nos últimos anos, este não está relacionado com um consumo interno (VIVARELLI, 2009). Portugal tem uma procura limitada de aquecimento por conta de suas condições climáticas, sendo ainda o gás natural mais atraente no aquecimento para os consumidores de pequena escala (MONTEIRO; MANTHA; ROUBOA, 2012a). O mercado interno limitado e a alta demanda externa levaram a uma indústria de Pellet voltada para a exportação no país. Em 2017, quase 90% dos Pellet produzidos são exportadas para Bélgica, Inglaterra, Suécia ou Dinamarca (NUNES; FREITAS, 2016; THRÄN; PEETZ; SCHAUBACH, 2019).
Aliada à baixa disponibilidade de resíduos da indústria madeireira, em geral já utilizados para outros fins, e ao aumento do consumo nos mercados externos, os produtores de Pellet portugueses passaram a utilizar a madeira em tora Pinus Pinaster como matéria-prima (NUNES; FREITAS, 2016; VIVARELLI, 2009). Em 2016, o mercado de produção de Pellet já absorvia entre 40% e 60% da produção anual da madeira Pinus Pinaster (NUNES; FREITAS, 2016). Esta competição com outros setores está conduzindo a uma escassez no fornecimento de matéria-prima e trazendo polêmicas ao setor de produtos florestais em Portugal.

A estratégia utilizada para tal finalidade é o estabelecimento dos chamados “Renewables Obligation Certificates” (ROCs), que são quotas, na forma de certificados, emitidos para operadores de usinas geradoras de eletricidade à base de materiais renováveis que sejam credenciadas pelo mecanismo. Os ROCs são, em última análise, usados pelos fornecedores para demonstrar que cumpriram com suas obrigações, sendo possível que operadores negociem os seus ROCs com segundas partes, uma vez que a não apresentação de um número suficiente de ROCs por parte de uma usina geradora para o cumprimento das obrigações com o mecanismo gera encargos financeiros com intuiitos de penalidade.

Um exemplo de sucesso como consequência da instauração do “Renewable Obligations” foi a viabilização da conversão da principal matéria-prima utilizada na usina elétrica Drax, responsável pela criação de 7% da energia elétrica do Reino Unido (IMECHE, 2010). No ano de 2010, levantou-se a possibilidade de substituição da matéria-prima utilizada na usina, que antes era predominantemente baseada na queima do carvão, passando a utilizar também a biomassa (DRAX, 2018).

As configurações dos subsídios do governo à época, no entanto, não satisfaziam as necessidades que esse projeto de conversão necessitava para a sua compleetude, diante disso, a decisão de conversão por parte da usina foi somente possibilitada por uma nova política do governo do Reino Unido, em vigor em abril de 2013, que concedeu 1,0 ROCs negociáveis por megawatt de geração de energia a partir de usinas a carvão totalmente convertidas para queimar biomassa. Até o ano de 2018, três de suas unidades geradoras funcionavam
inteiramente com Pellet de madeira comprimida, sendo a primeira conversão feita em 2013, com mais duas em 2014 e 2016, enquanto o carvão foi relegado a intervir apenas para cobrir picos de demanda e melhorar a estabilidade do sistema.

Na Itália, ao contrário da industrialização e ganho de escala na geração de energia, ocorreram altas vendas de lareiras (fogões) para queima de Pellet nas residências, o que também gerou uma grande demanda por Pellet com as especificações para este uso. Para suprir essa demanda o país contou com importações, principalmente da Áustria (HEINIMÖ, 2009). Na Itália, as aplicações de fogões individuais ainda dominam o mercado e a tendência de importação continuou (THRÄN; PEETZ; SCHAUBACH, 2019). Atualmente, Itália e Áustria estabelecem a maior relação comercial da Europa no contexto dos Pellet de madeira, sendo a Áustria o maior fornecedor individual da Itália, que por sua vez é também o maior cliente austríaco (THRÄN; PEETZ; SCHAUBACH, 2019).

3.4.1. Desenvolvimento social e econômico com base na Biomassa.

Trabalhos como o de Steef, V (2016) vem sendo discutidos no recente ramo da ciência. Zoltán, V (2021) define a Bioeconomia como “área de estudo com alta complexidade, por se tratar de um conceito entre setores para compreender e conectar todas os processos que contam com uso de biomassa”. De fato, o primeiro uso do termo foi associado com estudos das ciências moleculares e da genética, no entanto, atribuíam-se novas definições mas sempre associando-se setores da economia e área de conhecimento. Como o universo da biomassa envolve desde o uso de solo até os efeitos “outputs” do uso e descarte no meio ambiente e sociedade, tal categorização parece ser bem acertada.

Nesse sentido, Sikkema (2017), por exemplo, discute a máxima eficiência do uso da madeira nas cadeias da fibra papel e chapas de fibras e da madeira sólida como um dos desafios para a produção e diversificação dos usos da madeira na Europa. O autor associa aspectos técnicos da produção floresta na Europa com questões relacionadas a legalidade da madeira e uso mais eficiente dos recursos naturais naqueles países. A lógica dos autores é que o máximo uso pode ser obtido se um sortimento da madeira possa definir o que será usado para cada destino, adequando principalmente à qualidade da madeira o que ele define em inglês como “Cascade use principle” (“uso da madeira em cascata”).

No Brasil tal tecnologia já é bem difundida e sempre que possível o manejo florestal observa os sortimentos da floresta para direcionar o uso mais eficiente. A principal restrição a
este modelo no Brasil é a logística, pois para que um sortimento mais eficiente seja realizada em um raio viável devem se estabelecer os diferentes tipos de uso de madeira. De certa forma, as proposições do trabalho de Sikkema, 2017 se assemelha com o presente trabalho porque se baseia em uma aspecto técnico e de produção da Europa que, se associado com outros fatores podem impulsionar o uso de madeira para energia.

As políticas públicas voltadas ao desenvolvimento de atividades mais eficientes e sustentáveis no campo também são o foco do estudo realizado por Global Utmaning, 2012. Em estudo realizado com base na produção dos países africanos, foi identificado que aqueles países somam 635 milhões de hectares de florestas, e tal como no Brasil, metade dessas áreas ainda em condições para total conservação. Aproximadamente 600 milhões de metros cúbicos são utilizados por ano. Como dito anteriormente, a África é um dos continentes que o uso da madeira para cocção e geração de calor de forma tradicional mais ocorre. Foram identificadas por meio do estudo ações que podem conduzir a produção mais alinhada com as exigências dos mercados internacionais e também para o maior acesso à energia e com segurança.

Para o Global Utmat (2012), o caminho para desenvolvimento do uso de energia moderna da madeira na África partiria de uma reestruturação de todo o setor florestal, começando pelos aspectos socioambientais do manejo florestal e silvicultura. Trata-se de uma realidade em que se negligencia as pessoas e também a biodiversidade existente. Tais condições seriam a nível governamental, por isso o trabalho indica que os caminhos devem partir das unidades de produção, por exemplo, adotando padrões de certificação florestal. Sem dúvida, seriam envolvidos custos para suprir lacunas das ações do governo, porém os resultados poderiam transformar as condições das atividades.

Em um contexto de alta demanda por madeira e Pellet pela Europa, países que já não utilizam esse tipo de energia ou que já se tornaram autossuficientes passaram a investir para a exportação. Rússia e os países bálticos foram os primeiros a direcionar investimentos nesse
mercado (THRÄN ; PEETZ; SCHAUBACH, 2017). Como será discutido à frente, os mercados emergentes no comércio de Pellet estão na América do Sul e da Ásia e África, desde que alcancem critérios socioambientais. Em 2007, Argentina, Brasil e Chile já haviam instalado fábricas de produção de Pellet e começaram a exportar (PEKSA-BLANCHARD et al., 2007).

Por exemplo, em alguns países, como o Reino Unido, já avaliam que o abastecimento local não seria suficiente ao suprimento, de modo a anteciparem substanciais importações de biocombustíveis e biomassa sólida (ATANASIU, 2010). Com a introdução do “Renewables Obligation” em 2002, proporcionando subsídios para a geração de eletricidade renovável, foi implementado um programa de investimentos para a substituição do carvão por materiais de biomassa no setor industrial. A indústria de energia na Grã-Bretanha, junto com fornecedores de manuseio de materiais, processamento de combustível e equipamentos de queima, ganhou experiência ao longo dos anos e é a indústria mais consolidada em projetos de conversão de biomassa em todo o mundo (IEA, 2016). Este país também é o maior consumidor mundial de Pellet, com 6,7 Mt em 2015, seguido pelos Estados Unidos (2,9 Mt), Dinamarca (2,8 Mt) e Itália (2,1 Mt).

Os Estados Unidos já era o maior produtor de Pellet no mundo quando oportunizou as exportações para atender a demanda que a UE não foi autossuficiente. Segundo Steef, V (2016), a produção no sudeste dos Estados Unidos logrou de sua eficiência para atingir o mercado europeu com viabilidade financeira. De fato, essa região possui uma indústria de base florestal desenvolvida, na qual são insumos para produção de Pellet da floresta e do processamento das toras são utilizados. Ainda de acordo com o autor, tais origens da matéria prima levam a níveis de emissão de GEE diferentes e, em detrimento do desempenho financeiro ou até mesmo alinhando-se a questão econômica, tais “outputs” também devem ser considerados. Os resultados do trabalho mostraram que um novo arranjo para a destinação à produção de Pellet ao invés das destinações que ocorriam no período em análise seriam mais desejáveis sob a perspectiva de redução das emissões.

Portanto, um olhar sobre a perspectiva da Bioeconomia não se restringe aos países em desenvolvimento, pois entende-se que todos tem um papel no desenvolvimento de atividades mais eficientes dos pontos de vista econômico, social e ambiental. No contexto do uso de madeira para produção de energia, muitos paradigmas podem ser superados e com certeza mais pode ser feito para a sociedade e o meio ambiente.
3.5. Energias renováveis no Brasil

O potencial brasileiro para desenvolvimento e utilização de fontes alternativas de geração de energia é bastante elevado, sustentado por recursos e reservas energéticas, e capacidade para obtenção de energia de forma sustentável tanto para abastecimento interno quanto para atendimento de demanda do mercado externo a partir das biomassas. O cenário para geração de energia elétrica no país vem mudando há pelo menos duas décadas. O uso do bagaço de cana, resíduos de produção de celulose e mesmo madeira em cavacos cada vez estão mais presentes na matriz. No entanto, o uso de termelétricas à base de combustíveis fósseis também tem aumentado, principalmente para atender a falta de energia de fonte hidroelétrica.

De qualquer forma, enquanto as emissões mundiais de GEE da geração de eletricidade respondem por 28,8% das emissões totais de GEE, o setor elétrico brasileiro vem contribuindo com apenas 1,2% do total das emissões nacionais de GEE (INSTITUTO ACENDE BRASIL, 2012). Evidentemente, essa condição é favorecida pelo uso ainda generalizado de energia hidrelétrica e pelo uso de outras fontes renováveis de energia, que podem ser aumentadas no futuro. A Figura 3, mostra a rede elétrica do Brasil em gigawatts-hora (GWh) de 1990 a 2015. Desse total, 82% da energia gerada é renovável e a biomassa responde por 8,2% (IEA, 2018).

![Grid de eletricidade no Brasil em gigawatt-hora (GWh) de 1990 até 2015.](image)

Fonte: (IEA, 2018)
O Brasil ainda produz uma grande quantidade (29 TWh) de energia a partir do petróleo (IEA, 2018). Como se trata de um alto investimento, tais estruturas não podem ser facilmente desestruturadas no curto ou médio prazo por questões de viabilidade ou até porque são na maioria das vezes subsidiadas ou regidas por contrato de leilões. Situação semelhante se verifica para o gás natural, cuja estrutura de abastecimento é proveniente de investimentos públicos e privados, e envolve inclusive pactos diplomáticos. Por outro lado, as indústrias e termelétricas que operam com carvão podem ser facilmente adaptadas para o aproveitamento da madeira, seja pellet ou cavaco, devido ao sistema de grelha.

Apesar da necessidade de redução da dependência de combustíveis fósseis e diminuição dos impactos da matriz energética nas emissões de GEE, existem várias termelétricas em construção no país. As termelétricas de emergência, como são chamados os geradores que atendem às demandas de energia quando há falhas no sistema hidrelétrico, cresceram em número e capacidade nas últimas décadas. Refletindo a disponibilidade de gasóleo natural está sendo instalada uma capacidade de 1.808 MW no país. Por se tratar de um alto investimento, a única alternativa para reduzir esse impacto seria utilizar o biodiesel em percentuais crescentes associados ao diesel de petróleo.

Com um olhar para as capacidades instaladas, a geração elétrica em operação no ano de 2019 foi de 170.118 MW na seguinte configuração: Usinas Hidrelétricas (60,5 %), PCH (3,1%), CGH (0,5%), Gás Natural (7,9%), Derivados de Petróleo (4,5%), Carvão (1,9%), Usinas Nucleares (1,2%), Biomassa (8,6%), Usinas Eólicas (9,0%), Solar (1,5%) e Outras (1,3%), (Aneel, 2021). Portanto a geração de energia elétrica a partir de biomassa já é expressiva, mas inferior as fontes fósseis, que totalizam 14,3%.

A Figura 4, apresenta a contribuição de cada fonte de energia primária no total das termelétricas em cada estado. A análise dessas informações se dá por estados, identificando a diversificação nas fontes nível 1, que perfazem a capacidade instalada desses estados ou; a distribuição de cada um das fontes no país, indicando aqueles estados que mais se destacam cada fonte nível 1.
Figura 4: Geração de energia por termelétrica em operação segregada por fonte nível 1 e estados brasileiros para o ano de 2018, calculada a partir da potência controlada (quilowatt kW). Nível 1 segregado em: Gás Natural (Calor de Processo - GN e Gás Natural), Cana de Açúcar (Bagaço de Cana, Biogás - agricultura, Capim Elefante, Casca de Arroz), Óleo (Óleo Combustível e Diesel), Floresta (Biogás - Floresta, Carvão Vegetal, Explosão Gás de Forno - Biomassa, Lenha, Licor Negro, Resíduos Florestais), Carvão (Calor de Processo - MC, Carvão Mineral - MC, Gás Explosivo - MC) e Outras biomassas (resíduos sólidos urbanos, resíduos animais, biocombustíveis líquidos) ANEEL (2018).
No lado esquerdo da Figura 4, são observados capacidades instaladas com fontes de origem fóssil. Apesar da disponibilidade de florestas na região norte do país, ainda prevalecem a geração termelétrica a partir dessas fontes, notadamente o óleo (combustível e diesel). Por sua vez, a capacidade instalada para transformação de Gás natural em energia elétrica é mais significativa nos estados de Rondônia, Mato Grosso, Maranhão e Rio de Janeiro.

A geração de energia a partir do carvão mineral ocorre principalmente nos estados do Rio Grande do Norte e Santa Catarina. Mesmo sem a desestruturação dessa unidades de energia é possível tornar seus impactos menores com a co-combustão dos Pellet com o carvão. Sem que sejam necessários grandes investimentos.

São Paulo é o estado que mais consome biomassas da agricultura, principalmente da cana de açúcar e de acordo com os dados da Aneel, teria um baixo consumo de biomassa da madeira. De fato, entende-se que os dados para o consumo de madeira esteja subestimado, isso porque por meio de consulta pessoal foi possível identificar que o consumo de madeira para co-combustão com bagaço de cana está sendo muito utilizado no estado. Segundo consulta pessoal às usinas de queima de bagaço, o consumo de madeira para co-combustão seria de até 20% do volume total de bagaço de cana.

Minas Gerais é um estado movido principalmente pela atividade agrícola. Essa condição reflete na disponibilidade de biomassa para geração de energia. De fato, quando se observa as fontes de energia a maior parcela dos insumos utilizados vem das opções renováveis. Isso, sem considerar a madeira utilizada para geração de calor e redução do ferro na siderurgia.

A indústria siderúrgica brasileira é reconhecida como a maior consumidora de carvão vegetal do mundo (BRITO, 2007; UHLIG, 2008), pois o Brasil é o único país que a utiliza para produção de aço e ferro-gusa. Neste último, é utilizado como combustível para gerar o calor necessário ao funcionamento do alto-forno, mas também como agente químico para retirar o oxigênio durante o processo (redutor). A utilização do carvão mineral ocorre nos estados de Minas Gerais e Maranhão, cujas siderúrgicas representam 83% do total da energia gerada a partir do carvão vegetal.

Tanto no caso da indústria do aço a partir do carvão, quanto na indústria do cimento, é interessante e possível incorporar percentuais menores de combustíveis renováveis, embora não seja necessário mudar a tecnologia. Esse uso consiste na prática de introduzir biomassa de madeira como fonte de energia suplementar nas caldeiras existentes, queimando combustíveis
misturados com combustíveis convencionais, principalmente carvão. Essa prática, conhecida como co-combustão ou co-combustão, geralmente é aplicada em usinas termelétricas a carvão e traz vantagens, como a alta eficiência de conversão sem necessidade de altos custos de investimento e redução direta das emissões de poluição de CO₂, enxofre e óxidos de nitrogênio, devido à substituição do carvão (FAAIJ, 2006; GUO; SUN; GREBNER, 2007; MCKENDRY, 2002b).

Como no processo siderúrgico, a indústria cimenteira exige um alto consumo de energia, seja na forma de energia térmica (calor), por meio dos combustíveis utilizados para aquecer fornos rotativos para a produção de clínquer, seja na forma de energia elétrica, consumido em todo o processo industrial para mover máquinas, girar os fornos rotativos e moinhos. A maior parte desse consumo, porém, refere-se ao gasto de energia térmica durante a queima de combustíveis e utiliza principalmente fontes não renováveis de energia.

O Brasil também enfrenta algumas barreiras para a utilização de resíduos da silvicultura para fins energéticos. ESCOBAR (2016) menciona questões logísticas, a ausência de tecnologia para a exploração específica de resíduos e um mercado interno não estabelecido. O autor destacou a importância das políticas públicas para o desenvolvimento de uma maior parcela de energia proveniente dos resíduos florestais. Uma opção promissora, no entanto, é a dedicação de culturas específicas para fins energéticos, devido à excelente produtividade das culturas florestais de curta rotação no país.

