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RESUMO

REIS, V. C. Regiões preditivas flexíveis, eficientes e livres-de-suposição. 2023. 44
p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação
em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

Frequentemente, prever uma variável alvo (resposta) é objeto de interesse de investigações e
estudos. Nesse cenário, é comum existirem variáveis mais acessíveis (covariáveis) que podem
ajudar no processo de previsão. Métodos de regressão e classificação surgem então com o
objetivo de usar as associações estatísticas entre todas as informações disponíveis para
modelar a variável de interesse. Há um grande foco, durante tal modelagem, em estimar
regiões que descrevam a flutuação da resposta, possibilitando, por exemplo, quantificar a
incerteza de estimativas pontuais.

Conformal prediction é uma classe de métodos derivada de Vovk, Gammerman and Shafer
(2005) que busca fornecer regiões com formas gerais e garantia de alta probabilidade,
assumindo, basicamente, apenas permutabilidade das observações, suposição mais fraca
do que dados independentes e identicamente distribuídos, o que permite seu uso extensivo.
Novas metodologias têm sido desenvolvidas para aprimorar as propriedades teóricas dessa
classe, bem como a aplicabilidade das ideias originais do ponto de vista prático de execução
e custo computacional.

Este trabalho objetivou enriquecer a classe de Conformal prediction com foco em problemas
de regressão, propondo uma nova abordagem que reúne um melhor aproveitamento dos
dados com uma maior generalidade no formato das regiões, em uma perspectiva de custo
computacional mais eficiente.

Resultados competitivos foram encontrados ao comparar o método proposto com trabalhos
anteriores via estudos de simulação.

Palavras-chave: Regressão, conformal prediction methods, regiões, eficiência, custo de
execução.





ABSTRACT

REIS, V. C. Small and time-efficient distribution-free predictive regions. 2023. 44
p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação
em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2023.

Predicting a target variable (response) is often the main objective of many studies and
investigations. In such scenarios, there are usually other variables, known as covariates,
that are more readily available and can assist in the prediction process. Regression and
classification methods aim to utilize the statistical associations between all available
information to model the variable of interest. During such modeling, there is a significant
emphasis on estimating regions that describe the fluctuations of the response, allowing for
the quantification of the uncertainty of point estimates.

Conformal prediction methods (VOVK; GAMMERMAN; SHAFER, 2005) are a class of
methods that aim to provide regions with general shapes and high probability guarantees,
assuming only exchangeability, which is a weaker assumption than independent and
identically distributed data. This allows for extensive use in various applications. New
methodologies have been developed to improve the theoretical properties and applicability
of the original ideas, with a practical perspective on execution and computational cost.

Motivated by this context, this work aims to enrich the class of conformal prediction
methods, with a particular focus on regression problems and proposes a new method
that better utilizes available information, provides greater generality in the format of the
regions, and is more efficient in terms of computational cost.

The proposed method was compared with previous works using simulation studies, and it
achieved competitive results.

Keywords: Regression, conformal prediction methods, regions, efficiency, cost of execu-
tion.
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CHAPTER

1
INTRODUCTION

The goal of many statistics and machine learning problems is to predict a response
variable Y . In this scenario, it is common to have more accessible variables (covariates xxx)
that can help in the prediction process.

Regression and classification methods arise with an interest in using statistical
associations between all the information available to model the variable of interest. There
is a strong focus, in the modeling, on estimating regions R(xxx) that describe the fluctuation
of the response, enabling to quantify the uncertainty of point estimates. Many methods
were created with this goal, for example, confidence intervals in generalized linear models
(NETER et al., 1996), but the probabilistic guaranties of the methods depend of strong
assumptions, such as parametric distributions, shape of regression function, and even in
favorable situations intervals may not be the best type of region to get information.

Conformal prediction methods is a class of methods derived from Vovk, Gammerman
and Shafer (2005) that seeks to provide regions with general shapes and guarantee of
high probability of coverage, assuming, basically, only exchangeability, which is a weaker
assumption than independent and identically distributed data, allowing its extensive use.
New methodologies have been developed to improve the theoretical properties as well as
the applicability of the original ideas from the practical point of view of execution and
computational cost.

Two particular strategies presented in Lei et al. (2018) and Barber et al. (2021)
have guided other conformal methods, but while the first in general provides larger regions
as consequence of splitting the data into two sets, the case of Split Conformal, the second,
Jackknife+, is still computationally expensive depending the method used to estimate the
regression, for example.

The work developed by Gupta, Kuchibhotla and Ramdas (2022) establishes an
intermediate view balancing the efficiency of using information with the cost of execution,
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using bagging. But, unfortunately, this method only provides regions of interval type,
unfavorable, for example, in multimodality situations.

