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RESUMO

Analise da interacio ferro e nitrogénio no acimulo de lipidios em microalgas

O aumento da populagdo mundial, a emissdo de gases de efeito estufa e a demanda global de
energia tem levado a busca por uma fonte de energia sustentavel e renovavel. As microalgas tém
sido reconhecidas como uma fonte prospectiva de produgdo de biocombustiveis devido a capacidade
de algumas espécies de produzir grande quantidade de lipidios neutros, como triacilgliceréis (TAGs),
sob condigdes de estresse nutricional, de luz, pH, temperatura e salinidade ou estresses bidticos. Um
dos estresses nutricionais mais conhecido e que tem chamado atengao é a privagao de nitrogénio,
qgue é conhecido por desencadear o acumulo de TAGs dentro da célula da microalga. No entanto,
essa condicdo de estresse afeta negativamente o crescimento celular e, consequentemente, diminui
a aplicabilidade das microalgas como matéria-prima de bioenergia e lipidios para fins
biotecnoldgicos, como a produgdo de biocombustiveis. A suplementagdao de nutrientes na cultura é
uma abordagem que tem sido utilizada para melhorar o crescimento e a biomassa das células de
microalgas. Como foi demonstrado, com a suplementa¢do de ferro o crescimento e o conteudo
lipidico foram aumentados na cultura de microalgas. No entanto, ainda ndo ha uma compreensao
abrangente do mecanismo dessa resposta celular e da fun¢do do ferro no aumento do acumulo de
TAG e do mecanismo de interagdo ferro e nitrogénio que parece levar a melhoria do crescimento e
ao aumento do acumulo de lipidios. Recentemente, a otimizagdao da condi¢do da cultura para melhor
crescimento e produgao de TAG tem sido um assunto muito importante, pois as microalgas se
tornaram uma fonte sustentdvel e promissora. Portanto, para investigar as respostas celulares das
microalgas a interagdo da suplementagdo de ferro e privagdo de nitrogénio e explorar o efeito da
interagdo desses dois nutrientes no acumulo e crescimento de lipidios em Chlamydomonas
reinhardtii, um projeto rotativo composto central (CCRD) foi realizado. A protedmica baseada em
espectrometria de massa tornou-se parte integrante da biologia de sistemas. Neste estudo, a analise
protedbmica quantitativa shotgun em séries temporais, realizada em diferentes condigdes
experimentais com alteragdo da concentragdo de ferro e nitrogénio, revelou a identidade de
proteinas que podem participar da interagdo nitrogénio e ferro na modulagao do crescimento celular
e no desempenho do acimulo de TAGs na espécie modelo C .reinhardtii. Os resultados ilustram que
a abundancia de proteinas envolvidas na fotossintese, processos de oxidagdao-redugao e biossintese
de poliaminas foi significativamente modulada pela interagdo entre ferro e nitrogénio, mantendo o
desempenho de crescimento das células e os niveis de lipidios elevados. Embora a manipulagao de
micronutrientes e macronutrientes no meio de cultura cause estresse e consequentemente aumente
a producdo de espécies reativas de oxigénio (ROS), parece que essa interagdo dimunui os niveis de
ROS dentro da célula, resultando em um equilibrio entre crescimento e acimulo de lipidios.

Palavras-chave: Biologia de sistemas, Triacilglicerol, Bioenergia, Biocombustivel, Espécies reativas de
oxigénio, CCRD