A grande diversidade de contextos florestais e industriais nas diferentes regiões do país dificulta uma avaliação mais precisa da situação brasileira em relação aos resíduos florestais e de serrarias. Na região amazônica, os resíduos legais do manejo florestal nativo constituem uma oportuna fonte de resíduos, que em sua maioria não são aproveitados e deixados na floresta, embora uma pequena parte tenha sido recentemente utilizada para a produção de carvão vegetal pelas indústrias locais. Uma situação diferente ocorre nas regiões Sul e Sudeste, onde os resíduos gerados no processamento industrial da madeira muitas vezes são utilizados para a produção de energia e calor pelas mesmas indústrias (ESCOBAR, 2016), ou comercializados para outras empresas.

Na silvicultura e segmentos industriais do setor florestal, o Brasil tem grande potencial devido a abundância de matéria-prima, seja em toras de madeira, ou dos resíduos florestais e da atividade madeireira, mas estimativas precisas da disponibilidade de resíduos que poderiam ser empregados para fins de energia moderna ainda estão ausentes (COCCHI et al., 2011; ESCOBAR, 2016; PEKSA-BLANCHARD et al., 2007). A alta diversidade florestal e de contextos industriais nas diferentes regiões do país dificultam uma avaliação mais precisa
da situação brasileira em relação aos resíduos florestais. Na região amazônica, os resíduos do manejo legal de florestas nativas são a principal fonte de resíduos, que em sua maioria não são aproveitados e são deixados na floresta, embora uma pequena parte tenha sido recentemente utilizada para a produção de carvão vegetal pelas indústrias locais.

Situação diferente ocorre nas regiões Sul e Sudeste, onde os resíduos gerados no processamento industrial da madeira muitas vezes são utilizados para a produção de energia e calor pelas mesmas indústrias (ESCOBAR, 2016). Os resíduos provenientes do manejo florestal – principalmente florestas plantadas de Eucalyptus sp. e Pinus sp. – são usados para a produção de painéis ou muitas vezes deixados no local da floresta, servindo como nutrientes e protegendo o solo para o próximo ciclo.

A utilização da madeira para geração de eletricidade ocorre principalmente nas indústrias de papel e celulose, mas também é utilizada na cogeração nas indústrias de madeira sólida e seus segmentos, como o moveleiro. Os resíduos das usinas de açúcar e etanol e das indústrias de papel e celulose representam a maior parte do total dos insumos para geração de energia elétrica.

Em 2016, o Brasil produzia bem abaixo de sua capacidade (GARCIA, 2016). Neste período apontava-se a falta de demanda, além de problemas técnicos, como a utilização de equipamentos projetados para indústria de ração animal. Com a baixa produção, tinha-se um custo elevado, acrescido do alto custo de eletricidade e custo logístico, este último, relacionado ao abastecimento de matéria-prima e o transporte para exportação/comprador final (GARCIA, 2016).

Welfle, A (2017) disserta que, apesar do aumento no número de empresas brasileiras desenvolvendo informações acerca dos mercados europeus de Pellet de madeira com o objetivo de estabelecer vínculos comerciais, essas ações ainda são incipientes. Para acrescentar, existem também estudos que não apontam o eucalipto como uma madeira adequada para a produção de Pellet — custo de produção mais elevado e alto teor de cinzas —, o que também dificulta a inserção do país, uma vez que boa parte de seus plantios comerciais são compostos por espécies de eucalipto (SOARES et al, 2014). A falta de conhecimento acerca da produção, e o uso insignificante localmente, também são fatores que não contribuem para um desenvolvimento mais significativo do mercado brasileiro (DA SILVA, 2020).
4. ANÁLISE DO FLUXO COMERCIAL DE PELLET

Os ganhos na escala de produção e nas unidades industriais representam uma nova fase para a indústria de geração de energia com o aproveitamento de resíduos da madeira. Pôde-se observar pela revisão narrativa da literatura o quão recente é o uso energético da madeira na forma Pellet e também para o aquecimento de residências. Em alguns países, a madeira na forma de Pellet é adotada para se obter o total aproveitamento dos resíduos gerados na produção de outros produtos de madeira e para utilizar-se de biomassa renovável, pois são uma boa alternativa ao uso de combustíveis fósseis ou que geram outros tipos de resíduos danosos ao ambiente (como a energia eólica e a solar). Apesar dessas evidências, ainda há grande preocupação com a capacidade de produção em grande escala de florestas, pois sem estas não se manteriam preços sustentáveis do insumo.

O crescimento e maturidade da produção e comercialização dos Pellet de madeira ampliam a competição que, por sua vez, reduzem as margens de lucro na cadeia produtiva (FRITSCHE et al, 2019), que acarreta um cenário de inseguranças para os produtores. Possíveis “trade offs” também surgem em consequência da produção em grande escala, uma vez que quando se otimiza a produção – e consequentemente se reduz o custo por unidade — cria-se uma maior necessidade por altas quantidades de insumos, que podem resultar em gastos com transportes e logística (IRENA, 2018).

De acordo com a FRITSCHE et al, (2019), os preços dos Pellet de madeira (para fins industrial ou residencial), decorrem de fatores como: a variação na taxa de câmbio, alterações na temperatura ao longo do ano (uso residencial), o preço dos combustíveis (por exemplo o petróleo) e a dependência de incentivos para uso de energia de fontes renováveis. Além desses fatores, pode-se dizer que a deficiência ou escassez de outras fontes de energia podem impulsionar o consumo de Pellet em países que tenham estrutura para sua utilização.

A demanda por Pellet de madeira na UE é fortalecida, sobretudo, pelas diretivas destinadas aos setores de energia e aquecimento e pelo propósito de redução de emissões de gases de efeito estufa (GEE) em pelo menos 40% abaixo dos níveis auferidos de 1990 até 2030 (THRÄN; PEETZ; SCHAUBACH, 2019). A Suécia foi pioneira no consumo de Pellet de madeira na UE, que foi estimulada por políticas de incentivo para o desenvolvimento de fontes de energia renováveis e sustentáveis (PROSKURINA et al., 2019).

Um panorama mundial fornecido pela FAOSTAT (2020) sobre as importações e exportações de Pellet em 2019, mostra o domínio da Europa nesse mercado, que se sobressai tanto como consumidora quanto como produtora desse produto. No entanto, nas exportações o destaque vai para as Américas, com o importante papel dos EUA e Canadá como
fornecedores de Pellet. Apesar de a Ásia também aparecer como boa consumidora e produtora, o seu comportamento de mercado ainda gera dúvidas, pois verificou-se pouca produção a respeito na literatura e maior parte das publicações afirmam que os dados que o país reporta não seriam completos. De qualquer forma, o continente asiático já é significativo na análise atual de fluxos. Enquanto na Europa o uso de Pellet já é comum, nos países asiáticos da Coréia, Japão, Vietnã, Indonésia e China, conforme os dados são melhor apurados, mais se percebe que o seu potencial e aumento da demanda.

4.1. Metodologia e fonte de dados de exportação e importação.

Este estudo utiliza a análise gráfica de dados secundários, a fim de apresentar um panorama atual (do período entre 2013 e 2019) dos fluxos de importação e exportação de Pellet de madeira para países selecionados. Também foram analisados dados e estimativas do consumo residencial e industrial de Pellet pelos principais consumidores, bem como outros estudos realizados em relação aos preços dos Pellet no mercado europeu. Ademais, utiliza-se referências da literatura para discutir tais fluxos e consumos analisados, relacionando-os, sempre que possível, às características do produto de acordo com seus atributos na comercialização, por exemplo, a uso de certificações, aspectos da logística na comercialização e possíveis relações comerciais entre os países que vem negociando o produto.

É proposta a apresentação dos dados de preço, porém, não é escopo deste estudo explorar as variações de preços e sua elasticidade no caso do Brasil. Atualmente, não foi identificada uma série de preços para os Pellet ou informações relevantes para a formação de preços a partir do cenário internacional. Vale ressaltar que o preço utilizado no modelo de otimização foi fornecido pelo produtor durante entrevista realizada no estudo caso.

As informações foram obtidas do Departamento de Assuntos Econômicos e Sociais (DESA) das Nações Unidas, o qual disponibiliza dados reportados pelos países por tipo de produto. O sistema é denominado *(UN Comtrade Database)* e utiliza os códigos de exportação para busca. O código para os Pellet é o 440131 – *wood Pellet*. As dados de exportação considerados na análise estão em dólares (US$) e podem ser relacionados aos países de origem e destino, caracterizando assim os fluxos do mercado internacional do produto.

Os fluxos foram alocados por períodos, que apresentam as variações entre os anos de 2013 a 2016, e 2017 a 2019. Vale ressaltar que entre os países selecionados foi identificada descontinuidade dos dados. Sendo que nem todos os países teriam reportado suas exportações
anualmente. Por isso, foram somados anos consecutivos para todos os países e então utilizadas esses valores totais no período para análise.

Outras informações foram obtidas em relatórios de entidades e associações, bem como de revistas especializadas em acompanhamento dos mercados: as informações de consumo para aquecimento (residencial e comercial) e industrial foram obtidos nos relatórios da Future Metrics (STRAUSS, 2020 e 2020b); dados relacionados a produção de energia elétrica a partir de fontes renováveis foram obtidos na Agencia Nacional de Energia Elétrica (ANEEL, 2018 e 2021). Por fim, dados de preço dos Pellet no mercado europeu forma obtidos no trabalhos de Kristöfel, C. (2015) e Schipfera, F. (2020). Em relação a estes últimos, não foram feitas adaptações nas informações dos relatórios porém novas interpretações foram realizadas.

De maneira global, a produção de Pellet cresceu 16%, de 2017 para 2019, ano no qual atingiu um total de 38 milhões de toneladas (FAOSTAT, 2020). A importação, por sua vez, apresentou um aumento de 31%, atingindo o valor de aproximadamente 24 milhões de toneladas em 2019, dos quais 36% são destinados ao Reino Unido. A produção dentre os países da União Europeia em 2019, totalizou 17 milhões de toneladas, cerca de 44% do total global (FAOSTAT, 2020). A Alemanha é um dos únicos países que configuram como principal produtor (terceiro mundial) e também grande consumidor, enquanto EUA, seguido pelo Canadá, lideram tanto a produção e exportação.

Comparando os dados de fluxos de comercialização internacional de Pellet entre 2013 a 2019, com dados separados nos períodos de 2013 a 2016 e 2017 a 2019, verifica-se a mudança na composição dos países protagonistas deste mercado. No período compreendido entre 2013 e 2016 as exportações eram lideradas por países norte-americanos, seguidos pelos europeus; com relação aos importadores, o cenário era predominante de países europeus. No entanto, quando se analisam os dados do segundo período (2017 a 2019), percebe-se o surgimento significativo das nações asiáticas em ambos os contextos.

A comercialização de caráter intercontinental, permanece os EUA como principal produtor e o Reino Unido como consumidor dos Pellet dos EUA e Brasil. Apesar do contínuo crescimento da exportação e consumo pelos países americanos e europeus, a ascensão de países como Vietnã, Japão e Coreia do Sul no mercado internacional traz um novo panorama
de análise. Cada vez mais países com grande demanda por energia estão optando pelo uso moderno da madeira.

A produção de Pellet para exportação nos Estados Unidos ocorre principalmente no sudeste do país (PINCHOT, 2013). O crescimento da produção de Pellet de madeira nesta região foi impulsionado por fatores como proximidade aos mercados da UE, disponibilidade de insumos para biomassa, mão de obra, infraestrutura e capacitação (“know-how”) (THRÄN; PEETZ; SCHAUBACH, 2019). Em termos de país, os EUA se sobressaem como o maior produtor de Pellet, em 2019 alcançou uma produção de 8,5 Mt, do qual, 79 % foi exportado no mesmo ano, um aumento de cerca de 13% com relação ao ano de 2018, quando a produção foi de 7,4Mt (FAOSTAT, 2020).

Os EUA atingem essa marca como maior exportador depois de se tornar autossuficiente. No período entre 2013 a 2016 ele estava entre os importadores de Pellet, ocupando o terceiro lugar no ranking com o valor de 0,15 Bilhões de toneladas vindas do Canadá. E hoje como podemos observar não se encontra no ranking dos importadores no período de 2017 a 2019 na Figura 5.

No ano de 2019, do valor total (dólares) gastos com a importação de Pellet pelo Reino Unido, 64% foram destinados aos EUA (FAOSTAT, 2020), reflexo de que este país não tem barreiras técnicas relacionadas a madeira dos EUA. Esta tendência deve ser mantida até que uma das partes passem a exigir/oferecer requisitos de certificação de sustentabilidade. Atualmente, os EUA adotam principalmente padrões voluntários próprios. Para o consumo da Holanda, por exemplo, os padrões da certificação de processos da iniciativa florestal privada dos EUA não são suficientes e o volume de Pellet desaceleram significativamente entre estes países (THRÄN; PEETZ; SCHAUBACH, 2019; STUPAK e SMITH, 2018).

Observa-se nos Países Baixos que as importações de Pellet dos EUA decaíram de 22 Kt em 2016 para 6 Kt em 2018, talvez pelo acirramento da barreira à comercialização que exigem que os produtos atendem às certificações do FSC e PEFC e também comprovações do European Union Timber Regulations (EUTR) (UN COMTRADE, 2020 e KITTLER et al. 2020), mas de fato os fatores são muitos. Apesar das restrições de alguns mercados, os Estados Unidos, comercializaram um total de 1,4 bilhões de US$ entre os anos de 2013 e 2016, e num salto, foi ao total de 2,3 bilhões de dólares entre 2016 e 2019. O mesmo crescimento não foi observado pelo seu vizinho Canadá, o qual não ultrapassou o valor dos 900 milhões de dólares nos mesmo períodos, mantendo-se estável ao longo destes anos, com a diferença que agora fornece para a Bélgica, que antes consumia exclusivamente dos EUA.
Dentre os países que possuem barreiras técnicas aos produtos de madeira, a Dinamarca, que entre 2013 e 2016 importou em média 75 milhões US$ por ano entre 2016 e 2019, essa média foi de 530 milhões de US$ por ano (Figura 5). Esse número tornou a Dinamarca o segundo maior importador em 2019 em termos de valor, e terceiro tratando-se de volume (FAOSTAT, 2020). O país lidera a utilização para aquecimento para ambos os fins, comerciais e residenciais, e ostenta a maior taxa de consumo de Pellet por habitante, em decorrência do aquecimento central urbano (AEBIOM, 2019).

Fonte: UN Comtrade (2020).

Outro país que mostrou crescimento na exportação foi a Áustria, que aumentou em 140 mil dólares suas vendas internacionais. A Itália continua sendo a maior compradora dos Pellet da Áustria. Em relação ao período de 2013 a 2016 a Áustria passou a exportar para a Eslovênia, ainda que em pouca significância. Segundo dados e informações compilados por Coelho, S. T. (2021), a produção anual da Áustria totaliza 1,3 Mt e, destes 1,0 Mt seriam para consumo interno, o qual é bastante incentivado pelo governo, inclusive com financiamento de fornos e caldeiras.

A Itália, por sua vez, alcançou um valor médio de importações de 400 milhões de US$ a.a. entre 2016 e 2019. Trata-se do maior consumidor e importador de Pellet para aquecimento residencial da Europa, totalizando 3,3 Mt a.a, sendo 1,6 Mt proveniente só da

De fato, a Letônia já é terceiro maior exportador, aproximando-se da representatividade do Canadá (Coelho, S. T. 2021). Dada a proximidade com o maior mercado para o Pellet, as vendas são maiores em detrimento do consumo local (AEBIOM, 2019). No ano de 2017, inundações e a chegada tardia do inverno atrasaram a colheita, impactando no estoque de produtos madeireiros entre ambos os países (principalmente a Letônia) afetando a diretamente a produção dos Pellet. No entanto em 2018 a situação se estabiliza e, em 2019, atingiu quantidades expressivas de produção e venda (AEBIOM, 2019).

A Ásia antes deste período já estava produzindo energia através da biomassa, porém em baixas proporções, sendo assim não se encontrava no cenário de mercado internacional. Segundo Thrän (2019) e Junginger, M (2020), em 2013 surge o sudeste asiático no mercado, mas ainda em valores não expressivos, em 2017 foi quando alcançaram a casa dos milhões e foram reconhecidos tanto entre os exportadores, como os importadores.

No contexto asiático, também se utilizam outras biomassas, o que também é muito interessante para o desenvolvimento do uso de biomassa para geração de energia. Da mesma forma que o Brasil e a sua aptidão pela cana e seus resíduos aproveitáveis, a Malásia e a Indonésia têm uma grande produção de Palma na sua área rural, sendo assim grandes produtoras de biomassa a partir deles, chamados Palm Kernel Shells (PKS).

Na Malásia, uma análise detalhada do governo mostra que o potencial técnico de resíduos de biomassa pode ser superior a 90 milhões de toneladas, é o tipo de biomassa mais comercializado com alta demanda de Japão e Coreia do Sul, mas a demanda local também está crescendo. De acordo com IRENA (2021) a Indonésia em 2018 teve uma mudança anual no consumo de energia renovável de 1,4% na Total Final Energy Consumption (TFEC), este
valor teve um efeito papel de liderança e mostrou uma rápida absorção de bioenergia para geração de energia.

A demanda gerada pela Coreia do Sul e Japão impulsionaram a indústria de Pellet do Vietnã e de demais países do sudeste asiático, como Malásia, Tailândia e Indonésia. O principal país que abastece ambos os mercados é o Vietnã, cuja proximidade favorece esta relação. Outro importante fornecedor de biomassa para Ásia, discutido em recente workshop relatado por Martin Junginger (2019), é a Nova Zelândia, país que mantém relações comerciais estreitas com Países do Leste e Sudeste Asiático, especialmente na agricultura e produtos florestais, exporta um grande volume de toras para o Leste Asiático, especialmente China.

Junginger, M. (2020) nos traz dados um pouco mais recentes sobre o Japão, que em 2017 importou 0,5 Mt de Pellet de madeira, com expectativas de crescer para 5 Mt toneladas até 2023. Os dados mais recentes não mostram tal tendência, já que o consumo estaria em 1,2 Mt (COELHO, 2021). Comparando com o Japão, a Coreia do Sul importou ainda mais, em 2017, foram 2,4 milhões toneladas (Junginger, 2020) e o consumo total estimado estaria em 3,6Mt (COELHO, 2021), todo esse volume com origem na importação. Esses volumes tem origem também na Ásia, tais como o Vietnã e a Tailândia.