The work developed by Izbicki, Shimizu and Stern (2022) makes use of the Split
Conformal, presenting deficiencies in the use of available data, but on the other hand, it
displays advances in terms of the generality and quality of the regions with solid findings
that elucidated propitious conditions and strategies to reach optimal results in terms of
size and probabilistic properties.

This work, motivated by the previous context, aims to enrich the class of conformal
prediction methods exploring aspects of the proposals of Gupta, Kuchibhotla and Ramdas
(2022) and Izbicki, Shimizu and Stern (2022), proposing a new one that, in short, brings
together a better use of available information with greater generality in the format of the
regions in a more efficient perspective of computational cost. The remaining of the work
is divided as follows: In Chapter 2 details of the class of conformal prediction methods
are presented. Chapter 3 describes the proposed method. In Chapter 4 simulation studies
are made to verify the performance of the proposal. Finally, Chapter 5 shows the reached
goals and future directions to improve the approach.
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CHAPTER

2
CONFORMAL PREDICTION

2.1 Overview
Conformal prediction methods compose a class of methods derived from Vovk,

Gammerman and Shafer (2005). Methodologies in this class provide, in a regression problem
with response Y ∈R and a random vector of covariates XXX ∈Rd , regions R(xxx) satisfying the
marginal coverage property: The probability P(Y ∈ R(XXX))≥ (1−α), where coverage level α

is a prefixed small number. The class has, essentially, only one assumption: exchangeability
of the observations. This assumption has independent and identically distributed data as
a particular case. Given a sample D = {(yi,xxxi)}n

i=1 composed by n observations of random
vectors named as labeled data, Algorithm 1 shows one way to group the ideas of the class
through a practical example: Split Conformal (LEI et al., 2018).

Algorithm 1 – Split Conformal
1: procedure Split-Conformal(xxx,α,D,A ) . Input: new vector of covariates,

coverage level, labeled data and regression algorithmic
2: D1 = sample(D, n

2) . Random sample of size n
2

3: D2 = D\D1 . Observations in D not present in D1
4: for (yi,xxxi) ∈ D2 do
5: s(yi,xxxi,D1,A ) = |yi− µ̂(xxxi)| . Estimate the regression function µ̂(·) through

A with D1 and evaluate the score in (yi,xxxi)
6: end for
7: d = quantile({s(yi,xxxi,D1,A ) : (yi,xxxi) ∈ D2},(n

2 +1)(1−α)) . The kth
smallest value in {s(yi,xxxi,D1,A ) : (yi,xxxi) ∈ D2}, where k is the smallest integer bigger
than (n

2 +1)(1−α)
8: Rsplit(xxx)← [µ̂(xxx)−d, µ̂(xxx)+d] . Estimate the regression function µ̂(·) through A

with D1 and evaluate that in xxx
9: return Rsplit(xxx) . Output: region

10: end procedure

Algorithm 1 basically uses one part of labeled data to estimate a centrality measure,
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more precisely µ̂(·) (estimated regression function), and the other to quantify the fluctuation
around that with the nonconformity score s(yi,xxxi,D1,A ).

2.2 Marginal Coverage

Based on Algorithm 1, assuming independent and identically distributed data and
µ̂(·) as a symmetric function for D1, it is easy to see through the definition of D1, the
probabilistic guarantee, that is, P(Y ∈ R(XXX))≥ (1−α). Although only exchangeability is
assumed, the guarantee still holds; this assumption does not require independence. The
term “marginal” refers to the joint distribution of (Y,XXX) which includes the labeled data
D = {(yi,xxxi)}n

i=1, splitted in two parts in this example, and the new observation, and is
integrated across all of them.

2.3 Other score functions

In Algorithm 1 another important component of conformal methods is exemplified:
the score s(yi,xxxi,D1,A ). Scores are the tool chosen to define a relationship of order between
responses y given the vector of covariates xxx with labeled data and some estimation algorithm
A ; the algorithm A typically produces a point estimate. This component (score) can
be exchanged without problems with the marginal coverage of methods, allowing great
flexibility for the class. For instance, the score s(yi,xxxi,D1,A ) = |yi− µ̂(xxxi)| (LEI et al.,
2018) and the resulting interval region defined in Algorithm 1, may not be suitable for a
problem with bimodality, then a method in this class can be used with other score to get
better results and interpretations in different contexts.

Another intuitive nonconformity score developed by Lei et al. (2018) is:

|µ̂(xxx)− y|
σ̂(xxx)

,

by utilizing σ̂(xxx), the estimated standard deviation of the conditional distribution of Y

given xxx, the score takes the conditional dispersion as a reference to quantify the distance
between the conditional mean and observed value, minimizing a possible effect of the
heteroscedasticity.

