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“Queda prohibido no buscar tu felicidad,

no vivir tu vida con una actitud positiva,

no pensar en que podemos ser mejores,

no sentir que sin ti este mundo no sería igual.”

(Pablo Neruda)





RESUMO

ESCOBAR, C. Usando VAE para Dados Educacionais Incompletos. 2023. 70 p. Tese (Dou-
torado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Em Psicometria, e em particular em avaliações educacionais, é comum encontrar bases de dados
incompletas. A falta de tempo, esquecimento do conteúdo envolvido, nervosismo ou mesmo
o formato da prova são alguns dos motivos pelos quais um indivíduo pode deixar itens sem
responder em uma avaliação. Neste contexto, é importante a existência de métodos de estimação
para modelos psicométricos que lidem com dados faltantes e sejam afetados o menos possível
pela ausência de informação naqueles itens não respondidos. Num cenário de pequena dimensão,
métodos tradicionais de estimação para modelos de Teoria de Resposta ao Item (TRI), por
exemplo, são adequados para situações com dados completos e incompletos. No entanto, para
situações de alta dimensionalidade, como em avaliações que envolvem muitas competências e
habilidades latentes, os métodos tradicionais não são computacionalmente eficientes ou mesmo
incapazes de obter estimativas para tantos parâmetros. Aprendizagem profunda vem sendo
adaptada de forma a incorporar modelos de TRI e fazer previsões e estimações a partir de
grandes bancos de dados, de alta dimensionalidade. Neste trabalho, aprofundamos a investigação
de Curi (2019), que definiu um Modelo Logístico de Dois Parametros (ML2P) na arquitetura de
um autoencoder variacional (VAE) como uma proposta para solucionar o problema de estimação
dos muitos parâmetros do modelo. Realizamos um estudo de simulação para comparar duas
variações de redes neurais profundas, autoencoders (AE) e VAE, definidas com um modelo
ML2P no decodificador, para situações com um número grande de traços latentes e dados
completos. Após resultados favoráveis do VAE, propomos uma extensão do mesmo (IVAE) para
poder fazer previsões em casos de dados faltantes e, assim, tornar o modelo mais geral e útil na
prática. Simulações do modelo proposto foram realizadas sob diferentes cenários para investigar
a eficiência do novo método na recuperação dos parâmetros. Comparações dos resultados com
uma das metodologias atualmente mais indicadas em TRI para lidar numa situação de maior
dimensionalidade, a máxima verossimilhança conjunta, também foram feitas, além da aplicação
a um caso real de alta dimensão e com dados faltantes.

Palavras-chave: Autoencoder variacional. Autoencoder. Teoria da resposta ao item. Dados
ausentes. Dados Educacionais Incompletos. Redes neurais.





ABSTRACT

ESCOBAR, C. Using VAE for Incomplete Educational Data. 2023. 70 p. Tese (Doutorado em
Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

In Psychometrics, especially in educational assessments, incomplete databases are common.
An individual may leave items unanswered in an assessment due to lack of time, forgetting
the content involved, nervousness, or even the test design. In this context, it is crucial to
have estimation methods for psychometric models that deal with missing data and are as little
affected as possible by the lack of information on those unanswered items. In a small-scale
scenario, traditional estimation methods for Item Response Theory (IRT) models, for example,
are suitable for situations with complete and incomplete data. However, traditional methods are
not computationally efficient or cannot obtain estimates for many parameters, such as assessments
involving many latent skills and abilities. Deep learning has been adapted to incorporate IRT
models and make predictions and estimates from large, high-dimensional databases. In this
work, we deepen the investigation of Curi (2019), who defined a Two Parameter Logistic Model
(ML2P) in the architecture of a variational autoencoder (VAE) as a proposal to solve the problem
of estimating the many parameters of the model. We performed a simulation study to compare
two variations of deep neural networks, autoencoders (AE) and VAE, defined with an ML2P
model in the decoder, for situations with a large number of latent traces and complete data. After
favorable results of the VAE, we propose an extension of the same (IVAE) to make predictions in
cases of missing data and, thus, make the model more general and useful in practice. Simulations
of the proposed model were performed under different scenarios to investigate the efficiency
of the new method in recovering the parameters. Comparisons of the results with one of the
methodologies currently most indicated in IRT to deal with a situation of greater dimensionality,
the joint maximum likelihood, were also made, in addition to the application to a real case of
high dimension with missing data.