Diferente dos países bálticos, o Vietnã possui um setor florestal para processamento de madeira consolidado. Com sua forte e ampla indústria de fabricação de móveis traz o benefício da considerável quantidade de resíduos, que por sua vez, possibilita que tenha o menor custo dos Pellet de toda a região asiática (THRÄN; PEETZ; SCHAUBACH, 2019). A China, por sua vez, trouxe muita expectativa ao mercado, haja vista a enorme população e consumo energético. De acordo com Yun, et al (2020) a China tem relativa escassez de fontes de energia. Em um plano de cinco anos divulgado em 2016 foi estipulado para o país uma meta de 15 milhões de KW de eletricidade derivada de biomassa até 2020 (30 Mt de consumo de Pellet para substituir 15 Mt de carvão).

Os dados da China são apontados na literatura disponível como pouco precisos ou acurados e não são identificados entre os principais produtores pela UN-Contrade. O relatório da “Bioenergy Europe” (AEBIOM) afirma que a China é uma grande produtora de pellet, porém não se destaca no cenário de exportação (algumas exportações para Coreia e Japão), tornando-se, por ora, um país independente para produção de Pellet (AEBIOM, 2019). Este cenário tende a se modificar caso a China necessite importar Pellet para atender exigências governamentais de promoção de seu uso em escala industrial. Tais como os dados, há poucos detalhes sobre o plano da China. Não foi especificado quanto destes Pellet será representado
por Pellet de madeira, e até o ano de 2017 não havia esclarecimento quanto ao instrumento para aplicação deste plano.

Ainda sobre informações e dados da China, também se discute a validade das informações disponíveis. A falta de dados também pode estar relacionada a grande extensão territorial do país, juntamente com a prevalência de pequenos produtores na produção da biomassa e a conseqüente dificuldade de obter dados estatísticos rigorosos. Para isso eles estimaram que 80% de tudo o que é relatado como pellet pelo país, é proveniente de madeira – uma vez que essa informação não é assegurada – e o restante de outras fontes. Ainda assim, de acordo com a literatura, a China se tornou a nova fronteira para uso de Pellet e tudo mostra que não será autossuficiente na produção (AEBIOM, 2019).

Segundo Junginger (2020) na China o uso de biomassa para geração de energia cobre menos de 1% da matriz energética. Porém, o potencial de biomassa seria estimado em 460 milhões de toneladas de equivalente de carvão padrão (Tce), mas menos de 10% desse potencial estaria sendo utilizado. De acordo com IRENA (2021) estes mesmos 10 representariam quase um quinto dos consumos das fontes renováveis modernas. Ainda sobre a China, apesar do grande crescimento do uso de biomassas, ainda o vento e a energia solar tem crescimento mais expressivo.

4.2.1. Consumo residencial de Pellet de madeira em países selecionados

O desenvolvimento do mercado de aquecimento (comercial e residencial) é atendido por alguns requisitos. São eles: condições climáticas devem garantir que haja diminuição da temperatura anualmente; e preços tangíveis e mais acessíveis do que combustíveis fósseis — em alguns locais Pellet são a fonte menos custosa e em outros o governo apoia financeiramente sua utilização (STRAUSS, 2020b). Vale ressaltar que o consumo residencial, também se estende ao uso comercial de até 50kW – que é a capacidade máxima de geração das caldeiras e fornos no mercado.

Kristöfel, C. (2016) e Schipfera, F. (2020) avaliaram o comportamento dos preços de Pellet para uso residencial e comercial em países da Europa. Os estudos mostram que o reflexo da demanda sobre o preço dos Pellet é muito grande. Na Europa teriam sido percebidos choques de preço que refletiram a demanda de um dos países, refletidos na exportação por países em que o preço estava em um patamar menor. De fato, quando observados os preços apresentados nos trabalho, pode-se perceber que França e Suíça apresentam os preços mais elevados, um pouco acima dos 200 euros por tonelada (THRAN,
2019), onde se situaram os valores da maioria dos países consumidores na Europa entre os anos de 2017 e 2018.

Na Figura 6, evidencia-se a influência da sazonalidade sobre os preços, as quais, por definição, são marcadas pela demanda durante o ano. Percebe-se o aumento significativo no período mais frio do ano naqueles países. Itália (IT), o principal destino das exportações brasileiras de Pellet para uso residencial, que pagam o maior valor ao produto dentre os quatro avaliados. A Áustria (AT), que também é grande exportadora para Itália, aproxima-se dos valores pagos na Alemanha (DE). Destarte da análise dessas informações que são feitas por outros autores que discutiram o mercado na Europa Central e países vizinhos: Desde que não haja restrições e barreiras técnicas, o mercado vai operar de acordo com o valor do custo logístico, e se o valor do país vizinho superar a soma do valor interno de logística, mais o Pellet será comercializado internacionalmente.

Como citado anteriormente, a França (FR) ostenta um valor pago próximo dos 300 euros por tonelada. Vale considerar que os valores nos diferentes trabalhos podem ou não considerar taxas e ágio em revendas, mas são um bom referencial para este estudo. Segundo estimativas as vendas de fornos domésticos na França deve atingir o número de 200 mil unidades de fornos em 2022 (AEBIOM, 2019).

![Figura 6. Série histórica de preços para Pellet de uso residencial na Itália (IT), França (FR), Alemanha (DE) e Áustria (AT).](attachment:figura_6.png)

A venda aos vizinhos é bastante curiosa, particularmente no caso de Portugal e Espanha. Portugal comercializa parte de sua produção com a Espanha (UN COMTRADE, 2020) que por sua vez comercializa com outros países uma produção que seria capaz de suprir sua demanda interna (COELHO, 2021). A partir de constatações como essa, pode-se dizer que a questão logística seja o determinante das relação entre países, que está condicionada ao preço.

A soma do volume de Pellet comercializadas em todo mundo no mercado de aquecimento para residencial e o comércio que o movimenta, em 2013, era de 12.637 toneladas, já 2019 foi de 18.494 toneladas (JUNGINGER, 2020). Espera-se um crescimento significativo, mas com base nesse histórico entende-se que o consumo residencial tem um crescimento mais lento em relação a indústria.

A partir das informaçôes da literatura, pode-se observar uma tendência de positiva nas taxas de crescimento, ou seja, no mínimo se mantiveram constantes e nenhum país teve redução na demanda. Em 2015, nos EUA, foi observada uma queda, mas nos anos seguintes o consumo residencial continuou crescendo. Vale ressaltar, que os EUA é o segundo país com maior demanda por Pellet. A Dinamarca atingiu volume constante desde praticamente 2013, a sua variação foi pequena no período. Algo semelhante ao que ocorreu na Dinamarca é esperado do Reino Unido, se os patamares de política pública se mantiverem os mesmos. Estimativas realizadas por Strauss, W. (2020) são apresentadas na Figura 7.

No Brasil, o uso de energia elétrica residencial e comercial corresponde a pouco menos de 50% do consumo de eletricidade (IEA, 2018). Essa demanda é geralmente suprida por usinas hidrelétricas ou por auto geração fotovoltaica, sendo esta última ainda dependente de um investimento que não atinge as famílias de menor renda e que não são aplicáveis nos grandes centros urbanos. Ainda sim, totaliza um número de 6.695.183 KW em quase 600 mil pontos geradores (ANEEL, 2021). O uso de biomassa, principalmente de madeira, só existe em hotéis para geração de calor, embora ainda incipiente, pois dependem de mudanças na infraestrutura das edificações. Nesse contexto, a produção de energia elétrica em termelétricas dedicadas com uso de biomassa segue como alternativa à geração de energia a partir de combustíveis fósseis e por hidroeletricidade.

Segundo relatório do WWF Brasil (2020), 237 localidade no Brasil não tem fornecimento de energia elétrica, também conhecido como além do “fim de linha”. Como pode ser observado no capítulo de revisão, principalmente nos estados do norte do país, ainda possuem geradores de energia a base de óleo combustível. Ainda segundo o estudo, as áreas mais beneficiadas pelo acesso a energia são a educação, saneamento, casas em geral e
produção de gelo – muito relacionado a atividade pesqueira e de extração e processamento de produtos do extrativismo.

A venda à países vizinhos somada as questões de acesso a energia tomam outra direção na China. De acordo com o Junginger (2020), existe um fluxo de Pellet de madeira dentro da Ásia, principalmente saindo da China com destino ao Japão e Coreia do Sul, justificado pelo preço pago por estes países. Essa exportação estaria acontecendo ainda que as políticas internas na China favoreçam o uso doméstico para aquecimento nas residências. Neste país, existem medidas que tentam garantir acesso a energia a todos, particularmente no meio rural. Dentre as quais, além do Pellet também são difundidas outras tecnologias tidas como “verde”, tal como o biogás rural e uso de Bioetanol.

Tal como a experiência de Portugal (ROUboa, 2012a), as condições climáticas no Brasil tornam pouco atrativo o uso de Pellet para aquecimento. De qualquer forma, no caminho pela exportação desses produtos, iniciativas do consumo interno podem crescer. Segundo dados de (Coelho, 2021), estariam sendo consumido 0,4 Mt no mercado nacional.

Não existem informações que mostrem por quais agentes o Pellet está sendo consumido no mercado interno, mas as empresas produtoras relatam que alguns hotéis já estão aptos a sua utilização para aquecimento. Nesse sentido, uma dissertação na área de Marketing foi realizado por Bogdezevicius, C. (2018). Por meio da análise qualitativa aplicado a rede hoteleira de Salvador notou-se que há interesse pelo apelo “verde” dos Pellet para geração de calor, mas ainda pouco se conhece sobre os processos necessários. Os Pellet podem ser utilizados na rede hoteleira não só pelos possíveis atributos de preço, mas também por “compliance” das redes de hotéis com alguma meta de responsabilidade ambiental.
Figura 7. Estimativa da demanda de Pellet de madeira global histórica e a previsão de demanda da FutureMetrics por Pellet de aquecimento de acordo com a política atual, realizada no ano 2020, para o mercado residencial e comercial.

Figura 8. Estimativa da demanda de Pellet de madeira, realizada no ano 2020, para o mercado industrial.
Fonte: Dados e estimativas adaptadas de Future Metrics por William Strauss (2020).
4.2.2. Uso industrial de Pellet de madeira em países selecionados

A utilização de Pellet industrial, por sua vez, alicerçasse em políticas globais de redução da emissão de GEE’s. Como apresentado anteriormente, uma das principais barreiras que dificultam a co-combustão dos Pellet de madeira nas usinas de geração de eletricidade a carvão é a significativa diferença de preços entre os dois tipos de insumos. Essa diferença, em geral, varia entre 16 e 22 euros, respectivamente, por Megawatt-hora. Trata-se de uma diferença bastante significativa para uma indústria na qual a produtividade é essencial em razão da intensa competitividade. Por isso, principalmente para a geração de eletricidade, existem subsídios governamentais para sua utilização (STRAUSS, 2020).

De acordo com Strauss, W. (2020b) existe uma tendência de modificação destas políticas em decorrência do aquecimento global que, portanto, se tornarão ainda mais amplas e exigentes. Dessa forma, as previsões observadas na Figura 8 foram baseadas na manutenção das políticas vigentes, mas também projetando-se o mercado de Pellet de acordo com as perspectivas da manutenção ou reavaliação dessas políticas.

Apesar disso, a Pellet industrial já esta presente em todo mundo e foi a causa maior do aumento do fluxos comerciais desse tipo de produto. Enquanto a demanda e produção do Pellet residencial na Europa demorou algumas décadas para chegar ao atual patamar, a produção dos Pellet de uso industrial para exportação promoveu ainda mais produção naqueles países que tinham matéria prima e infraestrutura além da sua própria demanda. Neste caso é possível observar que o Reino Unido, que tem consumo majoritariamente do Pellet industrial neste ano – 2021 – devem estar atingindo o mesmo volume consumido que toda a União Europeia. Também é possível observar que Japão e Coreia do Sul crescem substancialmente até 2024 (STRAUSS, 2020b).

Ainda segundo estimativas de um estudo (STRAUSS, 2020b), o volume de consumo no Japão duplicaria entre os anos de 2017 e 2025 e, na Coréia, um consumo irrisório em 2017, podendo se tornar o maior em toda Ásia no mesmo período. Países Baixos, Belgica, Dinamarca e Suécia, mantêm o consumo praticamente estáveis a partir dos volumes consumidos em 2021.

O IRENA (2021) traz o panorama para utilização de biomassa em escala industrial na China, embora existam políticas para apoiar o uso de biomassa em usinas, co-combustão de biomassa com o carvão, as demonstrações estão apenas no início. Assim como os outros países existe as dificuldades quanto restrições logísticas, por exemplo na coleta e distribuição
dos resíduos, falta de padronização nos equipamentos de aquecimento de qualidade na área rural.

O Brasil comercializa volume de Pellet para uso industrial, mercado que é mais flexível em relação a qualidade do produto e que por outro lado tem mais controles sobre as garantias socioambientais. Segundo Quéno (2015), a unidade da TANAC, no estado do Rio Grande do Sul tem capacidade para a produção de 350.000 toneladas de Pellet à base de Acacia Mearnsii. Diferente do uso residencial, que dá preferência para espécies do gênero Pinus, outras espécies são bem aceitas para os padrões de queima industriais. A TANAC surgiu de um contrato de suprimento da britânica DRAX. Como esta empresa, existem ainda grandes empresas da Alemanha, Dinamarca e França. Ainda segundo Quéno (2015), tais fariam parte da “Initiative Wood Pellet Buyers” (IWPB), para determinar critérios socioambientais aos Pellet importados.

O consumo interno de Pellet industrial para geração de energia ficou um pouco mais distante com a lei promulgada no início deste ano (Lei 14.120/21). A lei prevê cortes graduais dos incentivos a geração de energias alternativas, antes concedidos nas taxas de transmissão e distribuição da energia lançada no rede. O benefício teria totalizado R$ 22 bilhões em 2020 (Brasil, 2021).

4.2.3. Impactos da Pandemia de Covid 19 no mercado de energia de Biomassa.

A Pandemia veio impactar o mundo de diferentes formas, além da sua principal devastação na área da saúde. Segundo IRENA (2021) a pandemia teve importantes implicações para a atividade econômica e, por consequência, o consumo de energia. Como uma forma de combate ao vírus a maioria dos países impuseram restrições: atividades sociais que causam aglomeração, transportes coletivos, e mesmo atividades de trabalho comercial e industrial que poderiam ser feitas das próprias casas ou não representassem um serviço e produtos essencial para a economia.

De acordo com previsões da AIE de 2019, o ano de 2020 teria o recorde no uso de fontes renováveis, no entanto, suas últimas projeções – após o início da pandemia – demonstravam queda de 20% com relação ao antevisto. De acordo Agência Internacional de Energia (AIE), as estimativas preliminares da demanda global de eletricidade, em 2020 houve uma queda de 2% comparada a 2019, porém quanto ao uso de energias renováveis para geração de energia foram quase 7% de aumento entre o início e o final de 2020. Sendo que em 2020 foram adicionados 260 GW de capacidade de energia renovável em 2020, representando
um crescimento de 10,3%, ou seja, um aumento de quase 50% em relação a expansão de 2019.

Em relação aos ganhos e as perdas em decorrência da pandemia de COVID19 no cenário da bioenergia, o IRENA (2021), reforça que, apesar dos números terem sido positivos em meio à crise, a produção de todos os outros os combustíveis diminuíram no período. IRENA (2021) ainda alerta que a expansão da eletricidade renovável continuará porém algumas medidas são importantes: que contratos de longo prazo continuem sendo celebrados; aceitação dos baixos custos marginais, apesar dos riscos; concessão de acesso prioritário às redes e; instalação contínua de nova capacidade renovável.

De acordo com o Report do IRENA:

“Esta foi a primeira redução na produção anual em duas décadas, impulsionada não só pela queda na demanda de combustível para transporte, mas também pelos menores preços de combustíveis fósseis, diminuindo a atratividade econômica dos biocombustíveis. As maiores quedas anuais na produção são para etanol dos EUA e Brasil e biodiesel europeu.”

No caso do aquecimento residencial e comercial, as restrições teriam causado atrasos na fabricação, venda e instalação de equipamentos de aquecimento (IEA, 2020). Em segundo lugar, e mais relevante, a queda do preço do petróleo e do gás, geram maior concorrência entre ambos combustíveis (fósseis e renováveis). De fato, o choque nessa produção poderá ser observados somente em anos seguintes.

Além disso, no curto prazo, a menor disponibilidade de resíduos de serraria (reduzida atuação de indústrias) pode levar à utilização de matérias-primas alternativas elevando o preço dos Pellet; enquanto a redução da demanda pode levar ao decaimento dos preços. E terceiro, sem uma intervenção efetiva governamental, existe a possibilidade de a construção deste setor ficar apartado de questões prioritárias para o momento (IEA, 2020).

Portanto, a pandemia veio com um contexto de tensão sobre os mercados futuros, porém no caso do Pellet de madeira ainda se mantiveram às previsões mais otimistas. Segundo Strauss, W. (2020a), o consumo de Pellet de madeira é de alguma maneira independente destas crises, para os principais países consumidores da Europa e Japão. Assumindo assim um caráter mais inelástico no mercado do produto. Mesmo porque, as políticas de certa forma “isolam” este mercado das adversidades.
Ainda Strauss, W. (2020a), aponta que existe a possibilidade de diminuição de demanda por madeira serrada, o que afetaria a quantia de matéria prima e isso se alinha com as previsões da AIE supracitadas, onde existe possibilidade de aumento no preço dos Pellet em consequência da escassez de recursos – impacto na oferta e demanda..
5. OTIMIZAÇÃO PARA PRODUÇÃO DE MADEIRA SERRADA E ENGENHEIRADA ASSOCIADA A PELETIZAÇÃO

Em números expressivos, as florestas plantadas no Brasil geram 10 TM de matéria seca por hectare por ano; o desperdício de madeira em serrarias para o setor de construção é cerca de 50%; e os resíduos da indústria moveleira chegam a cerca de 70% do volume total utilizado (WIECHETECK, 2009). A utilização e destinação ambiental e sustentável desses resíduos pode ser atendida por meio da confecção de Pellet para geração de energia. No processamento de madeira, com cerca de 10 milhões de toneladas de produtos anuais (IBÁ, 2020), estima-se então que a disponibilidade de resíduos seja de pelo menos 4 milhões de toneladas.