Scores enable the combination of information about each collected observation
(Y,XXX), specifically the features of the conditional distributions given the vector of covariates.
Mathematically, the score

s : Y ×X ×D → R

(y,xxx,D,A ) 7→ s(y,xxx,D,A ),
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is a function to express how plausible a response value is compared to another, establishing
a logical relationship of order (with domain equals to the cartesian product between the
support of Y ,XXX and labeled data). In some nonconformity score for example, responses
with more plausibility compared with a fixed response need to have a score less than the
score of the fixed response.

This function needs to be symmetric for the elements in D to not interfere in the
exchangeability.

The last two arguments from labeled data and estimation algorithm will be omitted
to simplify the notation with focus in the new response and new vector of covariates:

(y,xxx) 7→ s(y,xxx).

The estimation algorithm A can also be considered a fixed component within the
score. The previous separation was used to emphasize the potential of combination with
other methods, for example, many regression estimators can be used in Algorithm 1. This
component is usually evaluated on the labeled data, thus the estimation algorithm needs
to be symmetric on it to allow the same for the score.

The QOOB method (Quantile Out Of Bag), developed by Gupta, Kuchibhotla and
Ramdas (2022), utilizes a non-conformity score, developed by Romano, Patterson and
Candes (2019), which utilizes more robust statistics to describe the shape of conditional
distributions. The expression for this score is as follows:

sQ(y,xxx) = max(q̂β (xxx)− y,y− q̂1−β (xxx)) =

(I{y /∈ [q̂β (xxx), q̂1−β (xxx)]}− I{y ∈ [q̂β (xxx), q̂1−β (xxx)]})min(|q̂β (xxx)− y|, |q̂1−β (xxx)− y|),

where q̂β (xxx) and q̂1−β (xxx) denote the estimated quantiles with cumulated probability β

and 1−β respectively. This score, in absolute value, represents the minimum distance
between the response and the points in the interval defined adaptively for each xxx by the
quantiles; observations outside the interval receive a positive score, while those inside
receive a negative score.

The last example is the score of HPD-Split (Highest Predictive Density) created
by Izbicki, Shimizu and Stern (2022):

sHPD(y,xxx) =
∫

I[ f̂Y |xxx(y′)≤ f̂Y |xxx(y)] f̂Y |xxx(y
′)dy′,

with f̂Y |xxx(·) as the estimated conditional density of y given xxx.

One critical aspect of Conformal Prediction Methods lies in the evaluation and
formulation of scores. It is essential to address the challenge, for example, posed by
observations with different covariates, which can exhibit distinct conditional densities.
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Consequently, it becomes important to ensure a favorable ordering of these observations,
even when confronted with such complex scenarios.

Some scores consider even more aspects, for example, size, format and conditional
coverage. The optimal size for a fixed probability is achieved only if the format of the region
is flexible and can be adapted to multimodal distributions, which is another desirable
feature. The HPD score incorporates all these perspectives seeking better regions. This
represents an estimate of probability of getting a new response with density less or equal
than the observed given the same vector of covariates. Using this score, the set of y’s that
satisfies the indicator function can have many shapes, not just interval format.

The flexibility of the scores has encouraged the search for the best region, as
previously mentioned. As a result, properties were discovered that aid in obtaining better
regions.

2.4 Desirable properties

2.4.1 Conditional and local coverage

Achieving good regions requires more than just marginal coverage. Conditional
coverage is a desirable property that can improve the region and make it more informative,
but in general it is not attainable (VOVK, 2012; LEI; WASSERMAN, 2014). That consists
in:

P(Y ∈ R(XXX)|XXX = xxx)≥ (1−α) for all xxx.

A weaker and more tangible property, in the sense of not requiring strong assumptions
related with conditional coverage is the local coverage. Informally, instead of giving just
a point, that is, a vector of covariates, it is given an arbitrary region of possible vectors
of covariates in the probability, for example, a small neighborhood around some point.
Asymptotic conditional coverage can be reached using local coverage.

It is interesting to note that conditional coverage implies marginal coverage but
the opposite is not true being possible to introduce some examples. Indeed, conditional
coverage implies marginal coverage because:

P(Y ∈ R(XXX)) =
∫

P(Y ∈ R(XXX)|XXX = xxx) fXXX(xxx)dxxx.
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Assuming conditional coverage with probability prefixed equals to (1−α), that is, P(Y ∈
R(XXX)|XXX = xxx)≥ (1−α) for all xxx:∫

P(Y ∈ R(XXX)|XXX = xxx) fXXX(xxx)dxxx≥
∫
(1−α) fXXX(xxx)dxxx⇒

P(Y ∈ R(XXX))≥ (1−α)
∫

fXXX(xxx)dxxx⇒

P(Y ∈ R(XXX))≥ (1−α).

