• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
Document
Auteur
Nom complet
Ricardo de Carli Novaes
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2019
Directeur
Jury
Salasar, Luis Ernesto Bueno (Président)
Coletti, Cristian Favio
Diniz, Marcio Alves
Titre en portugais
Processo de Bernoulli correlacionado
Mots-clés en portugais
Lei do Logaritmo iterado
Lei forte dos grandes números
Processo de Bernoulli correlacionado
Resumé en portugais
O processo de Bernoulli independente, que nada mais é que uma sequência de variáveis aleatórias independentes com distribuição Bernoulli, já é amplamente conhecido na literatura estatística. Esta dissertação lida com uma generalização de tal processo: o processo de Bernoulli correlacionado, isto é, variáveis aleatórias Bernoulli dependentes em que a probabilidade de sucesso num determinado instante n+1 é uma função linear do número de sucessos até o instante n. Para este modelo, apresentamos a Lei Forte dos Grandes Números, o Teorema Central do Limite e a Lei do Logaritmo Iterado.
Titre en anglais
Correlated Bernoulli process
Mots-clés en anglais
Central limit theorem
Correlated Bernoulli process
Law of the iterated logarithm
Strong law of the large numbers
Resumé en anglais
The independent Bernoulli process, which is a sequence of independent Bernoulli random variables, is already widely known in the statistical literature. This masters thesis works with a generalization of this process: the correlated Bernoulli process, that is, dependent Bernoulli random variables in which the probabilityof success at time n+1 is a linear function of the number of successes until time n. For this model, we present the Strong Law of Large Numbers, the Central Limit Theorem and Law of the Iterated Logarithm.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-10-16
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.