• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.104.2020.tde-27072020-161646
Document
Auteur
Nom complet
Katy Rocio Cruz Molina
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2020
Directeur
Jury
Tomazella, Vera Lucia Damasceno (Président)
Milani, Eder Angelo
Ramos, Pedro Luiz
Titre en portugais
Modelos de sobrevivência induzidos por fragilidade discreta Série de Potência Zero-Modificada
Mots-clés en portugais
Distribuição Séries de Potência Zero- Modificada
Fragilidade zero
Modelos de fragilidade discreto
Resumé en portugais
Modelos de sobrevivência com um termo de fragilidade são apresentados como uma extensão do modelo de risco proporcional de Cox (COX, 1972), em que, um efeito aleatório também denominado fragilidade, é introduzido na função de risco de forma multiplicativa com o objetivo de modelar a heterogeneidade não observada das unidades em estudo. A distribuição para a variável de fragilidade, é assumida contínua e não negativa. Entretanto, há algumas situações nas quais é apropriado considerar a fragilidade distribuída discretamente, por exemplo, quando a heterogeneidade dos tempos de sobrevivência surge por causa da presença de um número aleatório de falhas por unidade ou pela causa da exposição a danos em um número aleatório de ocasiões. Neste trabalho, desenvolvemos diferentes modelos de fragilidade usando algumas distribuições pertencentes à família Série de Potência Zero-Modificada (SPZM). Neste contexto, com o uso da distribuição SPZM para a fragilidade, podemos observar a possibilidade de indivíduos com fragilidade zero, que corresponde a um modelo de falha limitado que contém uma proporção de unidades que nunca falham (sobreviventes de longa duração) ou modelo de fração de cura. O modelo proposto é aplicado a um conjunto de dados reais de melanoma.
Titre en anglais
Survival models induced by Zero-Modified Power Series discrete frailty
Mots-clés en anglais
Discrete frailty models
Zero frailty
Zero-Modified Power Series distributions
Resumé en anglais
Survival models with a frailty term are presented as an extension of Coxs proportional risk model (COX, 1972), in which a random effect, called frailty, is introduced in the risk function in a multiplicative way with the aim of modeling the unobserved heterogeneity from the units under study. The distribution for the frailty variable is assumed to be continuous and not negative. However, there are some situations it is appropriate to consider discretely-distributed frailty, for example, when heterogeneity in lifetimes arises because of the presence of a random number of flaws in a unit or because of exposure to damage on a random number of occasions. In this work, we developed different frailty models applying some distributions belonging to Zero-Modified Power Series (ZMPS) family. In this context, with the use of the ZMPS distribution for frailty, we can notice the possibility of individuals with zero frailty, which corresponds to a limited failure model that contains a proportion of units that never fail (long-term survivors) or cure fraction model. The proposed model is applied to a set of real melanoma data.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-07-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.