2.4.2 Oracle as a possible consequence

Oracle is, by definition, the best region R(xxx) to reach. Oracle provides the smallest
region for a fixed conditional coverage (IZBICKI; SHIMIZU; STERN, 2022). Thus, trying
to get closer to the conditional coverage, for example, asymptotically with local coverage,
can guide the way to reach informative regions. Izbicki, Shimizu and Stern (2022) proved
with some additional assumptions that the HPD-Split using sHPD(·, ·) reaches the oracle
asymptotically, showing the generality of this score.

2.5 Examples of conformal methods

2.5.1 HPD-Split

HPD-Split is an approach to create conformal regions developed by Izbicki, Shimizu
and Stern (2022). In this method the dataset is divide in two parts, one to estimate
conditional densities fY |xxx(·) and another part to evaluate the score preventing bias.

The conformity score of the method presented in section 2.3 is calculated for
observations in the second part, then, other observations are used to estimate the conditional
densities similar to Algorithm 1.

Let S denote the set of scores that fall below a threshold, determined by previous
calculations. The region for a new vector of covariates xxx is then given by:

RHPD(xxx) = {y ∈ Y | sHPD(y,xxx) ∈ S}.

2.5.2 Jackknife+

Algorithm 2 presents an alternative method for defining a region with marginal
coverage (1−α). This method involves dividing the data, leaving out one observation for
future evaluation, and using it for estimation. Despite the efficient use of data, the cost of
estimating n regression functions is usually high.

In general, the leave-one-out approach is computationally expensive, requiring
n complex estimations using n− 1 observations to evaluate n scores; in the context of
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Algorithm 2 – Jackknife+
1: procedure Jackknife+(xxx,α,D) . Input: new covariates, coverage level, labeled

data.
2: for i = (1, · · · ,n) do
3: s−i(yi,xxxi) = |yi− µ̂−i(xxxi)| . Estimate the regression function with D−i, the set

of all observations except i and evaluate the score in (yi,xxxi), saving µ̂−i(xxx) as well
4: end for
5: d1 = quantile({µ̂−i(xxx)− s−i(yi,xxxi) : i = (1, · · · ,n)},(n+1)(1−α)) . The

jth smallest value in {µ̂−i(xxx)− s(yi,xxxi) : i = (1, · · · ,n)}, where j is the biggest integer
lower than (n+1)(1−α)

6: d2 = quantile({µ̂−i(xxx)+ s−i(yi,xxxi) : i = (1, · · · ,n)},(n+1)(1−α)) . The kth
smallest value in {µ̂−i(xxx)+ s−i(yi,xxxi) : i = (1, · · · ,n)}, where k is the smallest integer
bigger than (n+1)(1−α)

7: R jack+(xxx)← [d1,d2]
8: return R jack+(xxx) . Output: region
9: end procedure

conditional density estimation with a high-dimensional covariate space, for example, the
speed of the method is crucial.

Two types of strategies can be explored to save time: The use of fast estimation
methods; or the use of methods where it is not necessary recalculate the components
completely when one observation is removed. The QOOB follows the second perspective,
estimating trees to build quantile regressions. Each tree is built using a subset of ob-
servations and possibly covariates. Next, for each observation i, a quantile regression is
estimated using the trees where observation i does not belong to the respective subsets.
Additionally, Gupta, Kuchibhotla and Ramdas (2022) conducted a theoretical study that
defines a class of scores that share a strategy to ensure marginal coverage.

2.5.3 QOOB

The QOOB method (GUPTA; KUCHIBHOTLA; RAMDAS, 2022) involves the
following procedure: First, a random forest is trained using all the data. Next, the trees
that do not include each observation i are grouped, and each set of trees is used to estimate
two quantiles qβ−i(·) and q1−β−i(·) of the associated conditional distribution. Formally,
the number of trees in the forest needs to be randomized for each region construction
according to Gupta, Kuchibhotla and Ramdas (2022). However, in practice, Kim, Xu and
Barber (2020) found similar results for a fixed number of trees B in many cases, providing
insight into this aspect.

The score of this method was presented in section 2.3. To achieve marginal coverage,
it is important in the strategy applied in this work not to use the whole random forest in
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the estimation of quantiles, instead only trees trained without observation (Yi,XXX i).

sQ−i(y,xxx) = max(q̂β−i(xxx)− y,y− q̂1−β−i(xxx)) =

(I{y /∈ [q̂β−i(xxx), q̂1−β−i(xxx)]}− I{y ∈ [q̂β−i(xxx), q̂1−β−i(xxx)]})min(|q̂β−i(xxx)− y|, |q̂1−β−i(xxx)− y|).