Keywords: Variational autoencoder. Autoencoder. Item response theory. Missing data. Incom-
plete Educational Data. Neural networks.
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CHAPTER

1
INTRODUCTION

As an alternative to the parameter estimation currently proposed in the item response
theory (IRT) model literature, we present two machine learning algorithms capable of solv-
ing estimation problems of high-dimensional latent traits from observed data, which may be
complete or with missing data. This problem, named the curse of dimensionality, has been a
significant challenge for the conventional estimation methods used in Psychometrics, based
on the expectation–maximization (EM) algorithm and Markov chain Monte Carlo (MCMC)
methods, which do not deal well with high latent trait dimensions. Therefore, several authors are
looking for improvements in this regard.

IRT [Reckase 2009] is a test evaluation theory that proposes models to relate the proba-
bility of the responses that an individual gives to a set of questions/items with the proficiencies
(latent traits) related to the underlying construct. Until the 1950s, the way to rank people was
through the raw scores resulting from a test. This methodology, named Classical Test Theory
(CTT), left much room to compare people who responded to different tests or assess learning
over time. On the other hand, IRT models the response probability of each item as a function of
the latent traits at stake and considers, for example, the difficulty and discriminating power of the
item. This characteristic complements the classic assessment methods and allows comparisons
among different evaluation results and over-time contrasts.

Intuitively, the model establishes a common metric for the latent traits of individuals.
Proficiency in a particular competence can be calculated considering the difficulties of the items
that the individual answers correctly, enabling the comparison of the same competence between
many individuals, even though they do not respond precisely to the same test.

With the advancement of computing and the ability to manipulate large volumes of data,
traditional psychometric methods have gained some extensions. Cai 2017 proposes modifying the
Metropolis-Hastings algorithm (MH-RM) for high-dimensional maximum marginal likelihood
in exploratory item factor analysis and exemplifies it with five dimensions. Despite mentioning
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having applied MH-RM to problems with dimensions greater than five and recognizing that
more research is needed to cover other situations. Some years later, Chen et al. 2019 proposed
a constrained joint maximum likelihood estimator (CJMLE) for high dimension, capable of
dealing with more than ten latent traits and more than ten thousand respondents, in addition to
allowing the presence of missing data. Their results are valid under an asymptotic setting in both
the numbers of items and individuals growing to infinity.

In parallel with the evolution of deep learning, automatic models that learn patterns
have gained notoriety due to improved productivity and cost reduction when working with
large databases. Although most of these methods are mainly explored in image compression or
analysis, some variations have been recently established and allow estimating the parameters of
an IRT model to escape the "curse of dimensionality".

Curi et al. 2019 proposed a new Variational Autoencoder (VAE) incorporating the matrix
Q (which connects each item, represented by a node in the output layer, only to the latent
variables measured by it) and a Multidimensional 2-Parameter Logistic model (M2PL) on the
decoder. However, this method does not deal with missing data. Converse 2019 proposed an
analogous model using an Autoencoder (AE) architecture and compared the two methods (VAE
and AE) for simulated data using three-dimensional continuous latent variables. Following this
line of thought, in the present work, we compared the AE and VAE methods (with Q-matrix and
ML2P in the decoder) and the CJMLE in several scenarios with higher latent trace dimensions.

Other authors have recently worked with Deep Learning in educational assessment.
Urban and Bauer 2021 extends Curi’s work by introducing a model that can be applied to ex-
ploratory analysis of polytomous item response data in the frequentist configuration. Wu et al. 2020
also presents an extension of Curi´s method in the Bayesian setting. Additionally, Maris and Bechger 2000
represented the Boltzmann machines, a type of stochastic recurrent neuronal network, as multi-
dimensional item response theory (MIRT) models, showing them as a rich class of generative
models.

The results of the present work corroborated the findings of Converse 2019, which
indicated better estimation results with VAE. The theme of this dissertation will focus on VAE
model (the best in the previous comparisons) to extend the estimation method to incomplete data
sets, a more realistic scenario.