ABSTRACT

Analysis of iron and nitrogen interplay in lipids accumulation in microalgae

Increasing the world population, emission of greenhouse gasses and global energy demand has
led to the quest for a sustainable and renewable source of energy. Microalgae have been identified
as a prospective source of biofuel production due to a large number of microalgae species that boast
the ability to produce a large amount of neutral lipids, such as triacylglycerols (TAGs), under stress
such as light, pH, temperature, salt, and nutrient stress or biotic stresses. One of the most
conspicuous nutrients stresses that have been accentuated is nitrogen deprivation which is known to
trigger TAGs accumulation inside the microalgae cell. On the downside, this stress condition impacts
the cell growth and consequently decreases microalgae’s applicability as a bioenergy and lipids
feedstock for biotechnological purposes such as biofuel production. Supplementing the culture with
nutrients is an approach that has been utilized to improve the growth and biomass of microalgae
cells. As it has been shown, with iron supplementation the growth and lipid content were enhanced
in microalgae culture. However, there is still no comprehensive understanding of the in-depth
mechanism of this cellular response and the function of iron in enhancing the TAG accumulation and
the iron and nitrogen interaction mechanism which seems to lead toward improving growth and
increasing lipid accumulation. Recently, optimizing the culture condition for better growth and TAG
production has been a very important subject as microalgae became a promising sustainable source.
Therefore, to investigate the cellular responses of microalgae to the interplay of iron
supplementation and nitrogen deprivation and to explore the interaction effect of these two
nutrients on lipid accumulation and growth on Chlamydomonas reinhardtii, a Central Composite
Rotatable Design (CCRD) was carried out. Mass spectrometry-based proteomics has become an
integral part of the systems biology. In this study, in the model species microalgae C. reinhardtii,
mass spectrometry-based Label-free time-resolved quantitative shotgun proteomics analysis of
multiple experimental conditions showed the identity of proteins that may involve in nitrogen and
iron interaction in the modulation of cell growth and TAGs accumulation. The results illustrate that
the abundance of proteins involved in photosynthesis, oxidation-reduction processes, and polyamine
biosynthesis was significantly modulated by the interplay between iron and nitrogen while
maintaining the cells' growth performance and lipid levels high. Although manipulating the
micronutrients and macronutrients in the culture medium would cause stress and consequently
increase the reactive oxygen species (ROS) production, it seems that this interaction could decrease
the ROS levels inside the cell which results in an equilibrium between growth and lipid accumulation.

Keywords: Systems biology, Triacylglycerol, Bioenergy, Biofuel, Reactive oxygen species, CCRD
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1. INTRODUCTION

1.1. The microalgae C. reinhardtii and its potentials for using in biofuel production

Expanding the economy and the fast growth of the population make it difficult to
rely on fossil fuels as a source of energy. Increasing greenhouse gas emissions, carbon
dioxide concentration, and demand for fossil fuel usage cause global warming and climate
change. They are all compelling reasons for fostering the development of a new source of
energy that is more environmentally friendly and sustainable. Biofuels are viable alternatives
to fossil fuels in terms of renewability and sustainability. Considerable progress has been
made over recent decades in biofuel production, which made the picture of the near future of
using this source of energy more vivid. There are new generations of biofuels (second and
third) that do not have the issue for which the previous generation was struggling. The new
generations, namely lignocellulosics, microalgae, cyanobacterial and other microbes-based,
do not need arable lands to be produced, which is a definite advantage (Chisti, 2007,
Rodionova, et al., 2017).

Among these above-mentioned options, microalgae have several benefits over land
crops, such as year-round growth and harvesting capacity, substantially higher biomass per
area yield, maximum lipid content, and resistance to pests and pathogens that commonly
affect the crop plants. Some microalgae have 80% oil (w/w), while the oil contents of 20-50%
are commonly reported in other land plant species (Spolaore, et al., 2006; Chisti, 2007).
However, how cells accumulate such amount of lipids is not completely understood. Diverse
algae species have been suggested as a potential renewable biofuel feedstock because of their
ability to accumulate triacylglycerides (TAGs) in the form of ‘lipid bodies’ under stress
conditions (Wijffels and Barbosa, 2010). Among the many different microalgae species, the
unicellular microalgae C. reinhardtii serves as a model system for studying algal physiology,
including aspects of photosynthesis (Eberhard, et al., 2008), micronutrient deficiency (Hu, et
al., 2008; Kropat, et al., 2011; Merchant, et al., 2012), metal accumulation (Piccapietra, et al.,
2012), production of biofuel (Quinn and Davis, 2015; Rodionova, et al., 2017) and the
molecular physiology of lipid accumulation (Merchant, et al., 2012). The genome of
Chlamydomonas has been completely sequenced (Merchant, et al., 2007), and it has a
developed genetic system, which makes Chlamydomonas easy to control in metabolic terms
using gene overexpression and knock-down (Merchant, et al., 2007; Wijffels and Barbosa,