To define the region with coverage level α and marginal coverage of (1−2α), the scores
related with possible new responses must satisfy:

RQOOB(xxx) =

{
y ∈ Y |

n

∑
i=1

I[sQ−i(yi,xxxi)< sQ−i(y,xxx)]< (1−α)(n+1)

}
.
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CHAPTER

3
PROPOSED APPROACH

Previously, the main concepts and specific examples of Conformal Prediction
Methods were discussed, highlighting their particular focus, advantages, and limitations.
Many of the negative underlined points of them allow improvements, creating opportunities
for future works.

Indeed, the class of Conformal Prediction Methods incorporates desirable character-
istics such as wide applicability, modularity, and strong probabilistic properties. However,
the use of data in HPD-Split, the interval-only regions provided by QOOB, and the com-
putational expense associated with leave-one-out approaches can impact the final results.
Our proposed method tries to overcome these sensitive topics by at least minimizing their
effect, ensuring better regions with respect to size and shape.

3.1 The method
In details, our procedure uses a random forest composed by B trees T = {Tj}B

j=1

trained with the labeled data D to, for each observation (Yi,XXX i), estimate the conditional
density for the vector of covariates and the new vector of covariates, fY |xxxi(·) and fY |xxx(·),
using T−i, the set of trees T trained that did not use the observation i. Using these
densities, we compute sHPD−i(·, ·). Finally, the region with marginal coverage of (1−2α)

is given by:

R(xxx) =

{
y ∈ Y |

n

∑
i=1

I[(1− sHPD−i(yi,xxxi))< (1− sHPD−i(y,xxx))]< (1−α)(n+1)

}
.

The execution of the method can be thought of in two steps. In the first step, the
random forest is trained and scores for labeled data are evaluated. Algorithm 3 describes
this stage.
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Algorithm 3 – Random forest and scores for labeled data
1: procedure Train(D,B) . Input: labeled data and number of trees
2: T ←{T}B

j=1 . Train the random forest
3: for i = (1, · · · ,n) do
4: f̂Y |xxxi(·)← density(xxxi,T−i) . Estimate the density of Y given XXX = xxxi with T−i

5: sHPD−i(yi,xxxi)←
∫
I[ f̂Y |xxxi(y)≤ f̂Y |xxxi(yi)] f̂Y |xxxi(y)dy

6: end for
7: return T ,{sHPD−i(yi,xxxi)}n

i=1 . Output: random forest and scores for each
observation

8: end procedure

In the second step, the region R(xxx) is built using the results of the previous algorithm.
Algorithm 4 shows the whole process.

Algorithm 4 – Predictive region for a new vector of covariates
1: procedure Prediction(xxx,α,T ,{sHPD−i(yi,xxxi)}n

i=1) . Input: new vector of
covariates, random forest and scores for each observation

2: R(xxx)← /0
3: for y ∈ Y do
4: for i = (1, · · · ,n) do
5: f̂Y |xxx(·)← density(xxx,T−i) . Estimate the density of Y given XXX = xxx with T−i

6: sHPD−i(y,xxx)←
∫
I[ f̂Y |xxx(y′)≤ f̂Y |xxx(y)] f̂Y |xxx(y′)dy′

7: end for
8: if ∑

n
i=1 I[(1− sHPD−i(yi,xxxi))< (1− sHPD−i(y,xxx))]< (1−α)(n+1) then

9: R(xxx)← R(xxx)∪{y}
10: end if
11: end for
12: return R(xxx) . Output: region
13: end procedure

Essentially, our method combines the HPD score, allowing better regions in terms
of size and shape, with the QOOB’s framework, improving the way of using data. A natural
follow-up question is how we use the trees for density estimation. Pospisil and Lee (2019)
presented RFCDE (Radom Forest for Conditional Density Estimation and Functional
Data), the method used in this work, through the package of the same authors in R
(<https://www.r-project.org>) with some adaptations. Some codes of the proposed method
in this work are available in <https://github.com/victorcandidoreis/conformal202305>.
The essence of the method is to model the density as a mixture of distributions (using for
example the gaussian kernel) centered at the observed responses, using trees to estimate
the weights. The mixture weights (more details later) and a bandwidth summarize the
estimation:

f(y|xxx) =
1

∑ j w j(xxx)
∑

j
w j(xxx)Kh(Yj− y).

https://www.r-project.org
https://github.com/victorcandidoreis/conformal202305
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Pospisil and Lee (2019) use a specific loss for this task (L), the integral of squared
distance between the actual and predicted density instead of the traditional mean squared
error (MSE). The authors of this work provide a implementation of the method, but the
leave-one-out context motivated some adaptations.

L =
∫
( f (y)− f̂ (y))2dy.