De acordo com Ehrig and Behrendt (2013) devido ao seu alto poder calorífico este resíduo está predestinado para importação, eles são adequados para distâncias transversais eficientes. No entanto, suas características de baixa aglomeração limitaram o uso de serragem nas misturas até um máximo de 40% (MISSAGIA et al, 2011). Como dito anteriormente, no Brasil e no resto do mundo a ampla ocorrência geográfica da produção madeireira dinamizou o fornecimento do insumo para a peletização.

Em relação ao abastecimento das indústrias, os Pellet podem ser obtidos a partir de resíduos do processamento de madeira, madeira em tora, resíduos florestais e resíduos agrícolas (MONTEIRO; MANTHA; ROUBOA, 2012a). A fonte mais utilizada na confecção dos Pellet de madeira são os resíduos industriais de madeira, tais como os cavacos moídos, mas principalmente a serragem mais grossa, também denominada maravalha (COCCHI et al., 2011; PEKSA-BLANCHARD et al., 2007). Os resíduos de processamento da usinagem da madeira serrada são a forma mais barata para transformação de Pellet, isso porque já passaram por processo de secagem.

Existe uma relação positiva entre agregação de valor e geração de resíduos secos (maravalha e cavacos) em unidades processadoras de madeira. Geralmente, quanto mais se agrega valor aos produtos (qualidade e valor) mais são gerados resíduos. Isso porque, fatores de qualidade e de processamento da madeira são maiores e mais rigorosos em produtos mais elaborados, por consequência, o valor do produto também será maior. Essa condição determina também que o volume dos produtos obtidos acabam sendo cada vez menores e o de resíduos maior. Do ponto de vista financeiro, o equilíbrio entre quantidades de produtos finais e subprodutos para energia vão ser mais satisfatório quanto melhor os preços de venda desses produtos e subprodutos.
Nesse contexto, cabe o entendimento de que é comum que uma fábrica possua diferentes níveis de agregação de valor aos seus produtos, reflexo dos mercados e também da viabilidade técnica e econômica da produção. Como citado anteriormente, segundo dados da Ibá (2020), em 2019 foram produzidos cerca de 10 milhões de m³ de madeira serrada no país, sendo 90% desse volume consumo no mercado interno. As produções da China e Estados Unidos são as maiores, com 90 e 82 milhões respectivamente, e o Brasil está na 9ª posição atrás da Rússia (3ª), Canadá (4ª), Alemanha (5ª), Suécia (6ª), Finlândia (7ª) e Áustria (8ª). Todos países representativos na produção e comercialização de Pellet. Parte do desempenho sobre as exportações pode estar relacionado aos produtos com maior valor agregado não terem isenção de impostos pela Lei Kandir.

Como outros commodities para exportação, é comum que se torne mais interessante a venda de produtos menos processados que com maior valor agregado quando maior o valor pago pelos primeiros. Isso porque o volume é maior e a receita por unidade do produto compensa mais ao exportador. No entanto, quanto mais se viabiliza e valoriza os resíduos (subprodutos) dessa produção, mais se pode inverter essa lógica. Os Pellet de madeira são um subproduto relativamente simples para ser produzido e que não requer instalações caras e pode elevar a renda com subprodutos em relação a venda direta de maravalha e cavacos.

Os resíduos secos de uma serraria são processados em Pellet de madeira com baixos custos fixos e variáveis. Ao mesmo tempo que o valor de mercado desse produto é bastante superior aos outros tipos de resíduos. De acordo com Quéno, F (2015), para implantação de uma estrutura de produção de Pellet são previstos custos com instalações (peletizadora, esteiras, embaladeira e silo), bem como mão de obra que, devido a automatização e simplicidade do maquinário, requer poucos funcionários para operação e manutenção dos equipamentos. Com tais custos, o valor do Pellet, que é negociado no mercado interno a pelo menos 3 vezes do valor do resíduo mais valorizado, mostra-se uma oportunidade de negócio (Tabela 2).

5.1. Metodologia e fonte de dados

A modelagem proposta busca quantificar os impactos da utilização dos resíduos da produção dos produtos principais para produção dos Pellet. O modelo reflete estruturas que utilizam até 300 mil m³ de toras ao ano – definido de acordo com o estudo de caso. Tais estruturas geram um total de resíduos entre 40 e 60% do volume consumido de toras. Nesse
sentido, as duas restrições diretas seriam o volume disponível de resíduos e a capacidade da infraestrutura instalada para produção de Pellet.

Para que o modelo seja mais próximo da realidade produtiva e possa refletir a produção de vários tipos de produtos, tais como portas e janelas, móveis, painéis e estruturas para casas de madeira, considerou-se a produção de produtos intermediários. Assim, este modelo considera os resíduos não contaminados da produção de Vigas e Pranchas de madeira colada e engenheirada, com base no processo denominado *finger-joints* (Figura 9). Nesse sentido, as empresas entrevistadas apresentaram margens para vendas desses produtos intermediários.

![Figura 9. Madeira “fingada” – *Finger joints* e prancha colada.](image)

Fonte: Sviták, M (2014)

O processo de *finger joints* parte da técnica de fazer cortes transversais em uma tábuia de madeira processada em serra fita, no qual são descartados trechos indesejáveis dessa madeira, tais como nós, rachaduras, apodrecimentos e eventuais cascas remanescentes a madeira no seu desdobro. A madeira “limpa” ou com poucos defeitos então é unida novamente por um processo de encaixes (*finger*). As ripas com comprimento de acordo com a demanda do produtos podem ainda ser agrupadas e transformadas em pranchas e vigas quando unidas umas as outras, podendo ser utilizadas cola ou encaixes. Além do maior aproveitamento dessas vigas, um benefício da segmentação e uma nova união pode aumentar a resistência da madeira. A combinação de ripas, vigas e pranchas se formam produtos finais, cuja usinagem e acabamento também podem gerar mais descartes.

Nesse contexto produtivo, portanto, quanto maior o volume de resíduos, maior será a agregação de valor nos produtos. É comum ser dito pelos empresários do setor que as serrarias e fábricas de móveis, portas e outros produtos de madeira são na verdade como “fábricas de resíduos”, pois geram quantidades maiores de resíduos que de produtos principais.
O modelo de otimização foi consolidado a partir dos rendimentos de conversão de madeira serrada e seca para estes outros produtos intermediários (pranchas e vigas coladas), sendo estes os produtos finais do modelo, mas que serão utilizados para produção de produtos finais nas próprias unidades ou unidades de terceiros que comprem esses produtos. Na produção dos Pellet, consideraram-se para o modelo somente o volume de resíduos secos – advindos do reprocessamento do desdobro da madeira e seca em estufas. Haja visto que os resíduos “verdes” obtidos no desdobro deveriam ser secos para que fossem transformados em Pellet, o que não teria os mesmos resultados econômicos. Além disso, as indústrias também requerem madeira para cogeração de energia em seus processos de secagem e para isso utilizam os resíduos verdes (costaneiras, serragem e outros descartes).

Os dados de rendimento – também denominados fatores de conversão – foram identificados em uma unidade de produção otimizada. A otimização da produção se dá pelo mínimo descarte, somente relacionado aos defeitos da madeira e em princípio pode ser feito em guilhotinas manuais ou automáticas, sendo esta última auxiliadas por tecnologia de identificação de defeitos com um scanner. Não é possível dimensionar, mas no Brasil existem em grande número os dois tipos de processos de otimização, competindo ainda no mesmo nível em relação a qualidade e desempenho econômico, sendo que as guilhotinas manuais empregam mais pessoas.

Portanto, com base em dados e informações de fábricas que processam produtos intermediários com diferentes níveis de preço, pretende-se obter um resultado que evidencie a melhoria e maximização dos resultados financeiros quando os resíduos são comercializados também como Pellet ao invés de somente ocorrerem vendas de maravalha cavacos e serapilheira. A hipótese é reforçada se o modelo de otimização apresentar em seus resultados uma relação positiva entre agregação de valor de produto e a geração de resíduos secos.

5.1.1. Dados utilizados e premissas

Quêno (2015) analisou nove empresas da região Sul do Brasil e constatou que oito delas apresentam controle de qualidade interno – três com selo de qualidade ENplus – o que ilustra a capacidade do Brasil de atender exigências do mercado. Portanto o Brasil possui características físico-ambientais adequadas, produção madeireira representativa, demanda externa e aptidão para produção com qualidade; características estas que justificam a capacidade do país em se inserir mais fortemente neste mercado.
Foi estabelecido questionário para contato e entrevista com empresas processadoras de madeira. Uma das empresas consultadas também produziam Pellet no momento da consulta e a outra declarou interesse de prospecção. Das 10 empresas convidadas a participar, duas empresas concordaram em responder ao questionário, sendo uma empresa produtora de móveis e componentes de móveis e outra produtora de portas e janelas, ambas com sede no estado do Paraná - Brasil.

Nem todas as perguntas foram respondidas pelas empresas, por questões de confidencialidade, ou ainda por não existirem apontamentos que levem às informações. De qualquer forma foi possível fazer as premissas e estruturar o modelo com os dados de disponíveis os associando. O rendimento utilizado é o de uma empresa e as margens e preços de ambas. Quanto aos preços dos produtos, mesmo com grande especificidade, os valores para os mesmos tipos de produtos foram bastante próximos nas duas entrevistas.

O Quadro 1 apresenta os produtos e subprodutos considerados, além do tipo de material necessário à sua produção/comercialização.

<table>
<thead>
<tr>
<th>Nome do item</th>
<th>Código item</th>
<th>Material requerido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madeira serrada (bica corrida)</td>
<td>MBC</td>
<td>Madeira A, B ou C.</td>
</tr>
<tr>
<td>Madeira serrada (clear shorts)</td>
<td>MCS</td>
<td>Madeira A</td>
</tr>
<tr>
<td>Madeira fingada</td>
<td>MF</td>
<td>Madeira A, B ou C.</td>
</tr>
<tr>
<td>Viga lixada</td>
<td>VL</td>
<td>Madeira A, B ou C.</td>
</tr>
<tr>
<td>Viga prensada</td>
<td>VP</td>
<td>Madeira A, B ou C.</td>
</tr>
<tr>
<td>Painel lixado</td>
<td>PL</td>
<td>Madeira A ou B.</td>
</tr>
<tr>
<td>Painel prensado</td>
<td>PP</td>
<td>Madeira A ou B.</td>
</tr>
<tr>
<td>Painel prime lixado</td>
<td>PPL</td>
<td>Madeira A</td>
</tr>
<tr>
<td>Painel prime prensado</td>
<td>PPP</td>
<td>Madeira A</td>
</tr>
<tr>
<td>Resíduo verde</td>
<td>RV</td>
<td>Resíduo verde.</td>
</tr>
<tr>
<td>Cavaco seco</td>
<td>CS</td>
<td>Resíduo seco.</td>
</tr>
<tr>
<td>Maravalha limpa</td>
<td>ML</td>
<td>Resíduo seco.</td>
</tr>
<tr>
<td>Pellet</td>
<td>PLT</td>
<td>Resíduo seco.</td>
</tr>
</tbody>
</table>

Quadro 1. Itens modelados, categorias e códigos para apresentação.

Fonte: elaboração pelo autor.

Dada a diversidade de cenários, bem como a forma como eles serão alterados, as premissas quantitativas consideradas no processo de otimização variam entre as situações consideradas. Inicialmente, quanto aos preços dos produtos e subprodutos, a Tabela 2, apresenta diferentes preços para os grupos de cenários a ser considerados.
Tabela 2. Preços de comercialização considerados, por cenário de simulação.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cenários A1, B1, C1, D1 (Preço R$/t)</th>
<th>Cenários A2, A3, B2 (Preço R$/t)</th>
<th>Cenários C4, C5, C6 (Preço R$/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>900,00</td>
<td>1.050,00</td>
<td>1.150,00</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.400,00</td>
<td>1.400,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>1.200,00</td>
<td>1.200,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>2.200,00</td>
<td>2.200,00</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.700,00</td>
<td>1.700,00</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>2.250,00</td>
<td>2.250,00</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.800,00</td>
<td>1.800,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>2.350,00</td>
<td>2.350,00</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.850,00</td>
<td>1.850,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>70,00</td>
<td>70,00</td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>120,00</td>
<td>120,00</td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>500,00</td>
<td>500,00</td>
</tr>
</tbody>
</table>

Fonte: Elaboração própria a partir de informações de agentes de mercado.

Em termos de preços, as diferenças relevantes se limitam ao que ocorre com a MBC, buscando traçar um cenário em que, dadas as condições de mercado – especialmente no mercado externo – há elevação de sua cotação, o que pressionaria os produtores brasileiros a produzirem mais madeira serrada em detrimento de itens mais elaborados.

Tabela 3. Custos e fatores de eficiência considerados, por cenário de simulação.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cenários A1, A2, B1, B2, C1, C4, C5, C6 (Custo unitário R$/t)</th>
<th>Cenários A3, D1 (Custo unitário R$/t)</th>
<th>Cenários A3, D1 (Eficiência)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>709,71</td>
<td>670,42</td>
<td>2,20</td>
</tr>
<tr>
<td>MF</td>
<td>1.109,71</td>
<td>1.070,42</td>
<td>4,27</td>
</tr>
<tr>
<td>MCS</td>
<td>759,71</td>
<td>720,42</td>
<td>5,92</td>
</tr>
<tr>
<td>VL</td>
<td>1.489,71</td>
<td>1.450,42</td>
<td>4,98</td>
</tr>
<tr>
<td>VP</td>
<td>1.289,71</td>
<td>1.250,42</td>
<td>5,15</td>
</tr>
<tr>
<td>PL</td>
<td>1.489,71</td>
<td>1.450,42</td>
<td>4,90</td>
</tr>
<tr>
<td>PP</td>
<td>1.289,71</td>
<td>1.250,42</td>
<td>5,05</td>
</tr>
<tr>
<td>PPL</td>
<td>1.489,71</td>
<td>1.450,42</td>
<td>5,25</td>
</tr>
<tr>
<td>PPP</td>
<td>1.289,71</td>
<td>1.250,42</td>
<td>5,66</td>
</tr>
<tr>
<td>RV</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>CS</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>ML</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
</tr>
<tr>
<td>PLT†</td>
<td>145,28</td>
<td>145,28</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Fonte: Elaboração própria a partir de informações de agentes de mercado e, para o custo do Pellet, Quéno (2015)
Nota: †Custo retirado de Quéno (2015)
A Tabela 3 apresenta os custos considerados nos diferentes cenários de análise conjuntamente aos coeficientes de eficiência (σ_i). A vinculação entre os coeficientes de eficiência e o custo unitário de produção ocorre por conta da matéria-prima, pois, na medida em que a eficiência aumenta, o custo unitário da matéria-prima se reduz. Especificamente, considerou-se o preço da matéria-prima (madeira bruta) fixo em R$ 200,00 por tonelada, de acordo com informações e registros de compras das empresas entrevistadas.

Por fim, além de preços, custos e fatores de eficiência, outros parâmetros relevantes à solução do modelo são as capacidades de processamento, tanto dos produtos intermediários, quanto de Pellet. Tais premissas para os cenários são apresentadas na Tabela 4.

Tabela 4. Capacidade de produção condicionada a qualidade e produção de Pellet, por cenário de simulação.

<table>
<thead>
<tr>
<th>Item</th>
<th>Cenários A1, A2, A3, B1, B2</th>
<th>Cenários C1, C4, D1</th>
<th>Cenário C5</th>
<th>Cenário C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPA</td>
<td>100.000,00</td>
<td>100.000,00</td>
<td>100.000,00</td>
<td>100.000,00</td>
</tr>
<tr>
<td>CPB</td>
<td>100.000,00</td>
<td>100.000,00</td>
<td>100.000,00</td>
<td>100.000,00</td>
</tr>
<tr>
<td>CPC</td>
<td>100.000,00</td>
<td>100.000,00</td>
<td>100.000,00</td>
<td>100.000,00</td>
</tr>
<tr>
<td>CPP</td>
<td>-</td>
<td>24.000,00†</td>
<td>48.000,00†</td>
<td>72.000,00†</td>
</tr>
</tbody>
</table>

Fonte: Elaboração própria a partir de informações de agentes de mercado e, para a capacidade de processamento de madeira em Pellet, Quéno (2015)

Nota: †Capacidade retirada de Quéno (2015); ‡Multiplos da capacidade proposta por Quéno (2015), sem considerar potenciais ganhos de escala.

Como já discutido, nos primeiros cenários de trabalho não há produção de Pellet, portanto CPP (produção de Pellet) torna-se nulo, além disso, apenas nos cenários de estresse, consideram-se múltiplos do módulo original.

5.1.2. Pesquisa Operacional e Programação Linear

Segundo Fávero e Belfiore (2012), durante a Segunda Guerra Mundial, entre 1939 e 1945, a demanda por alocação eficiente de recursos militares limitados levou à convocação, na Inglaterra, de um grupo de cientistas que acabaram por criar os alicerces da chamada Pesquisa Operacional (PO), do inglês Operational Research. Os resultados positivos da nova disciplina a fez adotada em todo os Estados Unidos.

Em 1947, uma equipe de pesquisadores liderada por George B. Dantzig viria a desenvolver o método Simplex, com sua utilização expandida aos segmentos da indústria civil e empreendimentos comerciais em geral. Ainda de acordo com Fávero e Belfiore (2012), a Pesquisa Operacional foi notadamente beneficiada por avanços computacionais, permitindo a solução de problemas complexos. De fato, muitos problemas de otimização podem ser
solucionados em computadores domésticos, bem diferente de algumas décadas atrás, em que envolveriam necessariamente computadores que ocupavam uma sala toda das universidades.

