• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Ricardo de Carli Novaes
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2019
Orientador
Banca examinadora
Salasar, Luis Ernesto Bueno (Presidente)
Coletti, Cristian Favio
Diniz, Marcio Alves
Título em português
Processo de Bernoulli correlacionado
Palavras-chave em português
Lei do Logaritmo iterado
Lei forte dos grandes números
Processo de Bernoulli correlacionado
Resumo em português
O processo de Bernoulli independente, que nada mais é que uma sequência de variáveis aleatórias independentes com distribuição Bernoulli, já é amplamente conhecido na literatura estatística. Esta dissertação lida com uma generalização de tal processo: o processo de Bernoulli correlacionado, isto é, variáveis aleatórias Bernoulli dependentes em que a probabilidade de sucesso num determinado instante n+1 é uma função linear do número de sucessos até o instante n. Para este modelo, apresentamos a Lei Forte dos Grandes Números, o Teorema Central do Limite e a Lei do Logaritmo Iterado.
Título em inglês
Correlated Bernoulli process
Palavras-chave em inglês
Central limit theorem
Correlated Bernoulli process
Law of the iterated logarithm
Strong law of the large numbers
Resumo em inglês
The independent Bernoulli process, which is a sequence of independent Bernoulli random variables, is already widely known in the statistical literature. This masters thesis works with a generalization of this process: the correlated Bernoulli process, that is, dependent Bernoulli random variables in which the probabilityof success at time n+1 is a linear function of the number of successes until time n. For this model, we present the Strong Law of Large Numbers, the Central Limit Theorem and Law of the Iterated Logarithm.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-10-16
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.