Considering this context, the relationship between the weights estimated by Pospisil and
Lee (2019) using L and MSE as the loss function, to optimize the forest, was investigated.
Simulation studies indicate the normalized square root of MSE weights as a not bad
substitute for the density estimation. With the evaluated weights, the implementation
proposed by Pospisil and Lee (2019) was used to estimate the bandwidth with the plug-in
option.

In the sequence, details are shown to formalize the procedure:

To calculate the score, it is necessary to get the density estimation without using
the observation i:

f−i(y|xxx) =
1

∑ j 6=i w j(xxx)
∑
j 6=i

w j(xxx)Kh(Yj− y),

where Kh(Yj− y) is a normal density (a gaussian kernel) centered in Yj and bandwidth h.
The weights and bandwidth translate the estimated density using the approach in Pospisil
and Lee (2019):

w∗j(xxx) =
1
|T−i| ∑

T∈T−i

I[xxx j ∈ NT (xxx)]
∑m 6=i I[xxxm ∈ NT (xxx)]

,

where NT (xxx) the region of the terminal node that includes xxx for the tree T . In the sequence,
the transformation proposed in this work is applied:

w j(xxx) =

√
w∗j(xxx)

∑m6=i
√

w∗m(xxx)
.

Lastly, applying the implementation provided by Pospisil and Lee (2019), the bandwidth
and the numeric evaluation of the mixture of normal distributions are obtained.

The reason why our approach gives the correct coverage is the following: sHPD(y,xxx)

is a member of the class of nested sets (GUPTA; KUCHIBHOTLA; RAMDAS, 2022).
Essentially, given Ft(xxx), a sequence of regions for y indexed by t, such that for t < t ′⇒
Ft(x)⊂Ft ′(x); a score defined as r(x,y) := inf{t ∈ TTT : y ∈Ft(x)} is a member of this class.

Let’s verify the used function of the HPD score as a member. Starting with the
HPD score:

sHPD(y,xxx) =
∫

I[ f̂Y |xxx(y′)≤ f̂Y |xxx(y)] f̂Y |xxx(y
′)dy′,

define:
F HPD

t (xxx) =
{

y′ : sHPD(y′,xxx)≥ (1− t)
}
.
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If t < t ′ then (1− t) > (1− t ′); for any y that satisfies sHPD(y,xxx) ≥ (1− t) it will satisfy
sHPD(y,xxx)≥ (1− t ′) too, because sHPD(y,xxx)≥ (1− t)> (1− t ′), thus:

t < t ′⇒F HPD
t (xxx)⊂F HPD

t ′ (xxx),

and:

r(x,y) := inf{t ∈ TTT : y ∈F HPD
t (x)}= inf

{
t ∈ TTT : y ∈

{
y′ : sHPD(y′,xxx)≥ (1− t)

}}
=

(1− sHPD(y,xxx)).

Informally, y ∈F HPD
t (xxx) if at least its estimated conditional density f̂Y |xxx(y) is threshold to

integrate greater estimated conditional densities of Y , following the definition of sHPD(y,xxx).
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4
EXPERIMENTS

Simulations are made to compare the previous approaches with the proposed in
this work. Considering the scenarios and methods present in Izbicki, Shimizu and Stern
(2022), two different sample sizes, n = 1,000 and n = 2,500, were explored. In all of them,
XXX = (X1, · · · ,Xd), with iid Xi ∼Uni f (−1.5,1.5) (iid - independent identically distributed),
d = 20 and α = 0.05, to get the marginal coverage of at least 0.95. All scenarios have as a
challenge irrelevant features (19 covariates).

• (Homoscedastic) Y |xxx∼ N(0.3x1,1).

• (Bimodal) Y |xxx∼ 0.5N( f (xxx)−g(xxx),σ2(xxx))+0.5N( f (xxx)+g(xxx),σ2(xxx)), with f (xxx) =

(x1−1)2(x1 +1), g(xxx) = 2I(x1 ≥−0.5)
√

x1 +0.5, and σ2(xxx) = 0.25+ |x1|.

• (Heteroscedastic) Y |xxx∼ N(0.3x1,1+0.3|x1|).

• (Asymmetric) Y |xxx = 1.5x1 + ε , where ε ∼ Gamma(1+0.6|x1|,1+0.6|x1|).

A brief explanation of some methods in the comparison was adapted from Izbicki,
Shimizu and Stern (2022):

• (Reg-split) The regression-split method (LEI et al., 2018), based on the conformal
score |Yi− µ̂(xxxi)|.