A Pesquisa Operacional consiste em um instrumento para auxílio na tomada de decisão envolvendo o uso de recursos e informações limitados. Eom e Kim (2006), ao revisarem as ferramentas de utilizadas em sistemas de suporte à decisão (DSS) identificaram a predominância dos modelos de programação linear (PL) entre aqueles determinísticos utilizados em Pesquisa Operacional. Tal predominância da programação linear dá-se por sua versatilidade, com aplicações possíveis em uma ampla gama de situações.

A programação linear envolve apenas expressões lineares (função objetivo e restrições). Nesse caso, teremos somente constantes e variáveis de primeira ordem. Outro aspecto importante da programação linear é que todas as variáveis são contínuas – em contraposição às variáveis discretas. Em um modelo de programação linear, o objetivo é sempre maximizar ou minimizar um determinado valor. Realizando operações para o resultado desta função com a combinação linear de outras variáveis. A “função objetivo” representa esse valor a ser maximizado ou minimizado, sujeita a um conjunto de restrições que podem ser de igualdade ou desigualdade (equações ou inequações), incluindo a não negatividade das variáveis de decisão (FÁVERO; BELFIORE, 2012).

De acordo com Fávero e Belfiore (2012), um estudo em PO envolve algumas fases, das quais se destacam a definição de um problema e construção de um modelo matemático a partir da situação de mundo real e solução deste modelo que pode ser determinístico ou estocástico.

Portanto, a solução de um modelo de programação linear consiste na determinação dos valores de cada uma das variáveis de decisão que maximizam ou minimizam a função objetivo, sendo denominada “solução ótima”. Entre os algoritmos ou métodos de solução desses problemas, considera-se o Simplex o mais conhecido e utilizado (FÁVERO; BELFIORE, 2012).

Segundo Fávero e Belfiore (2012), a formulação geral de um modelo de programação linear pode ser representada como:
\[
\text{max ou min } z = f(x_1, x_2, \ldots, x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n
\]
sujeito a:

\[
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \{\leq, =, \geq \} b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \{\leq, =, \geq \} b_2 \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \{\leq, =, \geq \} b_m
\]

\[x_1, x_2, \ldots, x_n, \geq 0\]

em que:

- \(z\) é a função objetivo;
- \(x_j\) são variáveis de decisão, principais ou controláveis, \(j = 1, 2, \ldots, n\);
- \(a_{ij}\) é a constante ou coeficiente da \(i\)-ésima restrição da \(j\)-ésima variável, \(i = 1, 2, \ldots, m, j = 1, 2, \ldots, n\);
- \(b_i\) é o termo independente ou quantidade de recursos disponíveis da \(i\)-ésima restrição, \(i = 1, 2, \ldots, m\);
- \(c_i\) é a constante ou coeficiente da \(j\)-ésima variável da função objetivo, \(j = 1, 2, \ldots, n\);

Implicito a modelos de programação linear, tem-se quatro hipóteses: i) proporcionalidade; ii) aditividade; iii) divisibilidade; e iv) não negatividade e certeza. De acordo com Fávaro e Belfiore (2012), a hipótese de proporcionalidade relaciona-se ao fato de, em um modelo de programação linear, a função objetivo responderá proporcionalmente a mudanças na variável de decisão. Dessa forma, em um modelo de programação linear, não é possível modelar uma situação em que ganhos de escala exercem um papel relevante, pois, em tal situação, a função objetivo (produção) aumentaria mais que proporcionalmente ao incremento nos insumos.

A hipótese de aditividade apresenta que é possível desagregar a variação da função objetivo em contribuições de cada variável, ou seja, inexistem termos cruzados no modelo – tanto na função objetivo quanto nas restrições. As hipóteses de divisibilidade e não negatividade simplesmente afirmam que as variáveis do modelo podem ser qualquer número real positivo, enquanto a certeza afirma que os coeficientes das expressões envolvidas no modelo são determinísticos (FAVERO; BELFIORE, 2012).
5.1.3. Método Simplex

Para compreender o método Simplex, é conveniente definir os conceitos de variáveis básicas (VB) e variáveis não básicas (VBN). Nesse sentido, suponha-se um sistema de equações lineares com m equações e n variáveis cuja representação seja $Ax = b$. Caso $m = n$, então, haverá uma única solução. Caso haja mais equações que variáveis, ou seja $m > n$, então $(m - n)$ destas equações deveram ser redundantes, obtendo-se solução única. Por outro lado, se existir um excesso variáveis relativamente às equações coerentes ($m < n$), então haverá infinitas soluções (TAHAL, 2017). Nesta situação, escolhe-se $(n - m)$ variáveis e determina-se que as mesmas sejam zero, sendo as mesmas denominadas variáveis não básicas. As m variáveis restantes do sistema a ser solucionado são denominadas variáveis básicas (VB). A solução do sistema com as m equações restantes é denominada, então, solução básica (SB).

O método Simplex, então, segundo Fávero e Belfiore (2012, p. 79), consiste em um “procedimento algébrico iterativo que parte de uma solução básica factível inicial e busca, a cada iteração, uma nova solução básica factível com melhor valor na função objetivo, até que o valor ótimo seja atingido”. Nesse sentido, a partir da uma solução básica corrente, substitui-se uma das variáveis básicas por uma variável até então considerada não básica, gerando uma solução básica adjacente que, se atender ao critério de não negatividade, passa a ser considerada uma solução básica factível adjacente (SBF adjacente) (FÁVERO; BELFIORE, 2012). O fluxograma abaixo (Fluxograma 1), retirado de Lachtermacher (2009), sumariza o funcionamento do método Simplex.
A forma padrão, apresentada no fluxograma corresponde à forma de apresentação do problema de programação linear de tal forma que: i) os termos independentes das restrições e as variáveis de decisão sejam não negativos; ii) todas as restrições sejam representadas através de equações lineares, ou seja, também devem ser igualdades. Assim, a denominada forma padrão representa o modelo matemático para o qual será obtida uma solução básica inicial. Na etapa seguinte, será verificado se essa solução é ótima para o problema de PL em questão e, de forma lógica caso não atinja o valor ótimo o processo reinicia. Então uma nova SBF adjacente com melhor resultado na função objetivo é obtida até que se obtenha a solução ótima.

É comum que método Simplex seja utilizado por meio de softwares dedicados à problemas de otimização, entre os quais se destacam o GAMS, AMPL, AIMMS, além de planilhas eletrônicas como o Solver do Microsoft Excel e o “What’s Best!” (FÁVERO; BELFIORE, 2012). Especificamente, neste trabalho, dada a pequena dimensão do modelo, optou-se pelo uso do Solver fornecida como suplemento gratuito ao Microsoft Excel. Tal modelo suporta modelos com até 200 variáveis de decisão e 100 restrições (FRONTLINE SYSTEMS, INC., 2021).
5.2. Estruturação do Modelo

Nas ciências sociais aplicadas, entre os modelos aos qual são aplicados a programação linear, destacam-se o problema do “mix” de produção, problema da mistura, orçamento de capital, seleção de carteiras de investimento, produção, estoque e planejamento agregado (FÁVERO; BELFIORE, 2012). Nesses casos, busca-se uma representação simplificada da realidade, permitindo determinar uma decisão otimizada de algum resultado.

Visando avaliar os impactos de mudança no processo produtivo pela inserção da produção de Pellet de madeira, foi construído um modelo de otimização de produção e comercialização – associado ao chamado problema do “mix” – que tem como determinantes fundamentais a margem de contribuição. A margem é identificada por unidade de matéria-prima e custos relacionadas a cada um dos possíveis produtos e subprodutos.

Além da margem de contribuição obtida no uso de cada unidade de matéria-prima, foram estabelecidas diversas restrições sobre a geração e utilização dos resíduos produtivos. Dados os fatores de conversão, obtém-se, para um período qualquer, a composição da comercialização de produtos que maximiza a margem de contribuição total da atividade. Essa contribuição total advém da soma dos produtos intermediários e subprodutos.

Uma vez que se procura avaliar a rentabilidade da atividade, de forma simplificada considera-se um modelo sem impostos na comercialização, bem como na transferência dos resíduos da unidade produto de bens intermediários para a unidade processadora de Pellet sem custos. Vale ressaltar que, apesar do modelo estar relacionado produção de produtos intermediários da cadeia de processamento da madeira sólida. As empresas que disponibilizaram os dados vão utilizar essas produtos intermediários para produção de produtos finais.

Também com o objetivo de simplificar o modelo, considera-se a produção em uma única pessoa jurídica e sem a consideração dos impostos. Outra premissa é que não há estoques, sendo toda a produção comercializada ao preço de mercado vigente, dessa forma tudo que é produzido é comercializado.

Tem-se um total de nove produtos e até quatro subprodutos, totalizando até treze itens, a depender do cenário considerado. Em uma indústria de desdobro de toras a qualidade dos produtos é obtida proporcionalmente e reflexo da qualidade das toras e dimensões dos produtos. Assim consideram-se proporções para madeira com qualidade A, B e C. Apenas a madeira serrada do tipo clear shorts, e os painéis prime ficam restritos a uma única madeira
(tipo A), podendo os demais produtos serem gerados a partir de duas ou dos três tipos de madeira.

Considera-se que o conjunto de todos os itens são denominados I, ou seja, \(I = \{MBC, MCS, MF, VL, VP, PL, PP, PPL, PPP, RV, CS, ML, PLT\} \).

A função objetivo do modelo é:

\[
\max_{i \in I} \pi = \sum_{i \in PS} (P_i - CT_i)Q_i ; \ i \in I
\]

sujeito às seguintes restrições:

1. A matéria-prima \((MP_i) \) utilizada para a produção do item \(i \) é determinada pela quantidade \(Q_i \) escolhida multiplicada por um fator \(\sigma \). Na terminologia de pesquisa operacional, \(Q_i \) representam as variáveis de decisão do modelo. Nesse sentido, por exemplo, um fator de eficiência hipotético de 2 indica que, para produzir 1 t de um determinado item, são necessários 2 t de matéria-prima, seja ela madeira bruta ou resíduo de produção anterior.

\[
MP_i = Q_i \times \sigma_i
\]

2. A unidade produtiva será dimensionada a partir de duas capacidades: a de processamento de madeira bruta e a de processamento de resíduos secos em Pellet. No primeiro caso, existe ainda uma subdivisão da capacidade total entre os três tipos distintos de madeira, (A, B e C), a serem utilizados de maneiras distintas. Assim, a madeira serrada da categoria clear shorts e os denominados painéis prime necessariamente utilizaram apenas madeira do tipo A, enquanto os demais painéis podem utilizar, adicionalmente, a madeira do tipo B. Os outros produtos intermediários, por seu turno, podem utilizar qualquer um dos três tipos de madeira.

Formalmente, tem-se que

\[
CPA \geq MP_{MCS} + MP_{PPL} + MP_{PPP}
\]

\[
CPA + CPB \geq MP_{PL} + MP_{PP}
\]

\[
CPA + CPB + CPC \geq MP_{MBC} + MP_{MCS} + MP_{VL} + MP_{VP}
\]
com CPA = capacidade de processamento da matéria-prima tipo A; CPB = capacidade de processamento da matéria-prima tipo B; e CPC = capacidade de processamento da matéria-prima tipo C.

3. A geração de resíduos secos (GRS) é consequência da produção dos bens intermediários, excetuando a madeira serrada/seca que dá origem ao resíduo verde que pode, potencialmente, ser também comercializado. Assim, a quantidade gerada de resíduos secos corresponde ao somatório da diferença entre a quantidade requerida de matéria-prima e a quantidade efetivamente produzido dos bens finais, excetuando a madeira serrada (bica corrida) (MBC). O resíduo seco oriundo da produção de bens finais se divide entre cavaco seco e maravalha, usualmente, na proporção de 60% do primeiro e 40% da segunda. Tal resíduo pode ser comercializado diretamente ou processado em Pellet, portanto a produção de Pellet é limitada tanto pela capacidade de processamento de resíduos secos em Pellet (CPP) quanto pela própria disponibilidade de cavaco e maravalha não vendidos.

$$M_{PLT} \leq CPP$$

$$MP_{PLT} \leq \left(\sum_{j \in F} (MP_j - Q_j) \right) - (Q_{CS} + Q_{ML}); \ j \in \{MCS, MF, VL, VP, PL, PP, PPL, PPP\}$$

4. Dado o previamente afirmado, o resíduo verde (RV) tem sua geração limitada exclusivamente pela produção da madeira serrada/seca, e não pode ser utilizado para a geração de Pellet. Assim:

$$RV = MP_{MSS} - Q_{MSS}$$

5. A comercialização de subprodutos secos (CS, ML e PLT) é limitada pela produção de produtos finais outros que não a MBC. Assim, a matéria-prima requerida para a produção de subprodutos deve atender à seguinte restrição:

$$MP_{CS} + MP_{ML} + MP_{CS} \leq \left(\sum_{j \in F} (MP_j - Q_j) \right); \ j \in \{MCS, MF, VL, VP, PL, PP, PPL, PPP\}$$
6. Existe uma restrição técnica quanto à necessidade de combinar a produção de vigas com a produção de painéis, caso tal produção exista. Assim, a produção de uma unidade de painel será necessariamente acompanhada de uma unidade de viga, tal que, formalmente:

\[Q_{VL} + Q_{VP} = Q_{PL} + Q_{PP} + Q_{PPL} + Q_{PPP} \]

7. Outra restrição técnica se dá em torno da proporção entre e cavaco seco e maravalha gerados na confecção dos produtos intermediários, respectivamente, de 60% e 40%. Casos se deseje vender esses produtos ao invés de convertê-los em Pellet, haverá, portanto, uma restrição quanto à proporção possível de comercialização. As máximas disponibilidades de resíduos a serem potencialmente alocada entre CS e ML são dadas por:

\[
\begin{align*}
MaxCS &= 0,6 \times \left(\sum_{j \in F} (MP_j - Q_j) \right); \ j \in \{MCS, MF, VL, VP, PL, PP, PPL, PPP\} \\
MaxML &= 0,4 \times \left(\sum_{j \in F} (MP_j - Q_j) \right); \ j \in \{MCS, MF, VL, VP, PL, PP, PPL, PPP\}
\end{align*}
\]

Um aspecto do modelo a ser reforçado é que não se fez necessário modelar o encadeamento das etapas de produção. Uma vez que os coeficientes técnicos já representam a quantidade total de madeira necessária à produção de uma unidade de dado bem. Assim já se tem implícito o que foi demandado em etapas anteriores de produção. Caso a decisão de produção seja por produzir o item mais complexo, tem-se implícito no modelo que todas as etapas anteriores necessárias serão realizadas.

5.2.1. Cenários considerados

Para fins dessa análise foram considerados cenários que representam situações nas quais produtores (ou possíveis produtores) brasileiros de madeira solida processada podem se inserir. Os cenários são apresentados em uma lógica de modo que reflitam em possíveis mudanças no comportamento do produtor. Em outras palavras, que o produtos opte pelo ótimo.

Na situação inicial, o produtor é incapaz de comercializar qualquer tipo de resíduo. Neste caso os utiliza para geração de calor ou doação, quando possível. Assim, resta a
empresa otimizar seu mix de produção aos preços vigentes (Cenário A1). Em um segundo momento, denominado Cenário A2, o preço da madeira serrada (bica corrida) se eleva, o que incentivaria sua produção em detrimento de produtos com maior grau de processamento. Porém, neste caso não são gerados os resíduos secos, somente os resíduos verdes, os quais não são vendidos facilmente. O terceiro cenário traz novos fatores de conversão para o processo. Com uma melhora de rendimento para produzir cada um dos produtos, é necessário um menor volume de toras (Cenário A3).

Os cenários iniciados pela letra B, trazem situações em que a comercialização de resíduos é possível. Nestes casos, há uma demanda local para todo o resíduo, de acordo com o preço do modelo. Assim, os cenários B1 e B2 partem da mesma situação vigente em A1 e A2, respectivamente, porém com a possibilidade de comercialização de resíduos.

Nos cenários iniciados pela letra C, tem-se, finalmente, a possibilidade de comercializar o Pellet através da instalação de um ou mais módulos de processamento de resíduos secos. Portanto, no cenário C1 tem-se a mesma situação vigente em B1, mas adiciona-se a possibilidade de produzir-se Pellet.

Com o objetivo de estressar os resultados, sobre o cenário C1, são aplicados choques aos parâmetros importantes do modelo: preços e capacidade de processamento de Pellet. No primeiro caso, determina-se uma elevação acentuada de preços. Como tal aumento de preço é superior àquela observada nos cenários A2 e B2, denomina-se esse cenário C4. E então, sobre o cenário C4, dobra-se e depois triplica-se a capacidade de processamento de resíduos em Pellet (cenários C5 e C6).

Por fim, tem-se o cenário D1, em que partindo da situação vigente em C1 somente se melhora na eficiência do processamento de madeira.

Portanto, totaliza-se um total de 10 cenários que serão analisados sequencialmente, buscando evidenciar os mecanismos que levam a indústria de madeira a produzir produtos de menor ou maior valor agregado como resposta a alterações de mercado e de sua estrutura produtiva. Abaixo, sumariza-se as situações consideradas.

- A1: Empresa não consegue destinar os resíduos gerados, usando para geração de calor e doando-os, quando possível;
- A2: Empresa não consegue destinar os resíduos gerados, usando para geração de calor e doando-os, quando possível, porém ocorre aumento de preço da madeira serrada;
- A3. Empresa não consegue destinar os resíduos gerados, usando para geração de calor e doando-os, quando possível, porém ocorre aumento de preço da madeira serrada e aumento de eficiência da serraria;
• B1: Empresa tem oportunidade de comercializar resíduos da produção, o que incentivaria a agregação de valor.
• B2: Empresa tem oportunidade de comercializar resíduos da produção, o que incentivaria a agregação de valor, porém, há aumento do valor da madeira serrada.
• C1: Empresa tem oportunidade de comercializar resíduos da produção e instala um módulo de processamento de Pellet, o que incentivaria a agregação de valor.
• C4: Empresa tem oportunidade de comercializar resíduos da produção e instala um módulo de processamento de Pellet, o que incentivaria a agregação de valor, porém, há forte aumento do preço da madeira serrada.
• C5: Empresa tem oportunidade de comercializar resíduos da produção e instala dois módulos de processamento de Pellet, o que incentivaria a agregação de valor, porém, há forte aumento do preço da madeira serrada.
• C6: Empresa tem oportunidade de comercializar resíduos da produção e instala três módulos de processamento de Pellet, o que incentivaria a agregação de valor, porém, há forte aumento do preço da madeira serrada.
• D1: Empresa tem oportunidade de comercializar resíduos da produção e instala um módulo de processamento de Pellet, o que incentivaria a agregação de valor e, além disso, há aumento de eficiência da serraria.