2010).
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Much of the knowledge we have today about the fatty acid biosynthesis pathways
and TAGs and the storage of these in microalgae cells is based mainly on genomic
annotations and orthologous genes of enzymes with known function in animals, yeasts and
especially in seedlings (Fan, et al., 2011; Patel, et al., 2017). However, studies carried out in
the last decade, mainly with the microalgae C. reinhardtii, showed evidence that the synthesis
of fatty acids and TAGs in these organisms presents several distinct characteristics of
terrestrial plants (Boyle, et al., 2012; Zienkiewicz, et al., 2016). One difference is that,
because it is unicellular, the biosynthesis of TAGs in microalgae occurs in cells that are
photosynthetic, unlike plants where lipid biosynthesis occurs in greater abundance in
specialized cells such as fruits and seeds (Zienkiewicz, et al., 2016). This divergence indicates
that the regulation of the carbon partition within a single cell probably occurs differently from

what is currently known in terrestrial plants (Hu, et al., 2008; Zienkiewicz, et al., 2016).

1.2.  Induction of Triacylglycerol in the microalgae cells using macronutrients and

micronutrients

Several conditions of nutrient-stress may strongly induce Triacylglycerol (TAG)
production in microalgae (Bolling and Fiehn, 2005), including sulfur-stress (Fouchard, et al.,
2005), phosphorus-stress (Moseley, et al., 2009), nitrogen-stress (Longworth, et al., 2012;
Park, et al., 2015) and micronutrient deficiencies (Allen, et al., 2008; Haas, et al., 2009). The
potential for interaction and functional crosstalk between metals and other macronutrients
increases the complexity of nutritional studies (Merchant, 2010). Few detailed studies have
systematically examined the combined effects of iron and nitrogen on microalgae molecular
physiology and none of them deeply investigated the association of these responses to the
lipid accumulation in C. reinhardtii. Accumulation of lipid increased in a merged effect of
nitrogen deprivation, high concentration of iron and high light intensity in four strains of
Botryococcus spp (Yeesang and Cheirsilp, 2011). Also, under nitrogen-deficient condition,
the amount of TAG increased in Neochloris oleoabundans with an increase in iron
concentrations (Sun, et al., 2014). To better understand the phenomenon in microalgae we
studied the interplay of the cellular responses under varying iron and nitrogen availability; the
former one, affects the physiology of the cells by inducing increased biosynthesis of TAGs
under nitrogen deprivation.

The iron possesses a crucial role as micronutrient in microalgae; therefore, these

organisms have multiple pathways to assimilate it under various chemical forms (Hernandez-
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Torres, et al., 2016). Iron is used as a cofactor in numerous biochemical pathways and
especially its ability to donate and accept electrons makes iron important in enzymes that
catalyze redox reactions.

Since iron can also react with oxygen to generate cytotoxic agents, its accessibility
within the cell must be under tight homeostatic control, which requires complex regulatory
mechanisms (Finney and O'Halloran, 2003). Moreover, iron is a component of many proteins
involved in other vital processes such as fatty acid metabolism, and amino acid biosynthesis
(Glaesener, et al., 2013). In microalgae, it has not been yet well studied the effect of different
concentrations of iron on lipid quantity and growth, also the biofuel production quality
(Sivaramakrishnan and Incharoensakdi, 2017).

It has been shown that the iron concentration in culture medium had an impact on
cell growth and lipid content of algae such as Dunaliella viridis (Menzyanova, et al., 2009).
By decreasing the concentration of iron inside the culture, the algae cells undergo iron
depletion condition; therefore, the pathways of iron uptake upregulate. In this situation, the
abundance of the ferroxidase boosts that employs for iron limitation marker (Glaesener, et al.,
2013).