• (Local Reg-split) The local regression-split method (LEI et al., 2018), based on

the conformal score |Yi− µ̂(xxxi)|
p̂(xxxi)

, where p̂(xxxi) is an estimate of the conditional (XXX i) mean

absolute deviation of (Yi−µ(xxxi)).
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Method Estimated marginal coverage
Bimodal Heterocedastic Homocedastic Asymmetric

HPD-split-FlexCode 0.984 0.974 0.976 0.976
Dist-split+ 0.952 0.954 0.934 0.932

Quantile-split 0.94 0.954 0.952 0.936
Reg-split 0.932 0.952 0.938 0.944

Local Reg-split 0.946 0.952 0.938 0.938
HPD-split-Forest 0.948 0.95 0.94 0.936

Proposed Approach 0.948 0.956 0.944 0.95
Table 1 – Estimated marginal coverage for n = 1,000. All values are close to 0.95.

• (Quantile-split) The conformal quantile regression method (ROMANO; PAT-
TERSON; CANDES, 2019; SESIA; CANDèS, 2020), based on conformalized quantile
regression.

• (Dist-split+) The conformal method from Izbicki, Shimizu and Stern (2020) that
uses the cumulative distribution function, F(y|xxx), to create prediction intervals.

For each scenario, 100 vectors of covariates were chosen randomly and fixed. In
the sequence, n+1 random vectors were taken. Finally, all methods are applied using n

vectors to construct the region for the remaining one and for all the 100 fixed 500 times,
getting information to check the marginal and conditional coverage, respectively.

The same strategy used to estimate the density in the proposed approach was
combined with HPD-split, adding another method named as HPD-Split-Forest to the
comparison besides the original way with FlexCode.

Previous simulations indicated overcoverage for the proposed method, allowing the
comparison of all methods with α = 0.05. Defining α = 0.05, the proposed method has as
guarantee of marginal coverage 1−2α = 0.9 at least, differently of other methods with a
fixed coverage equals to 1−α = 0.95. But the actual coverages of proposed approach for
all scenarios was around 0.95, indicating the existence of conditions with the threshold
greater than 1−2α .

4.1 Marginal coverage

Table 1 shows the estimated marginal coverage for n = 1,000. No values indicate
deviation of the required coverage. Similar results were obtained for n = 2,500 (Table 2).
The next results confirm this conclusion since the conditional coverage implies the marginal
coverage.
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Method Estimated marginal coverage
Bimodal Heterocedastic Homocedastic Asymmetric

HPD-split-FlexCode 0.954 0.958 0.984 0.97
Dist-split+ 0.942 0.940 0.952 0.944

Quantile-split 0.948 0.95 0.940 0.942
Reg-split 0.922 0.946 0.932 0.924

Local Reg-split 0.944 0.942 0.946 0.916
HPD-split-Forest 0.944 0.942 0.948 0.938

Proposed Approach 0.952 0.946 0.948 0.962
Table 2 – Estimated marginal coverage for n = 2,500. All values are close to 0.95.

4.2 Conditional coverage
In the sequence, the conditional coverage for n = 1,000 and n = 2,500 was inves-

tigated alongside the size of the provided region. Table 3 and Table 4 summarize the
simulations, respectively. The average region’s size - Avg. size, the average of absolute
deviations of estimated conditional coverage to 0.95 Avg. abs. dev. and the average only
for negative deviations Avg. of abs. neg. dev. (under coverage compared with 0.95) were
obtained. The measures highlight the proposed approach as the best method regarding
robustness, with the best value or the second one in each measure and all scenarios.
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Scenario Bimodal
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9528 6.5518 0.0426 0.0618
Dist-split+ 0.9534 6.5367 0.0394 0.0550

Quantile-split 0.9588 6.8242 0.0410 0.0536
Reg-split 0.9640 7.3593 0.0566 0.0986

Local Reg-split 0.9447 6.2224 0.0434 0.0629
HPD-split-Forest 0.9588 6.7553 0.0460 0.0651

Proposed Approach 0.9613 6.3810 0.0392 0.0492
Scenario Heterocedastic
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9658 8.7756 0.0359 0.0412
Dist-split+ 0.9501 7.8919 0.0384 0.0487

Quantile-split 0.9536 7.3356 0.0342 0.0396
Reg-split 0.9493 7.1837 0.0412 0.0513

Local Reg-split 0.9455 7.3421 0.0436 0.0591
HPD-split-Forest 0.9510 7.1135 0.0358 0.0418

Proposed Approach 0.9538 7.0092 0.0305 0.0329
Scenario Homocedastic
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9758 5.2884 0.0320 0.0270
Dist-split+ 0.9466 4.4126 0.0272 0.0324

Quantile-split 0.9489 4.2385 0.0216 0.0263
Reg-split 0.9364 3.8783 0.0169 0.0212

Local Reg-split 0.9369 4.1561 0.0368 0.0502
HPD-split-Forest 0.9446 4.1857 0.0214 0.0281