5.2.2. Análise da modelagem

Como apresentado, o modelo de otimização tem como solução as quantidades a serem comercializadas de cada um dos produtos intermediário e, potencialmente, subprodutos, incluindo o pellet. Nesse sentido, a Tabela 5 sumariza a composição da produção para cada um dos cenários previamente estipulados.

A iniciar pelo cenário A1, em que não há comercialização de nenhum resíduo, ao preço de comercialização de R$ 900,00 t\(^{-1}\), a comercialização de madeira serrada mostra-se pouco atraente frente à opção de produzir vigas e painéis – vale ressaltar que existe a restrição quanto ao tipo de madeira a ser empregada a depender do tipo de painel. Em uma hipotética situação em que o preço da madeira serrada se eleva de maneira relevante, passando a R$ 1.150,00 t\(^{-1}\), o ganho esperado da alocação da matéria-prima em madeira serrada supera o que seria obtido em produtos mais elaborados. Essa preferência decorre não só pelo valor da madeira serrada verde nesse mercado hipotético mas também por não poderem ser
comercializados os resíduos. Para o caso do aumento do valor de venda da madeira verdade determina-se então o cenário A2.

No cenário A3, embora o preço de comercialização seja o mesmo do cenário A2, isto é, notadamente mais elevado que a situação A1, existe uma melhora na eficiência da serraria, reduzindo, assim, a geração de resíduos na produção bens mais elaborados. Essa melhora de eficiência é suficiente para que, ao preço vigente em A2, o resultado otimizador da empresa volte a ser produzir bens de maior valor agregado. É importante notar que a margem total da operação quando se passa da situação A2 para A3 cresce 28,6% e que, na prática, a produção de bens de maior valor agregado, ao longo do tempo, costuma ser acompanhada de ganhos na eficiência.

A evolução das situações descritas em A1, A2 e A3 reforçam o papel do preço de mercado e da eficiência na produção como determinantes do mix de produção. No Brasil, a baixa eficiência das serrarias mostra-se, portanto, um fator limitante à maior agregação por parte das empresas do setor madeireiro.

Uma menor eficiência, contudo, pode ser compensada pela possibilidade de comercializar resíduos gerados em grande volume, especialmente quando se produz bens mais elaborados. No cenário B1, o fato de poder comercializar os resíduos, não faz alterar o mix de produção frente ao cenário A1, pois a estrutura de custos e preços é a mesma, contudo, a margem total da operação cresce 59,1%, mostrando que a possibilidade de comercializar subprodutos tem papel fundamental na manutenção da atividade.

Ao contrário do cenário A2, frente ao cenário A1, quando ocorre o mesmo aumento de preços, na situação B2, não há alteração do mix de produção, isto é, a empresa não deixa de produzir bem mais elaborados para focar-se exclusivamente na geração de madeira serrada. Tal fato decorre justamente da possibilidade de comercializar os subprodutos cavaco seco e maravalha, ainda que os preços dos mesmos possam ser considerados baixos.

Se a mera comercialização de resíduos de menor valor tende a ser suficiente para tornar a produção de bens mais elaborados interessante ao produtor, seria esperado que a existência de um módulo de processamento de Pellet reforçasse tal decisão. O cenário C1 mostra justamente tal aspecto: o mix de produção é o mesmo dos observados nos cenários B1 e B2, contudo, como o valor de mercado é substancialmente mais elevado, há um ganho na margem total de contribuição. Comparando-se os cenários B1 e C1, há uma melhora de 8,4% na função objetivo; a limitação do aumento decorre do fato de que, para produzir Pellet foi necessário abdicar do comercializar de parte da maravalha (produto de menor valor frente ao cavaco seco).
Passando ao cenário de estresse C4, quando o preço da madeira serrada atinge o maior patamar considerado, de R$ 1.150,00 t\(^{-1}\), intuitivamente, espera-se que a produção de madeira serrada volte a ser interessante à empresa e, dessa forma, venha a ser retomada. De fato, na situação descrita, surge novamente a produção de madeira serrada para ser vendida sem maior processamento, porém, mantém-se certo nível de produção de viga lixada e painel prime
lixado. A manutenção desses itens mais elaborados são consequência direta da possibilidade de se comercializar resíduos e Pellet.

Embora a margem de contribuição da madeira serrada se mostre maior que anteriormente – e esta deve ser avaliada conjuntamente ao resíduo verde também comercializado –, a margens de contribuição combinadas do painel prime lixado e dos resíduos oriundos de sua produção se mantêm atrativas. Efetivamente, a empresa maximiza sua produção de painéis prime lixados, isto é, utiliza toda a capacidade de processamento da madeira A (CPA) neste item. Como deve existir o pareamento entre vigas e painéis, a empresa escolherá a viga que lhe confere maior margem de contribuição, isto é, a viga lixada. Toda a matéria-prima disponível após a produção desses itens será então destinada à produção de madeira serrada, gerando determinada quantidade de resíduo verde também comercializado.

Como o objetivo da empresa, diante do cenário apresentado é principalmente maximizar a produção de painéis prime e vigas lixadas, gera-se uma quantidade de resíduos bastante superior à capacidade de processamento de Pellet. Os dois próximos cenários, portanto, buscam endereçar o impacto da capacidade de processamento de Pellet sobre a decisão ótima de produção, a iniciar pelo cenário C5, em que, na mesma estrutura de preços e custos do cenário C4, a capacidade de produção de Pellet é dobrada – dois módulos são instalados.

No cenário C5, o aumento na capacidade de produção de Pellet é insuficiente para que o produtor abandone sua posição de maximizar a produção de painéis prime lixados combinados com vigas lixadas. Assim, em termos de mix de produção, a única alteração deste cenário para C4 é o maior processamento de Pellet pelo uso de mais maravalha. Em outro aspecto, o aumento da margem de contribuição total entre os cenários C4 e C5, por conta do maior processamento de Pellet, foi de 7,8%.

Quando são instalados três módulos para processamento de pellet, totalizando uma capacidade de 78.000 t, ocorre uma alteração interessante na composição da produção. No cenário C6, embora não se altere o objetivo principal de maximizar a produção de painéis prime lixados (toda a madeira A disponível é destinada a ele), reduz-se substancialmente a produção de madeira serrada e, além disso, passa a se produzir certa quantidade de painel lixado a partir de madeira do tipo B. O aumento da produção total de painéis é acompanhado então, pelo crescimento igual da produção de vigas lixadas. Assim, tem-se um cenário de maior ênfase em produtos elaborados em detrimento da madeira meramente serrada.

Ocorre que, no cenário C6, dada a maior capacidade de processamento de Pellet e o elevado retorno por unidade de matéria-prima, o produtor passa também a buscar a garantia
de fornecimento de resíduos para produzir esses Pellet. O processo otimizador, porém, implica na curiosa situação em que o produtor busca gerar exatamente a quantidade de maravalha limpa necessária ao funcionamento pleno do processamento de Pellet. A razão para isso é que o cavaco seco possui preço 20% superior à maravalha, portanto, em conjunto com os produtos elaborados, aumenta o retorno total da operação. Apesar deste aspecto não trivial, o aspecto fundamental do cenário C6 é de que, na presença de maior processamento de Pellet, haverá maior incentivo à produção de bens mais elaborados. Ademais, na passagem do cenário C5 para C6, registra-se um aumento de 7,2% no valor da função objetivo.

Finalmente, tem-se o cenário D1 em que vigem as mesmas condições presentes em C1, porém, com ocorre uma melhora de eficiência da operação da serraria, tal qual na passagem entre os cenários A2 e A3. Qualitativamente, os resultados dos cenários C1 e D1 são equivalentes, apresentando a mesma seleção de produtos para a produção, porém alterando-se as quantidades produzidas em função do ganho de eficiência. Nesse sentido, há um crescimento de 24,7% na produção de vigas lixadas, painéis lixados e painéis prime lixados, contudo, tal aumento é acompanhado por uma redução da geração de resíduos secos que poderiam ser vir a ser comercializados.

Dada a maior margem de contribuição na produção de Pellet, a capacidade de processamento de 24.000 t segue utilizada em todo seu potencial, assim como na situação C1. Dessa forma, portanto, a melhora da eficiência impacta positivamente a geração de margem de contribuição na produção dos bens elaborados, porém reduz na geração de resíduos, entretanto, o resultado da função objetivo é melhorado em 15,9% relativamente a C1, evidenciando a importância do grau de eficiência da operação da serraria.
6. RESULTADOS E DISCUSSÃO

Como método para esta exposição foi utilizado o modelo de Kaoru Ishikawa, também conhecido como diagrama de “espinha de peixe”, por meio do qual os sistemas de controle de qualidade identificam causas e consequências em processo de produção. Aqui, o diagrama será utilizado para sumarizar, agrupar e orientar as conclusões das análises das experiências internacionais e da modelagem, sendo cada um dos pontos identificados causas que impulsionariam a inserção de da produção de Pellet na cadeia de processamento de madeira sólida e por consequência os benefícios ao setor florestal e maior geração de divisas nas exportações.

Este estudo identificou um total de 15 causas, agrupadas em 5 grupos de ações que impulsionariam a atividade. Os grupos são: geração de energia, quando se diversifica a matriz energética para oferecer mais e com mais segurança; viabilidade econômica, pela condição de viabilidade econômica financeira para execução da produção do Pellet e por consequência da energia a partir dele; mercados, orientado ao seu desenvolvimento, diminuição das assimetrias de informação e por consequência benefícios na comercialização; priorização de ações no setor florestal, com o objetivo de alcançar cada vez mais eficiência produtiva e agregação de valor aos insumos florestais; incentivos, necessários para aperfeiçoar a produção, alinhar demandas do mercado ou, com origem financeira, possibilitar maiores investimentos.

Especialmente, 5 causas serão melhor discutidas nesse tópico. Valor agregado aos produtos; Tecnologia na silvicultura; Reputação e certificações; Mercado interno e co-combustão; Exportações. De qualquer forma, em certa medida, a importância de cada uma das 15 causas serão contextualizadas:
Figura 10. Fatores de impulso para o segmento de produção de madeira processada.
Fonte: Elaboração própria de acordo com as análises do estudo.

O setor florestal pode ser considerado toda a cadeia desde a produção da madeira até os seus produtos, que vão desde a madeira serrada para andaimes de construção até a celulose solúvel utilizada em alimentos e remédios. Representa 1,2% do PIB Nacional e receita bruta total de R$ 97,4 bilhões (IBÁ, 2020). Um amplo setor acaba dividido em várias associações, então é comum o diálogo entre elas. Sob a perspectiva da produção dos Pellet, como se trata de um resíduo possível em toda cadeia e também como produto principal de florestas energéticas, a priorização de ações para apoiar o desenvolvimento da produção e comercialização de Pellet seria necessária. Nesse sentido, esta discussão também apresenta os fatores principais identificados nesses trabalho, que são: as barreiras técnicas ao comercio, relacionadas principalmente ao manejo florestal e; o uso de resíduos do processamento de madeira sólida.

O Brasil tem muita tradição na silvicultura, com padrões de produção na silvicultura – pacote tecnológico e certificação – desenvolvidos. Os plantios do gênero Pinus, principalmente no sul do país, bem como o desenvolvimento da cultura do Eucalyptus em vários estados expandem e com melhores desempenho. Resultados esses, impulsionados pela organização das empresas por meio da IBÁ (Industria Brasileira de Árvores), por universidades e outras instituições de pesquisa e desenvolvimento, notadamente o IPEF (Instituto de Pesquisas e Estudos Florestais). Sem dúvida, os padrões de certificação tiveram um papel importante no avanço tecnológico, garantindo que o desenvolvimento tenha ocorrido com bases socioambientais.

Quando se trata do uso de solo, discute-se o uso de áreas próprias para agricultura para plantios florestais e o impacto sobre a segurança alimentar. No caso dos biocombustíveis com origem na agricultura, também se questiona a priorização dos fins alimentares. Apesar de existir concorrência pelas áreas agricultáveis, no caso das florestas o pacote tecnológico e equipamentos garantem plantios em solos mais pobres e também. As pressões da sociedade civil organizada também é menor por não se tratar de um alimento convertido em energia.

Escobar (2016) destacou que uma opção promissora é investir em plantios de curta rotação dedicadas para fins energéticos e a produção de Pellet. Porém, existem incertezas sobre o uso de biomassa primária como toras. Florestas energéticas teriam um menor efeito sobre emissões se comparados ao uso de resíduos. Ehrig and Behrendt, 2013 aponta que a madeira em tora para a produção de Pellet leva ao dobro das emissões. Isso porque, a combustão de biomassa é apenas neutra em CO₂, se a mesma quantidade de biomassa cresce
novamente no mesmo período em escala global como pode ser verificado em Zanchi et.al. (2010).

Como dito anteriormente, tecnologia e certificação andaram juntas na estruturação do setor nos últimos 25 anos. Reflexo desse empenho na silvicultura as áreas de florestas certificadas no país já são mais de 1/3 do total implantado. Além da certificação florestal, cada vez mais são exigidas comprovações da legalidade da madeira e seu processo de produção. Controles que exigem um aprimoramento do sistema de gestão da empresas produtoras e processadoras da madeira.

No caso dos resíduos do processamento da madeira, no entanto, a discussão está focada no uso mais eficiente da energia nele reservada e no seu aproveitamento. Por esse motivo que este estudo trouxe os resultados da modelagem evidenciando o aspecto financeiro associado a inserção da produção Pellet na cadeia de produção de produtos de madeira sólida. Os resíduos podem ser convertidos em Pellet nas unidades de processamento ou comercializados dentro de um raio viável para unidades com estrutura para essa produção. De uma ou outra forma, o resultado é maior eficiência energética e com geração de renda e ou divisas com a venda dos Pellet.

Tendo em consideração o conjunto dos resultados dos cenários apresentados nesse estudo, pode-se traçar algumas considerações gerais sobre o processo de decisão de produção da indústria madeireira. Em primeiro lugar, percebe-se que, sem a possibilidade de comercializar os resíduos gerados na produção de bens mais elaborados, há maior probabilidade de que um aumento do preço da madeira meramente serrada (bica corrida) venha a fazer a indústria a priorizar tal produto de baixo grau de processamento. Sob outra perspectiva, caso observado um aumento do preço da madeira serrada no mercado externo, por exemplo, mas a indústria tiver possibilidade para seus subprodutos, é mais provável que a mesma não abra mão de produzir bens mais elaborados, pois deles podem obter um resultado conjunto – considerando os subprodutos – melhor.

No Brasil, a situação de impossibilidade de comercialização de resíduos tem paralelo com indústrias localizadas em locais afastados que não teriam mercado local para seus subprodutos e possuem elevado custo logístico para destiná-los aos mercados consumidores. Mesmo que a empresa não optasse pela instalação de estrutura para produção de Pellet, com a maior inserção dessa produção no país, oportunamente haveriam empresas que produziriam a partir dos próprios resíduos, mas também daqueles em raio logístico viável. Em outras
palavras a possibilidade de venda de resíduos e por uma valor maior seria cada vez mais possível, satisfazendo condições dos cenários iniciados em B da modelagem.

A possibilidade de se comercializar subprodutos, mesmo que não convertidos em Pellet pode representar acréscimos significativos na geração de receita da atividade, ainda sim com o fortalecimento da produção de bens elaborados. A instalação de uma capacidade de Pellet, a menos que se mostre extremamente elevada, tende não influenciar sobremaneira a decisão de produção de bens elaborados – sendo estes mais incentivados pela possibilidade de comercializar subprodutos em geral.

Na circunstância de poder produzir e comercializar Pellet, mesmo diante de um aumento significativo do preço da madeira serrada, buscar-se-á produzir determinada quantidade de bens elaborados com vistas a gerar resíduos e atender a estrutura de processamento de subprodutos instalada. Isto ocorre por conta do elevado retorno por unidade matéria bruta convertida em produto acabado e Pellet.

6.2. Geração de energia

A apesar dos índices de emissão por conta das queimadas e desmatamento (INPE, 2021). O Brasil tem destaque positivo em relação às emissões de GEE por conta da geração de energia se dar principalmente pelo uso massivo de hidrelétricas e também pela crescente participação biomassa na matriz energética. Porém, ao passo que a biomassa vem fazendo parte da política energética nacional, outras fontes fósseis também estão sendo utilizadas. Em 2016, 81,7% da energia elétrica no país tinha origem em fontes renováveis. Frente aos apagões, consequência dos períodos com pouca chuva, a matriz energética é constantemente forçada a diversificação.

Em todo mundo, políticas são definidas para garantir acesso à energia de maneira segura por todas as pessoas. De fato, quando se observa os países desenvolvidos o acesso já não é mais o desafio e as políticas são mais voltadas à segurança nesse fornecimento. Em países em desenvolvimento, no entanto, além das questões de segurança o acesso ainda é um desafio importante a ser cumprido. Como discutido nestes estudo, Ásia, África e Brasil ainda possuem localidade que não tem acesso a energia elétrica e grande parte das localidades mais distantes dos centros comerciais utilizam fontes fósseis para geração, cujo fornecimento é mais caro e contribui para emissões.

Em 2019, a eletricidade proveniente de hidrelétricas no Brasil representou 67% do fornecimento interno (ANEEL, 2021), mas já representou mais de 90% no período entre 1970
e 1990 (EPE, 2016). Porém nem todas a localidades recebem a energia elétrica (WWF BRASIL, 2020), é o caso de localidades no norte do país, que acabam fazendo uso de outras fontes de energia, principalmente de origem fóssil. As políticas de diversificação da energia devem garantir não só o fornecimento de quem tem acesso ao grid de eletricidade, mas também aquelas populações as quais não chegam os cabos de energia. Ações que devem estar voltadas não só para o fornecimento, mas também para a segurança nesse fornecimento.

