• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.104.2021.tde-31032021-123649
Documento
Autor
Nombre completo
Gabriela Massoni
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2021
Director
Tribunal
Stern, Rafael Bassi (Presidente)
Cerqueira, Andressa
Prates, Marcos Oliveira
Título en portugués
Análise de textos por meio de processos estocásticos na representação word2vec
Palabras clave en portugués
Modelos de predição
Processamento de linguagem natural
Processos estocásticos
Representação vetorial de palavras
Resumen en portugués
Dentro do campo de Processamento de Linguagem Natural (NLP), o modelo word2vec vêm sendo bastante explorado no campo da representação vetorial de palavras. Ele é uma rede neural que se baseia na hipótese de que palavras semelhantes tem contextos semelhantes. Na literatura em geral, o texto é representado pelo vetor de médias das representações das suas palavras, que, por sua vez, é utilizado como variável explicativa em modelos preditivos. Um alternativa é, além da médias, utilizar outras medidas, como desvio-padrão e medidas de posição. Porém, o uso destas medidas supõe que a ordem das palavras não importa. Assim, nesta dissertação exploramos o uso de processos estocásticos, em particular, Modelos de Série Temporal e Modelos Ocultos de Markov (HMM), para incorporar a ordem cronológica das palavras na construção das variáveis explicativas a partir da representação vetorial dada pelo word2vec. O impacto desta abordagem é medido com a qualidade dos modelos preditivos aplicados à dados reais e comparado às abordagens usuais. Para os dados analisados, as abordagens propostas tiveram um resultado superior ou equivalente às abordagens usuais na maioria dos casos.
Título en inglés
Text mining with stochastic process in word2vec representation
Palabras clave en inglés
Natural language processing
Prediction models
Stochastic process
Word vector representation
Resumen en inglés
Within the field of Natural Language Processing (NLP), the word2vec model has been extensively explored in the field of vector representation of words. It is a neural network that is based on the hypothesis that similar words have similar contexts. In the literature in general, the text is represented by the mean vector of the representations of its words, which, in turn, is used as an explanatory variable in predictive models. An alternative is, in addition to averages, to use other measures, such as standard deviation and position measures. However, the use of these measures assumes the order of the words does not matter. Thus, in this dissertation we explore the use of stochastic processes, in particular, Time Series Models and Hidden Markov Models (HMM), to incorporate the chronological order of words in the construction of explanatory variables from the vector representation given by word2vec. The impact of this approach is measured with the quality of the predictive models of real data and compared to the usual ones.For the analysed data, the proposed approaches have a result that is superior to or equivalent to the usual approaches in most cases.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-03-31
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.