When there is iron deprivation in the culture, the separation of the complexes of
proteins related to chlorophyll emerges, and the PSI and PSII would consequently break
down. (Moseley, et al 2002; Urzica, et al., 2012; Glaesener, et al., 2013). It has been shown
that the iron deficiency is one of the main factors limiting marine algal biomass productivity
and under certain culture conditions result in higher quantities of lipids (Liu, et al., 2008). In
the microalgae C. reinhardtii, iron deficiency leads to accumulating TAG in the cells (Kropat,
et al., 2011). In Chlorella pyrenoidosa the iron limitation caused lipid accumulation inside the
microalgae cells (Fan, et al., 2014).

On the other hand, high iron concentration could induce TAG accumulation in
microalgae too. Compared to iron-replete condition, in the iron-excess, the cells will over-
accumulate iron (Long and Merchant, 2008; Terauchi, et al., 2010). It seems that since
naturally, there is no excess iron, Chlamydomonas has not developed any pathways to send
out the excess iron, based on the literature (Glaesener, et al., 2013). Iron stress may stimulate
more lipid synthesis to counteract the damaging effect of reactive oxygen species. An excess
of metal, including iron, can result in the formation of reactive oxygen species such as
hydrogen peroxide and other oxidant compounds, which may interact with lipids (Miazek, et
al., 2015). It was observed that elevated quantities of iron in the media could stimulate the

amount of carbohydrate and TAG in N. oleoabundans HK-129 cells, which means that there
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happened some upregulation in the pathways related to these two compounds (Sun, et al.,
2014). The lipid content of three microalgae, Chlamydomonas sp., Chlorella sp. and
Scenedesmus sp. was increased in response to increased environmental iron concentration
(Sivaramakrishnan and Incharoensakdi, 2017). There are other reports that indicated that high
iron level is conducive to lipid accumulation in Chlamydomonas, Chlorella and Botryococcus
(Liu, et al., 2008; Yeesang and Cheirsilp, 2011). One of the compelling reasons to be
mentioned for increasing the lipid quantity inside the cells when the cells are exposed to very
high levels of iron is, for example, that in the microalgae Nannochloropis oculata elevated
levels of trace elements drive the cells to produce proteins that are related to stress response
and change the metabolic pathways of constructing starch to lipid (Dou, et al., 2013). High
TAG accumulation is also observed in several species of microalgae under nitrogen
deprivation (Kropat, et al., 2011; Wu and Miao, 2014). However, in microalgae cells, nitrogen
limitation can generate cell inactivity (Liu and Benning, 2013; Merchant, et al., 2012),
followed by chloroplast breakdown, increasing TAG, and reassembling of the structures of
the membrane, eventually producing lipid bodies in the cytosol and chloroplast (Fan, et al.,
2011; Hu, et al., 2008). It has been argued that enhancing lipid inside the microalgae cells is a
multifactorial response, as there is a highly complicated connection among increasing lipid,
deficiency of nitrogen, and stress inside the cell (Johnson and Alric, 2013). Therefore, it is
still necessary to carry out studies that contemplate and seek to identify and explain the
complexity of these metabolic and regulatory pathways related to lipid biosynthesis.

Such studies may encourage strategies to achieve higher productivity rates through
metabolic engineering (De Bhowmick, et al., 2015).

The cellular responses to interaction of iron and nitrogen and their effects on the
gene expression profiling of transcription factor and transcriptional regulator genes, total
proteome and regulatory proteome and metabolome analysis of the cells, have not been
broadly investigated despite the fact that they have vital role in accumulation of lipids in
microalgae cells. Therefore, an investigation of the interplay between both elements may
reveal possible crosstalk that affects and regulates lipids accumulation and biomass

production in microalgae.
1.3.  Experimental design

A systematic approach for experiments to be planned and the data be analyzed to
optimize the condition of experiments therefore have an objective conclusion is experimental

design. Choosing the best experimental design for an experiment increase the useful
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information which will be obtained and may decrease the number of experiments (Poole and
Poole, 2012). It depends on the number of variables and the objectives of the experiment. In
general, experimental design has some advantages such as, the variables can be analyzed at
the same time not individually in separated experiments, decreasing the number of repeats and
experiments and enhancing the quality of information, optimizing more than one response
simultaneously, calculating and analyzing the experimental errors, using the experimental
design doesn’t need advance knowledge in statistics (Rodrigues and lemma, 2014).