A mudança na matriz energética brasileira influencia diretamente nas emissões de GEE e, por consequência, nas metas nacionais para redução de emissões. As emissões do setor de energia estão relacionadas a 48% para o setor de transporte, 7% para residencial, 14% para produção de combustível, 17% para industrial, 10% para eletricidade pública e 4% para agricultura. Se por um lado a diversificação está reduzindo potenciais crises energéticas, com a garantia de fornecimento, o uso cada vez maior de combustíveis fósseis vão na contra mão da segurança ambiental nesse fornecimento.

Classificando as emissões por tipo de combustível, o diesel ainda corresponde a 32%, a gasolina automotiva a 17% e a GN seca a 14%, e se considerarmos a madeira, o carvão, a biomassa e o biogás juntos, eles correspondem a menos de 4% (SEEG, 2018). Esses dados evidenciam a oportunidade de uma mudança na matriz energética, e que mesmo com o aumento das fontes renováveis não hídricas, essas fontes não aumentaram as emissões totais, uma vez que emitem menos do que outras.

De forma indireta, as políticas governamentais também tiveram um papel fundamental para manter os patamares de emissão, quando apoiou o uso de biocombustíveis para transporte. O etanol de cana-de-açúcar apresenta-se hoje como o biocombustível comercial de maior sucesso e seu uso e produção têm sido apoiados por políticas públicas em diversos países (GOLDEMBERG, 2009; LUCON; ROMEIRO; FRANSEN, 2015). As desvantagens econômicas de uma forte dependência das importações de petróleo na década de 70 levaram o governo brasileiro a lançar o programa do álcool. Aliadas à grande oferta de matéria-prima da cana-de-açúcar e aos baixos preços do açúcar da época, as políticas públicas baseadas em subsídios e créditos tributários proporcionaram competitividade ao biocombustível em relação ao mercado de petróleo e apoiaram sua produção e estabelecimento de mercado no país (GOLDEMBERG; COELHO; REI, 2002).

Como apresentando anteriormente, no estado de São Paulo, onde há grande oferta de bagaço de cana e sub-produtos das indústrias madeireiras e ou cavacos de florestas energéticas. Nesses casos a co-combustão em caldeiras tem sido mais frequente. Este uso é
ainda mais comum em períodos em que o custo da eletricidade negociada na forma de contratos é alto, por exemplo, um período de crise de abastecimento dos reservatórios que garantem a geração de energia nas hidrelétricas. Ainda não existem estudos indicando qual o melhor insumo para a co-combustão, maravilha, cavacos ou os Pellet, mas do ponto de vista logístico e de armazenamento os Pellet seriam uma opção interessante.

Ainda não existe uma política específica para uso de energia da madeira, mas a experiência nacional com os Biocombustíveis pode ser considerado um exemplo a se seguir. O RenovaBio foi criado em linha com os acordos realizados na em 2015 em Paris, no qual foram assumidas metas na Contribuição Nacionalmente Determinada (iNDc) de redução em 43% das emissões de GEE com uma participação dos biocombustíveis com 18% da matriz energética até 2030 (BRASIL, 2015b). O enfoque do projeto é em ampliar a participação de biocombustíveis na matriz energética nacional, permitindo sua estabilidade de abastecimento e participação competitiva no mercado, além de aumentar o valor agregado à biomassa brasileira.

6.3. Incentivos

Na Europa, a implantação de políticas públicas é considerado o impacto mais forte para a concretização da conversão para bioenergia, onde dois dos maiores mercados de Pellet, Suécia e Países Baixos, contaram com impostos de carbono, subsídios e “Feed In Tariffs” para seu estabelecimento (HALL, 1997; SIKKEMA et al., 2011). Hall (1997) também considera o apoio governamental como uma das razões do sucesso da indústria de bioenergia na Finlândia. Subsídios também estão disponíveis especificamente para sistemas de aquecimento de Pellet na Áustria, Dinamarca e Alemanha (MALISIUS et al., 2000). Revisando as políticas públicas anteriores de apoio ao uso de madeira para energia nos Estados Unidos, AGUILAR, SONG e SHIFLEY (2011) concluíram que a promoção da energia de madeira no país dependia principalmente de instrumentos de política de incentivos financeiros.

Criada em 1996, a Lei Kandir isenta do recolhimento de ICMS produtos primários e semielaborados, dentre eles a madeira. Essa isenção visa a incentivar as exportações nacionais e conceder mais competitividade internacional ao país (AGENCIA SENADO, 2020). No entanto a exportação dos Pellet não configurariam com imunidade tributária. Segundo consulta à Receita Federal, publicada em site oficial\(^1\) do Ministério da Fazenda, o produto esta associado a peletização, processo que não determina produtos semielaborados e não tem direito a isenção ou imunidade. Decisão esta que pode ser questionada em instancia administrativas da Receita.

Os recursos do Fundo Clima foram destinados principalmente para os governos estaduais e municipais e suas autarquias. Os últimos editais foram lançados em 2015 e 2018 e orientados ao apoio de ações o ambiente urbano e medidas para reflorestamento de áreas de preservação permanente com o objetivo da preservação das águas. Apesar de serem observados apoio em para áreas de plantio, não foram concedidos recursos para a cadeia de produtos do setor florestal.

Por fim, o papel das universidades e centros de pesquisa são muito relevantes para que hajam adaptações da produção, transporte e formação de especialistas. Desde o técnico que operará o maquinário até o especialista que desenvolverá maquinários mais adaptados e mais baratos. Desde os alunos de graduação que se interessem pelo estudo de energia até o especialista em energia modernas. Nesse sentido, o incentivo a ciência e grupos de pesquisas dedicados aos temas relacionados em Biomassa deve ser incentivados. São exemplos o Grupo

\(^1\) Consulta 22408/2020 – disponível em: https://legislacao.fazenda.sp.gov.br/Paginas/RC22408_2020.aspx
de Pesquisa em Bioenergia da Universidade de São Paulo e a Embrapa Florestas, em Colombo – PR.

6.4. Viabilidade econômica

Dentre os custos da produção e exportação dos Pellet de madeira, revelam-se importantes o custo de oportunidade da matéria-prima, o transporte para usina de peletização, os custos relacionados a densificação, o transporte para o terminal, o transporte marítimo e/ou de entrega ao consumidor final, o manuseio e o armazenamento. Segundo Visser, L.; Hoefnagels, R.; Junginger, M. (2020), considerando a produção na Europa, a diminuição desses custos é limitada, sobretudo por que alterações no projeto da cadeia produtiva resultam em compensações entre componentes do custo. Outra constatação dos autores foi que, com um potencial aumento no tamanho das usinas de peletização, esperava-se a redução dos custos de peletização e transporte, no entanto, essa ação leva ao aumento dos custos e do transporte de matéria-prima. No Brasil, com a indústria nascente para produto, ainda há grande caminho pela frente e muito em inovação para nosso contexto pode ser realizado.

De fato, a partir da análises dos fluxos entre os mercados pode-se identificar que países que tem dificuldade de logística interna, por exemplo a Itália, acabam adquirindo a produção de vizinhos. Mas também aqueles países que são produtores e consumidores, mas que tem acesso logístico simplificado com vizinhos, acabam importando do país mais próximo e comercializando sua produção com aqueles outros países que pagam mais pelo produto, que é o caso da relação entre Portugal e Espanha e Letônia e Estônia.

O trabalho de Quéno, F. (2015), estudou a viabilidade econômica da produção de Pellet a partir do processamento de madeira sólida. Por meio do estudo dos fluxos de caixa de uma estrutura para produção de 24.000 toneladas ano foram avaliados os indicadores de TIR e VPL, bem como uma análise de riscos Monte Carlo. Tais ferramentais de análise garantem certa robustez a análise. Os resultados da análise mostraram que a rentabilidade foi bastante
superior a taxa de desconto para o negócio, definida pela autor como 14,5%. A análise de risco aponta que a probabilidade de se obter um TIR inferior a taxa de desconto seria de 36%.

6.5. Mercado para Biomassa de madeira.

O uso dos Pellet para produção de energia elétrica marca a nova fase do uso de energia moderna da madeira. Os Estados Unidos desempenham, atualmente, um papel fundamental no comércio intercontinental de Pellet em todo o mundo e destaca-se no que tange o abastecimento do Reino Unido, respondendo por 54% de todos os Pellet de madeira importados do país em 2015 (THRÄN; PEETZ; SCHAUBACH, 2019). Os desafios para o suprimento mundial em um novo contexto de demanda dependem, no entanto, que EUA e outros países superem barreiras técnicas que devem ser cada vez maiores.

Portanto, cada vez mais é exigido o compromisso socioambiental no processamento das bioenergias. Com os Pellet não é diferente e esse movimento já pode ser notado no Brasil. Sem dúvida, a certificação florestal tem um papel importante nesse contexto. Segundo IBÁ (2020), as áreas certificadas no Brasil somam 3,4 milhões de hectares. Esse valor representa quase 38% do total de área plantada no país. Além disso, o Brasil seria o 10º país no número de certificados de cadeia de custódia, relativo aos processadores de madeira, e que utilizam além dos produtos certificados, matérias de origem controlada que cumprem também com critérios de risco socioambientais e da legalidade da madeira, ampliando este percentual da conformidade das florestas plantadas, pelo menos com aspectos fundamentais e reconhecidos internacionalmente por meio da certificação.

Rússia, Estados Unidos e Canadá, são países de dimensões continentais como o Brasil. Sem dúvida, a expansão das áreas de plantio são um dos condicionantes do atendimento do mercado das exportações, mas também serão fundamentais o compromisso socioambiental da produção florestal e na cadeia de valor do produto. A partir da perspectiva do Brasil no mercado internacional.

Tal como a experiência de Portugal, onde existe consumo pontual de Pellet no mercado interno, a maior produção no Brasil pode gerar oportunidades e escolhas para uso industrial, comercial e residencial. Tal discussão pode ser ampliada e também direcionar políticas públicas para apoio da produção de um percentual maior de energia a partir da madeira no país.

Vários estudos já analisaram o potencial e as barreiras existentes para as exportações de Pellet pelo Brasil. Algumas das restrições no Brasil para a utilização da madeira para fins
energéticos são mencionadas por ESCOBAR (2016), dentre elas, pontua-se questões logísticas, falta de tecnologia para exploração de resíduos específicos e um mercado interno não estabelecido. O autor destacou a importância das políticas públicas para o desenvolvimento de uma maior parcela de energia proveniente dos resíduos florestais. De qualquer forma, como pode ser observado na análise de fluxos, o Brasil já exporta quantidade significativa de pellet para uso residencial. A origem desse Pellet seria principalmente de resíduos do processamento de madeira sólida, com algum tipo de certificação (Quéno, 2015).

Neste ponto, vale ressaltar que até o presente não há base de dados de preço para o Pellet no Brasil. Em consulta pessoal com a Indústria Brasileira de Árvores (IBÁ) e com a Associação Brasileira de Pellet (ABIPEL), bem como aos pesquisadores do centro de referência em preços de madeira, o CEPEA Florestal, com sede na USP de Piracicaba, foi confirmado que os preços ainda não são coletados e sistematizados. Esse tipo de acompanhamento é fundamental para que os tomadores de decisão possam avaliar o seu desempenho a potencial decisão da produção do produto.

Ainda sobre estabelecimento dos mercados competitivos. Apesar do grande potencial produtivo dos países da África, os problemas vividos não situariam, pelo menos no curto e médio prazos, como exportadores. Segundo Global Utmaning (2012), existe um realidade desafiadora em regiões de plantações na África. Por conta dessas áreas de plantio, são observados: conflitos com os direitos tradicionais; deficiências na mitigação de riscos e monitoramento da biodiversidade, também por falta de arcabouço legal nos países; produtores e comunidades negligenciadas pelo governo; condições de trabalho insatisfatórias e desalinhadas com as convenções da Organização Internacional do Trabalho (OIT). Apesar disso, de forma análoga ao Brasil, na África cerca de 5 milhões de hectares são desmatados anualmente, um número 5 vezes maior que o ocorrido no Brasil em 2020 (INPE, 2021). De fato, no Brasil, o compromisso do governo, associado com as iniciativas da sociedade civil organizada e das empresas torna os caminhos para atendimento de exigências internacionais mais possível.
7. CONCLUSÕES

No mundo todo a garantia do fornecimento de energia com segurança passou a ser tema central das políticas de combate a emissões de GEE. Alternativas aos combustíveis fósseis ou meios para reduzir suas emissões são discutidas pela academia e órgãos governamentais. Apesar dos diversos contextos que fazem frente ao avanços de fontes de energia mais limpas, o aproveitamento de biomassa para tal geração vem sendo a opção mais promissora no médio e longo prazos.

Como dito anteriormente, a bioenergia da madeira representa cerca de 10% do fornecimento total de energia primária mundial, porém a maior parte desse consumo destina-se para o uso tradicional (HEINIMÖ, 2009; IEA, 2016; COELHO & GOLDEMBERG, 2015). Contexto que pode ser alterado com medidas para uso mais eficiente desse insumo – uso aperfeiçoado ou moderno da madeira – bem como a produção de madeira para estes fim pode ser ainda maior. A produção pode ser realizada por quase todos os países, notadamente os que possuem áreas agrícolas disponíveis e com vocação florestal. No entanto, devido a uma série de exigências ambientais, sociais e econômicas para o estabelecimento dessa atividade com segurança às gerações futuras, é necessário que haja políticas publicas voltadas aos setores produtores e de comercialização da madeira.

Sob uma perspectiva do Brasil, este estudo mostrou que a produção dos Pellet é uma oportunidade que pode desenvolver o setor florestal como um todo ao mesmo tempo que cria caminhos para maior diversificação da matriz energética brasileira e/ou a geração de divisas na exportação dos produtos para outros países.

A partir da modelagem apresentada, que discute a viabilidade financeira da inclusão da produção de Pellet em industrias já estabelecidas, percebeu-se que o produto gera um círculo virtuoso na produção e, quanto mais se produz o Pellet a partir dos resíduos da produção de produtos principais, mais a atividade do processamento da madeira sólida pode ser rentável. Esse resultado foi obtido a partir de um estudo de caso, que mostrou que o modelo de otimização pode ser um direcionador da decisão dos gestores e também da política pública orientada para a maior utilização dos resíduos de madeira processada no Brasil.

É importante ressaltar que a hipótese testada nesse estudo não foi totalmente confirmada, pois se trata de um caso que trouxe a experiência em uma empresa na região sul do Brasil. Nesse sentido, é importante que mais estudos que abordem as vantagens da implementação da produção dos Pellet e incentivo da utilização de resíduos para produção de energia eficiente sejam realizados, por exemplo, realizar estudo semelhantes em outras regiões do país ou aumentar a amostragem na própria região sul. Dessa forma, seria possível
maior variabilidade dos dados para trazer robustez à modelagem e confirmar a hipótese aqui investigada.

Ainda, só não fica mais evidente que a inserção dos Pellet na indústria de processamento de madeira sólida está a pouco passos de se tornar realidade, porque o país não tem políticas voltadas para produção de energia a partir da madeira. Recentemente, foram suspensos benefícios aos produtores de energia alternativa e os benefícios à exportação são voltados somente para produtos semi-processados e o Pellet não se caracterizaria como imune do imposto.

De forma geral, a experiência de outros países nos mostra que seja pela disposição de matéria prima – casos do Vietnã e Países Bálticos, que também não são grandes consumidores do produtos – ou por políticas que visam tornar a matriz energética mais limpa – toda Europa Central – ou como fonte de renda e divisas, o potencial dos Pellet de madeira já está direcionado no Brasil. Apesar de uma indústria emergente na sua produção, o Brasil já figura como um exportador dessa potencial no principal mercado, o Europeu, mas pode desenvolver mercados até mesmo para países mais próximos, tal como os países da América do Sul.

Vale ressaltar, que mesmo incipiente, as exportações representam o bom desempenho sócio-ambiental na silvicultura e de qualidade na produção dos Pellet, ambos associados aos padrões reconhecidos internacionalmente por meio das certificações. A competitividade do setor fica evidente também pela presença de grandes produtores de celulose no país e a 10ª colocação na produção de madeira serrada de reflorestamento do mundo.

Uma das limitações desse estudo esteve no fato da atribuição de confidencialidade de algumas informações requeridas (apesar do sigilo dos dados da organização), o que dificultou uma amostragem significativa para realização da análise qualitativa.
8. CONSIDERAÇÕES FINAIS

Este estudo teve como proposta apresentar as oportunidades para inserção da indústria de Pellet no segmento de processamento de madeira sólida de reflorestamento, com foco na comercialização nos mercados interno e externo. Além disso, pretendeu-se contribuir com a literatura acerca do Pellet e também trazer reflexões que oportunizem ações e políticas públicas, uma vez que a decisão do empreendedor não está somente na viabilidade técnica e econômica, mas também nas garantias que o mercado apresenta a sua produção. Nesse contexto, o empreendedor, os órgãos de classe e o governo são as chaves para o desenvolvimento da produção e os consequentes ganhos para o país.

Pode-se verificar durante as análises conduzidas nesse estudo que a globalização da produção e comercialização dos Pellet cresce de forma desordenada no mundo, reflexo principalmente da atração dos preços pagos. Dada essa realidade, surge a seguinte questão: esse crescimento poderia ser orientado em escala global, de modo a reduzir as emissões de GEE? Uma possível resposta é que poderiam ser propostos diferentes ferramentais de análise no sentido de compreender melhor as trocas entre os países e ações multilaterais que levariam a melhor destinação da produção, com enfoque na maior eficiência econômica, ambiental e social.

A discussão conduzida sobre as políticas e os fluxos de mercado para o Pellet levam a muitos questionamentos sobre a sustentabilidade da atividade no médio e no longo prazo, principalmente em relação ao preço dos produtos na Europa central (o maior observado no cenário global). Identificou-se na análise de fluxos que a formação de preços nesse mercado se dá não só pelos custos de produção, transporte e a margem do produtor, mas também pelo custo da entrada de tantos outros produtores nessa cadeia. Seja quais forem as políticas implantadas não seriam capazes de conter o valor do Pellet ao longo do tempo. Nesse contexto, o fim de sua expansão estaria na possibilidade de uma outra fonte de energia que se obtivesse de maneira mais eficiente – barata e que não comprometa gerações futuras.