Proposed Approach 0.9481 4.1121 0.0174 0.0221
Scenario Asymmetric
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9802 4.3130 0.0354 0.0341
Dist-split+ 0.9444 3.3801 0.0443 0.0747

Quantile-split 0.9590 8.7848 0.0746 0.2992
Reg-split 0.9403 4.1559 0.0628 0.1634

Local Reg-split 0.9285 3.8072 0.0589 0.0963
HPD-split-Forest 0.9465 4.1095 0.0537 0.0990

Proposed Approach 0.9512 3.5430 0.0412 0.0647
Table 3 – Average region’s size - Avg. size, the average of absolute deviations of estimated con-

ditional coverage to 0.95 Avg. abs. dev. and the average only for negative deviations
Avg. of abs. neg. dev. for n = 1,000 and scenarios in Izbicki, Shimizu and Stern (2022).
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Scenario Bimodal
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9535 6.2650 0.0361 0.0467
Dist-split+ 0.9530 6.2211 0.0335 0.0424

Quantile-split 0.9591 6.4501 0.0338 0.0398
Reg-split 0.9656 7.3048 0.0567 0.0961

Local Reg-split 0.9425 5.9330 0.0397 0.0535
HPD-split-Forest 0.9590 6.3142 0.0390 0.0500

Proposed Approach 0.9600 5.9965 0.0310 0.0353
Scenario Heterocedastic
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9718 8.9534 0.0335 0.0325
Dist-split+ 0.9511 7.6975 0.0338 0.0417

Quantile-split 0.9539 7.1028 0.0290 0.0312
Reg-split 0.9509 7.1584 0.0399 0.0488

Local Reg-split 0.9449 7.0455 0.0392 0.0503
HPD-split-Forest 0.9514 6.8967 0.0308 0.0334

Proposed Approach 0.9532 6.8266 0.0253 0.0256
Scenario Homocedastic
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9788 5.5318 0.0328 0.0209
Dist-split+ 0.9488 4.5060 0.0281 0.0339

Quantile-split 0.9500 4.1402 0.0173 0.0196
Reg-split 0.9373 3.8255 0.0136 0.0157

Local Reg-split 0.9372 4.0304 0.0319 0.0423
HPD-split-Forest 0.9445 4.0377 0.0166 0.0215

Proposed Approach 0.9478 4.0278 0.0146 0.0183
Scenario Asymmetric
Measure Est. coverage Avg. size Avg. abs. dev. Avg. of abs.neg dev.

HPD-split-FlexCode 0.9686 3.6771 0.0287 0.0245
Dist-split+ 0.9534 5.6518 0.0417 0.0553

Quantile-split 0.9574 6.6890 0.0695 0.2531
Reg-split 0.9343 3.2614 0.0501 0.0953

Local Reg-split 0.9276 3.2126 0.0527 0.0774
HPD-split-Forest 0.9453 3.3726 0.0422 0.0663

Proposed Approach 0.9486 3.1386 0.0342 0.0487
Table 4 – Average region’s size - Avg. size, the average of absolute deviations of estimated con-

ditional coverage to 0.95 Avg. abs. dev. and the average only for negative deviations
Avg. of abs. neg. dev. for n = 2,500 and scenarios in Izbicki, Shimizu and Stern (2022).
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CHAPTER

5
CONCLUSION AND FUTURE WORKS

5.1 Conclusions

An overview about conformal prediction was presented, showing the main ideas,
components and some examples of methods. The definition, the concept of score, conditional
coverage and the HPD Split are examples of topics covered.

In addition, a new approach was proposed, allying good properties of two previous
methods: Izbicki, Shimizu and Stern (2022) and Gupta, Kuchibhotla and Ramdas (2022),
with respect to the flexibility of the score, region and the efficient use of data and evaluation.
The flexibility of the score and region is related with the aim of obtaining the optimal
region in a convenient shape. The efficiency arises from estimation of densities with more
data, compared to approaches that split part of the data only to evaluate the score, using
some already estimated trees to save computing time.

The goal of estimating densities in a leave-one-out context and using trees with
MSE loss and to get a member of conformal prediction class with competitive performance
was reached, associating the HPD score with nested sets and theoretical results in Gupta,
Kuchibhotla and Ramdas (2022).

Finally, simulation studies confirm the advantages of the new method. Based on
previous scenarios in the literature, comparisons showed very competitive measures, with
the proposed method being one of the best approaches in all of them.

5.2 Future works

There is potential in investigating the theoretical proof of marginal coverage with a
possible better inequality in some conditions and in improving and seeking other methods
to estimate the conditional densities with trees.
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