Box and Wilson in 1951 developed CCRD which is one of the most suitable
experimental designs for discovering and optimizing the most reasonable outcome, also an
essential part of response surface mythology (RSM) (Beg, et al., 2019). Therefore, in this
study we used a CCRD experimental design which we had a 2* factorial design, including

four trials under the axial conditions and three repeats at the central point.

1.4. Systems biology and omics analyses

What is system biology? There is no definitive answer to this question, as it is a rare
occurrence that two scientists have the same opinion about this. One of the definitions in
summary describes systems biology as an interdisciplinary study uses biology, engineering,
bioinformatics, computer science and others which use a holism and give us a whole image
look and not only separated parts. Having a better biological whole system, we need a tool
and approach which is “OMICS” (Karahalil, 2016).

A large number of studies have applied Omics approaches to perform systemic
characterization of cellular responses of C. reinhardtii under different nutritional conditions
through the study of its transcriptome (Boyle, et al., 2012; Kropat, et al., 2011; Miller, et al.,
2010), proteome and metabolome (Hsieh, et al., 2013; Lee, et al., 2012; Mettler, et al., 2014;
Schmollinger, et al., 2014).

The study of proteins in a cell and their interaction is called Proteomics (Cho, 2007).
It contains a wide range of technologies which establish the quantity and identity of the
proteins that expressed inside the cell. It is almost impossible to study omics on microalgae
without proteomics approach, as it is a technique for comprehending biological system
complexity. With proteomics approach a large number of proteins would be identified in a

sample, which gives us the opportunity of finding the proteins involved in lipid production
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directly and indirectly which enable us to manipulate those proteins for enhancing lipid

accumulation.
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6. CONCLUSION

Under nutrient stress, C. reinhardtii cells accumulate Triacylglycerols (TAGs) while
reducing their growth rate, which results in low biomass production. The findings of this
study have broadened the horizons of knowledge about nutrient stress and enhancement of
biomass and TAGs.

We could obtain results which indicate under nitrogen deprivation, higher
concentrations of iron can improve the growth of C. reinhardtii cells while increase the lipid
accumulation inside the cells. It was also observed that in the same concentrations of nitrogen,
increasing the iron quantity makes a big difference between the cultures and changes the
maximum growth rate and doubling time of the culture. Comparing extreme high and extreme
low concentrations of iron in equal nitrogen quantity (low nitrogen concentration), revealed
that lipid bodies formed inside the cells with extreme high concentrations of iron. In this
study, we could optimize the C. reinhardtii cells culture under stress condition to obtain the
higher lipid and good cell production. We showed that, the interplay effect of limited
concentration of nitrogen and high iron amount result in an optimum condition for C.
reinhardtii and may be applicable for other microalgae cultures.

The results of this study and especially, the proteomics data suggest that iron
supplementation of cells under nitrogen depletion may protect, at least partially, the
photosynthetic machinery of C. reinhardtii cells, avoiding substantial reduction of the
abundance of the PSI and PSII proteins, even with reduction of the levels of chlorophyll
biosynthesis. The proteomics evidence indicate that the combination of high iron and low
nitrogen concentration may induce the activation of mechanisms related to oxidative-stress
that may be protecting the cells from the increase of oxidative-stress, typically observed
during nutrient deprivation. Proteins related to redox homeostasis may have a stronger
influence in the redox balance of mechanisms that take place in the chloroplast or
mechanisms that affect the expression of chloroplast nuclear-encoded genes. It is highly likely
that some proteins related to oxidative stress triggers iron and nitrogen optimized
concentration, may enhance the biomass productivity and the lipid accumulation inside the C.
reinhardltii cells at the same time. In this study, detecting the upregulation of some antioxidant
proteins such as GPX which reduces the ROS and increases the lipid production inside the

cell simultaneously, would be the proof of this assumption.
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