It is common to find unanswered items in both educational and psychological tests.
Omission of responses due to lack of knowledge, lack of time, lack of interest in responding,
or simply because the item was not in the test by design when the individuals being evaluated
respond to tests with different items. Whatever the reason for missing data, they make the data
analysis difficult and compromise the quality of decision-making. In this regard, it is imperative
to extend deep learning methods proposed as IRT model parameter estimation methods to more
realistic scenarios dealing with incomplete data.
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Some authors have proposed deep learning methods that deal with missing data. Nelwa-
mondo 2007, for example, makes a comparison between the expectation maximization (EM)
algorithm and the auto-associative neural network and genetic algorithm (GA) combination.
Yoon 2018 proposes a method to impute data by adapting the Generative Adversarial Nets
(GAN). In the case of VAE, Cardoso et al. 2020 and Boquet et al. 2020 propose VAE to solve
two problems with missing data, one related to images and the other to road traffic.

While MCMC and EM [Takahashi 2017] deal well with missing data in the literature of
IRT models, they require that alternative methods be utilized when high dimensions are present.
CJMLE and MH-RM are the most frequently referred alternative methods in Psychometrics,
conditional to an asymptotic setting for items and individuals or not-too-high dimensional
situations, respectively. To enhance these possibilities, we extend the study of Curi et al. 2019
and propose a VAE as a machine learning alternative to deal with missing data in educational
assessment. First, we modify the objective function optimized to obtain the item parameters
and latent trait estimates to make predictions in the presence of missing data. Subsequently, the
imputation of the missing data is proposed through its own VAE.

This work has three contributions: (i) to explain how the two DL methods (AE and VAE)
can be linked to the ML2P model of IRT in terms of their parameters and traditional estimation
methods, (ii) to compare the performance of AE and VAE in estimating ML2P model parameters
for high latent trait dimension, and (iii) to propose a modification in the VAE structure to address
missing data in the estimation of ML2P model parameters for high latent trait dimensions. The
third contribution is the most significant, while the other two fill a gap in the existing literature
about VAE and IRT.

In chapter 2, we begin with the presentation and comparison of two Deep Learning (DL)
methods, AE and VAE, and the relationship that we can establish between them and a high latent
trait dimensional ML2P model. This relationship is explored for different scenarios with complete
data inspired by a real high-dimensional assessment in Brazil. On the other hand, also in chapter
2, the traditional methods of estimating the parameters of the items in IRT are presented, both
for low and high latent trait dimensions (Marginal Maximum Likelihood and Joint Maximum
Likelihood, respectively). Then, we’ll look at the math behind the Stochastic Gradient Descent
(SGD), the algorithm used by AE and VAE to optimize the objective function and estimate model
parameters. The relationship between the VAE and the Expectations Maximization Algorithm
(EM) is highlighted, which will help construct a technique that adapts the VAE to deal with
missing data. In chapter 3, we propose a new imputation strategy in a VAE to address missing
data in estimating latent traits and item parameters for ML2P model. In chapter 4, a simulation
study is presented, comparing the methods in practice for several scenarios for complete and
incomplete data. We extend this study in chapter 5 to a real problem. Finally, the conclusions
and future intentions for this research are presented.
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CHAPTER

2
BACKGROUND

We can understand machine learning (ML) as a discipline that automatically learns
patterns from data through neural networks. When said analysis is deeper and involves a large
volume of data, we speak of deep learning (DL). In this case, we can fit the theory involving
chatbots, which is much discussed today.

IRT models are used to analyze data from educational and psychological tests. They
assume that each item on a test measures one or more latent trait(s) (e.g., reading comprehension,
mathematical ability, personality traits) and that the probability of the response to an item
depends on the item parameters and the abilities of the test-takers.

One of the contributions of this work is the comparison between two deep learning meth-
ods - the AE and the VAE - for estimating parameters in an IRT model within a high dimensional
latent trait space. The next chapter will focus on this comparison. To aid comprehension, we will
introduce the main characteristics of each method and explain their relationship to an IRT model,
the ML2P, in this chapter.

We will also present the two commonly used methods for estimating item parameters and
latent traits in low- and high-dimensional IRT models: marginal maximum likelihood (MMLE)
and joint maximum likelihood (JMLE) estimation, respectively.

2.1 Autoencoder

Autoencoder is a type of neural network used to explain the behavior of unlabeled data,
making it an unsupervised method. We can represent an AE [Goodfellow 2017] through a system
of interconnected nodes with an input layer, one or more hidden layers, and an output layer.
Through computational training, we reduce the dimensionality of the network’s input to recover
it in the best way possible. Unlike a neural network in general, an AE has the same number of
nodes in the input and output layers. In Figure 1, we have a representation of an Autoencoder
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with a hidden layer.

x1

x2

...

xn

θ1

...