Por fim, a modelagem apresentada considerou dados primários e secundários para sua construção, que foram fundamentais para a argumentar sobre as possibilidades de maior inserção dos Pellet na cadeia de valor do setor florestal Brasileiro. Cabe ressaltar que as limitações encontradas no momento da coleta de dados, como a falta de informações e a indisponibilidade para participação das empresas produtoras do setor, impediram que o modelo pudesse ser testado em termos dos rendimentos (fatores de conversão) em várias unidades de processamento. De qualquer forma, uma aplicação mais apurada do modelo pode ser realizada, respeitando-se a identificação de ajustes validação do constructo.
REFERÊNCIAS

ALAKANGAS, E. European standards for solid biofuels. Fuel specification and classes, multipart standard Case – wood Pellet & chips. VTT. Convenor of the CEN/TC 335 working group 2; 2009

______.BIG DATA do site da ANEEL, 2021. Disponível em: https://app.powerbi.com/view?r=eyJrIjoiZjM4NjM0OWYtN2IwZS00YjViLTIlMjltN2E5MzBkN2ZlMzVklwidiCI6IjQwZDZmOWI4LWVjYTCtNDZmMi05MmQ0LWVhNGU5YzAxNzBlMjIwMjQiC3%3o+2020/380279e7-55cf-4c2f-23ee-6e21acdb5d51?version=1.0 Acesso: 11/09/2021.

Proposta modifica o setor elétrico e prevê portabilidade na conta de luz.

https://www.camara.leg.br/noticias/730909-proposta-modifica-o-setor-eletrico-e-preve-portabilidade-na-conta-de-luz/ - Fonte: Agência Câmara de Notícias

https://nachhaltigwirtschaften.at/resources/iea_pdf/reports/iea_task40_wood_pellet_industry_market.pdf

EHRIG, R.; BEHRENDT, F. Co-firing of imported wood Pellet – An option to efficiently save CO2 emissions in Europe? Energy Policy 59 (2013) 283–300. @2013 Elsevier Ltd. All rights reserved. Wieselburg-Land/Austria, 2013.

_____ **Incentivizing sustainable wood energy in Sub-Saharan Africa.** Roma, 2017b. 12 p.

IBÁ - RELATÓRIO 2017/REPORT 2017. Disponível em:

LUCON, O.; ROMEIRO, V.; FRANSEN, T. Bridging the gap between energy and climate policies in Brazil. World Resources Institute, 92 p. Washington, DC/USA, 2015.

SMITH, J. S.; SAFFERMAN, S. I.; SAFFRON, C. Development and application of a decision support tool for biomass co-firing in existing coal-fired power plants. **Jornal de produção mais limpa**, ISSN: 0959-6526 © 2019 published by Elsevier. This manuscript is made available under the Elsevier user license https://www.elsevier.com/open-access/userlicense/1.0/ Acesso em 07/07/2021

from wood Pellet produced in the south-eastern united states using different softwood feedstocks, GCB Bioenergy, Volume: 9, Issue: 9, Pages: 1406-1422, First published: 29 December 2016, DOI: (10.1111/gcbb.12426)

VIVARELLI, F. Pellet@las Country Report Portugal. 7 p, Florença/Itália, 2009.

ZOLTÁN, L., The structural change of the economy in the context of the bioeconomy - Conceptualization Data curation Methodology Writing & editing. Bioeconomy Journal 1, Elservier, 2021
APÊNDICE

Universidade de São Paulo
Questionário para a indústria de desdobro mecânico e produção de pellets de madeira

Nome do Entrevistado: ________________________________
Nome Fantasia da Empresa: ____________________________ Ano de Instalação: _________________
Razão Social da Empresa: _______________________________
Endereço: ___ Tel: { ___ } __________
Código Postal: __________________________ Município: ________________________________
E-mail __ Homepage ____________________________

1) **Atividade principal** (pode responder mais de uma alternativa):
- serraria
- laminadora/faqueadora
- fábrica de compensado
- fábrica de portas e/ou janelas
- fábrica de pellets
- fábrica de ferros e/ou pisos
- fábrica de móveis
- outras (especificar) ____________________________

A. **DADOS DO PROPRIETÁRIO**

2) Nome do proprietário ________________________________ Qual sua origem (País)? _________________
Escolaridade:
- primário/fundamental 1
- ginásio/fundamental 2
- 2º grau/ensino médio
- superior

B. **ESTRUTURA FÍSICA, PRODUÇÃO E CONSUMO DE MADEIRA**

3) qual é a área ocupada pela área de processamento: Terreno: _________m² Prédios e galpões: _________m²
Pátios: _________m² Caldeira(s): _________m² Estrutura para pellets: _________m²

4) Qual foi o consumo de madeira em tora em 2020? _________
- m³/ano
- m³/mês
- m³/semana
- m³/dia
Método de cubagem:
- geométrico
- outros ____________________________

5) **Produção Madeireira**

<table>
<thead>
<tr>
<th>Unidades</th>
<th>m³/ano</th>
<th>m³/mês</th>
<th>m³/semana</th>
<th>m³/dia</th>
<th>Capacidade máxima atual</th>
<th>Produzido em 2019</th>
<th>Produzido em 2020</th>
<th>Coeficiente conversão (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madeira serrada bruta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madeira serrada aplainada e/ou seca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lâminas e faqueados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produtos aparelhados, especifique:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavacos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pellets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outros produtos, especifique:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6) Sua empresa apresenta dificuldade em produzir e comercializar madeira com menor valor agregado (serragem, cavaco etc)?
- NÃO
- SIM

Caso a resposta seja positiva, quais são essas dificuldades? __

7) taxa de conversão e resíduos gerados

1 m³ de tora = ______ m³ de madeira serrada bruta + ____ m³ de pontas e costaneiras + _____ m³ de serragem (verde)

1 m³ de madeira bruta = ______ m³ de madeira serrada aplainada + _____ m³ de resíduos secos + _____ m³ de serragem

ou

1 m³ de tora = _____ m³ de lâminas torneadas+ ____ m³ de roletes + _____ m³ de serragem/descartes (verde)

1 m³ de tora = _____ m³ de lâminas faqueadas + ____ m³ de sobra de laminação + _____ m³ de serragem/descartes (verde)

ou

1 m³ de tora = _____ m³ de pellets + ____ m³ de perdas (cascas)

Outros produtos e conversão __

8) qual é o destino dos resíduos (considere o ano de 2020 e pode registrar um ou mais destinos)?

Pontas e costanheiras □ queima ____% □ venda ____% □ doação ____% □ __________ ____%

Resíduos Secos □ queima ____% □ venda ____% □ doação ____% □ __________ ____%

9) Quais são as principais características da madeira que definem o seu preço? __

OBSERVAÇÕES: __

ANEXOS

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>900,00</td>
<td>709,71</td>
<td>0,00</td>
<td>0,00</td>
<td>2,20</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.109,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,27</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>759,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,92</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>1.489,71</td>
<td>29.692,02</td>
<td>21.089.902,64</td>
<td>4,98</td>
<td>147.895,87</td>
<td>118.203,85</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,15</td>
<td>52.104,13</td>
<td>41.476,34</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>1.489,71</td>
<td>10.627,78</td>
<td>8.080.181,31</td>
<td>4,90</td>
<td>50.000,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>16.400.746,48</td>
<td>5,25</td>
<td>100.000,00</td>
<td>80.935,76</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,66</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Fn objetivo</td>
<td>46.433.423,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fn objetivo 45.570.830,43

Anexo Bii – Parâmetros e resultados da simulação do cenário A2.
Anexo Biii – Parâmetros e resultados da simulação do cenário A3.

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>1.050,00</td>
<td>670,42</td>
<td>0,00</td>
<td>0,00</td>
<td>2,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.070,42</td>
<td>0,00</td>
<td>0,00</td>
<td>3,42</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>720,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,44</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>1.450,42</td>
<td>37.025,38</td>
<td>27.753.421,86</td>
<td>3,99</td>
<td>147.895,87</td>
<td>110.870,50</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.250,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,13</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>1.450,42</td>
<td>13.252,64</td>
<td>10.596.523,91</td>
<td>3,93</td>
<td>52.104,13</td>
<td>38.851,49</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.250,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>1.450,42</td>
<td>23.772,74</td>
<td>21.385.440,75</td>
<td>4,21</td>
<td>100.000,00</td>
<td>76.227,26</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.250,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,54</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fn objetivo: 59.735.386,51

Anexo Biv – Parâmetros e resultados da simulação do cenário B1.

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>900,00</td>
<td>709,71</td>
<td>0,00</td>
<td>0,00</td>
<td>2,20</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.109,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,27</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>759,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,92</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>1.489,71</td>
<td>29.692,02</td>
<td>21.089.902,64</td>
<td>4,98</td>
<td>147.895,87</td>
<td>118.203,85</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,15</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>1.489,71</td>
<td>10.627,78</td>
<td>8.080.181,31</td>
<td>4,90</td>
<td>52.104,13</td>
<td>41.476,34</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>16.400.746,48</td>
<td>5,25</td>
<td>100.000,00</td>
<td>80.935,76</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,66</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>144.369,57</td>
<td>17.324.348,68</td>
<td>1,00</td>
<td>144.369,57</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>96.246,38</td>
<td>9.624.638,16</td>
<td>1,00</td>
<td>96.246,38</td>
<td></td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fn objetivo: 72.519.817,27

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>1.050,00</td>
<td>709,71</td>
<td>0,00</td>
<td>0,00</td>
<td>2,20</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.109,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,27</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>759,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,92</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>1.489,71</td>
<td>29.692,02</td>
<td>21.089.902,64</td>
<td>4,98</td>
<td>147.895,87</td>
<td>118.203,85</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,15</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>1.489,71</td>
<td>10.627,78</td>
<td>8.080.181,31</td>
<td>4,90</td>
<td>52.104,13</td>
<td>41.476,34</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>16.400.746,48</td>
<td>5,25</td>
<td>100.000,00</td>
<td>80.935,76</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,66</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>144.369,57</td>
<td>17.324.348,68</td>
<td>1,00</td>
<td>144.369,57</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>96.246,38</td>
<td>9.624.638,16</td>
<td>1,00</td>
<td>96.246,38</td>
<td></td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>900,00</td>
<td>709,71</td>
<td>0,00</td>
<td>0,00</td>
<td>2,20</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.109,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,27</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>759,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,92</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>1.489,71</td>
<td>29.692,02</td>
<td>21.089.902,64</td>
<td>4,98</td>
<td>147.895,87</td>
<td>118.203,85</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,15</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>1.489,71</td>
<td>10.627,78</td>
<td>8.080.181,31</td>
<td>4,90</td>
<td>52.104,13</td>
<td>41.476,34</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>16.400.746,48</td>
<td>5,25</td>
<td>100.000,00</td>
<td>80.935,76</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,66</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>144.369,57</td>
<td>17.324.348,68</td>
<td>1,00</td>
<td>144.369,57</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>96.246,38</td>
<td>9.624.638,16</td>
<td>1,00</td>
<td>96.246,38</td>
<td></td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>24.000,00</td>
<td>8.513.280,00</td>
<td>1,00</td>
<td>24.000,00</td>
<td></td>
</tr>
</tbody>
</table>

Fn objetivo 78.633.097,27

Anexo Bvi – Parâmetros e resultados da simulação do cenário C1.
Anexo Bvii – Parâmetros e resultados da simulação do cenário C4.

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>1.150,00</td>
<td>709,71</td>
<td>47.777,27</td>
<td>21.035.783,91</td>
<td>2,20</td>
<td>105.041,08</td>
<td>57.263,81</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.109,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,27</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>759,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,92</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>13.541.110,49</td>
<td>4,98</td>
<td>94.958,92</td>
<td>75.894,68</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,15</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>1.489,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,90</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>16.400.746,48</td>
<td>5,25</td>
<td>100.000,00</td>
<td>80.935,76</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,66</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>57.263,81</td>
<td>4.008.466,51</td>
<td>1,00</td>
<td>57.263,81</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>94.098,26</td>
<td>11.291.791,69</td>
<td>1,00</td>
<td>94.098,26</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>38.732,18</td>
<td>3.873.217,61</td>
<td>1,00</td>
<td>38.732,18</td>
<td></td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>24.000,00</td>
<td>8.513.280,00</td>
<td>1,00</td>
<td>24.000,00</td>
<td></td>
</tr>
</tbody>
</table>

Fn objetivo: 78.664.396,69

Anexo Bviii – Parâmetros e resultados da simulação do cenário C5.

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC</td>
<td>1.150,00</td>
<td>709,71</td>
<td>47.777,27</td>
<td>21.035.783,91</td>
<td>2,20</td>
<td>105.041,08</td>
<td>57.263,81</td>
</tr>
<tr>
<td>MF</td>
<td>1.400,00</td>
<td>1.109,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,27</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>MCS</td>
<td>1.200,00</td>
<td>759,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,92</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>VL</td>
<td>2.200,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>13.541.110,49</td>
<td>4,98</td>
<td>94.958,92</td>
<td>75.894,68</td>
</tr>
<tr>
<td>VP</td>
<td>1.700,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,15</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PL</td>
<td>2.250,00</td>
<td>1.489,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,90</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PP</td>
<td>1.800,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PPL</td>
<td>2.350,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>16.400.746,48</td>
<td>5,25</td>
<td>100.000,00</td>
<td>80.935,76</td>
</tr>
<tr>
<td>PPP</td>
<td>1.850,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,66</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>57.263,81</td>
<td>4.008.466,51</td>
<td>1,00</td>
<td>57.263,81</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>94.098,26</td>
<td>11.291.791,69</td>
<td>1,00</td>
<td>94.098,26</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>38.732,18</td>
<td>3.873.217,61</td>
<td>1,00</td>
<td>38.732,18</td>
<td></td>
</tr>
<tr>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>24.000,00</td>
<td>8.513.280,00</td>
<td>1,00</td>
<td>24.000,00</td>
<td></td>
</tr>
</tbody>
</table>

Fn objetivo: 84.777.676,69
<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPA (t)</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
<td>72.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>1.150,00</td>
<td>709,71</td>
<td>34.565,22</td>
<td>15.218.670,29</td>
<td>2,20</td>
<td>75.993,63</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>1.400,00</td>
<td>1.109,71</td>
<td>0,00</td>
<td>0,00</td>
<td>4,27</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>MCS</td>
<td>1.200,00</td>
<td>759,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,92</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>2.200,00</td>
<td>1.489,71</td>
<td>22.003,19</td>
<td>15.628.609,67</td>
<td>4,98</td>
<td>109.597,80</td>
</tr>
<tr>
<td></td>
<td>VP</td>
<td>1.700,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,15</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>2.250,00</td>
<td>1.489,71</td>
<td>2.938,95</td>
<td>2.234.446,45</td>
<td>4,90</td>
<td>14.408,57</td>
</tr>
<tr>
<td></td>
<td>PP</td>
<td>1.800,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,05</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>PPL</td>
<td>2.350,00</td>
<td>1.489,71</td>
<td>19.064,24</td>
<td>16.400.746,48</td>
<td>5,25</td>
<td>100.000,00</td>
</tr>
<tr>
<td></td>
<td>PPP</td>
<td>1.850,00</td>
<td>1.289,71</td>
<td>0,00</td>
<td>0,00</td>
<td>5,66</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>41.428,41</td>
<td>2.899.988,44</td>
<td>1,00</td>
<td>41.428,41</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>108.000,00</td>
<td>12.960.000,00</td>
<td>1,00</td>
<td>108.000,00</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>72.000,00</td>
<td>25.539.840,00</td>
<td>1,00</td>
<td>72.000,00</td>
</tr>
</tbody>
</table>

Fn objetivo 90.882.301,33

Anexo Bix – Parâmetros e resultados da simulação do cenário C6.

<table>
<thead>
<tr>
<th>Prod. ou subprod.</th>
<th>Preço (R$/t)</th>
<th>Custo variável (R$/t)</th>
<th>Qtd comerc. (t)</th>
<th>Mg de contrib. (R$)</th>
<th>Coef. Técnico</th>
<th>Recurso demandado (t)</th>
<th>Resíduo gerado (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPA (t)</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
<td>24.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBC</td>
<td>900,00</td>
<td>670,42</td>
<td>0,00</td>
<td>0,00</td>
<td>2,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td>1.400,00</td>
<td>1.070,42</td>
<td>0,00</td>
<td>0,00</td>
<td>3,42</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>MCS</td>
<td>1.200,00</td>
<td>720,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,44</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>VL</td>
<td>2.200,00</td>
<td>1.450,42</td>
<td>37.025,38</td>
<td>27.753.421,86</td>
<td>3,99</td>
<td>147.895,87</td>
</tr>
<tr>
<td></td>
<td>VP</td>
<td>1.700,00</td>
<td>1.250,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,13</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>2.250,00</td>
<td>1.450,42</td>
<td>13.252,64</td>
<td>10.596.523,91</td>
<td>3,93</td>
<td>52.104,13</td>
</tr>
<tr>
<td></td>
<td>PP</td>
<td>1.800,00</td>
<td>1.250,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,05</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>PPL</td>
<td>2.350,00</td>
<td>1.450,42</td>
<td>23.772,74</td>
<td>21.385.440,75</td>
<td>4,21</td>
<td>100.000,00</td>
</tr>
<tr>
<td></td>
<td>PPP</td>
<td>1.850,00</td>
<td>1.250,42</td>
<td>0,00</td>
<td>0,00</td>
<td>4,54</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>RV</td>
<td>70,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>120,00</td>
<td>0,00</td>
<td>135.569,55</td>
<td>16.268.345,47</td>
<td>1,00</td>
<td>135.569,55</td>
</tr>
<tr>
<td></td>
<td>ML</td>
<td>100,00</td>
<td>0,00</td>
<td>66.379,70</td>
<td>6.637.969,70</td>
<td>1,00</td>
<td>66.379,70</td>
</tr>
<tr>
<td></td>
<td>PLT</td>
<td>500,00</td>
<td>145,28</td>
<td>24.000,00</td>
<td>8.513.280,00</td>
<td>1,00</td>
<td>24.000,00</td>
</tr>
</tbody>
</table>

Fn objetivo 91.154.981,69

Anexo Bx – Parâmetros e resultados da simulação do cenário D1