θm

x′1

x′2

...

x′n

Input Output
Hidden

f : Encoder h: Decoder

Figure 1 – Autoencoder with a hidden layer.

To understand how the layers of an AE relate, we will consider the case where x= {xi}n
i=1

is the input we want to encode by means of a θ = {θd}m
d=1 node. Note that x and θ in the encoding

are related through a linear or nonlinear function s, called activation function, applied to the
weighted sum, by a weight matrix W = {wdi : d ∈ 1 . . . ,m; i ∈ 1 . . . ,n}, of the components of x

plus a bias vector b (see equation (2.1)). The decoding from θ to get x′ (that should be as close
as possible to x) happens in the same way as described in the encoding (see equation (2.2)).

θd = f (xi) := s(1)
(

n

∑
i=1

w(1)
id xi +b(1)d

)
d ∈ 1, . . . ,m (2.1)

x′i = h(θd) := s(2)
(

m

∑
d=1

w(2)
id θd +b(2)i

)
i ∈ 1, . . . ,n (2.2)

Using Autoencoder, the goal is to minimize some loss function denoted by L , which
compares the difference between x and x′, given the activation functions, the number of layers,
and the number of nodes in each layer. If S is a set of sample unities, the expression is given by:

J (W,b;S) = ∑
x∈S

L (x,(h◦ f )(x)) = ∑
x∈S

L (x,x′) (2.3)

It is worth mentioning that when the autoencoder has only one fully connected hidden
layer, with a linear activation function and the loss function defined as the quadratic error,
the weights obtained by training the network are equivalent to those obtained by Principal
Component Analysis (PCA).
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In the present work, x will represent the right or wrong answers of a group of individuals
to items in a test, so x is binary, and the loss function used is the binary cross-entropy:

J (W,b;S) =−1
n

n

∑
i=1

xi log(p(xi))+(1− xi) log(1− p(xi)) (2.4)

=−1
n

n

∑
i=1

xi log(x′i)+(1− xi) log(1− x′i) (2.5)

where p(xi) is the probability of success of the Bernoulli variable.

2.2 Variational Autoencoder
A Variational autoencoder is an autoencoder in which the intermediate layer nodes

represent the parameters of a pre-assumed probability distribution for the latent variables. The
decoder propagates the values generated from this probability density with parameters equal to
the nodes of the intermediate hidden layer.

Suppose that in Figure 1, the θ is a set of latent variables that through some random
process produces the observations x. The purpose of the VAE is to approximate the posterior
distribution of θ given the observation x, q(θ |x) by another probability distribution g(θ |x). This
is because when we have a large latent space, the estimate of the real posterior distribution of
θ |x is unfeasible [Kingma D. 2014]. An illustration is depicted in Figure2

Figure 2 – Variational autoencoder structure example.

To obtain the objective approximation of the VAE, we will minimize the Kullback-Leibler
divergence between said functions g(θ |x) and q(θ |x), expressed by the equation (2.6).

KL(g(θ |x)‖q(θ |x)) = Eθ∼g(θ |x)[logg(θ |x)− logq(θ |x)] (2.6)
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To be able to reach a feasible solution, we need this divergence not to depend on the
unknown distribution q(θ |x). To this end, we will work with equation (2.7).

KL(g(θ |x)‖q(θ |x)) = Eθ∼g(θ |x)[logg(θ |x)]−Ez∼g(θ |x)[logq(θ |x)]

= Eθ∼g(θ |x)[logg(θ |x)]−Eθ∼g(θ |x)

[
log

q(θ ,x)
p(x)

]
= Eθ∼g(θ |x)[logg(θ |x)]−Eθ∼g(θ |x)[logq(θ ,x)]+Eθ∼g(θ |x)[log p(x)]

= Eθ∼g(θ |x)[logg(θ |x)]−Eθ∼g(θ |x)[log p(x|θ)p(θ)]+Eθ∼g(θ |x)[log p(x)]

= Eθ∼g(θ |x)[logg(θ |x)]−Eθ∼g(θ |x)[log p(x|θ)]−Eθ∼g(θ |x)[p(θ)]

+Eθ∼g(θ |x)[log p(x)]

= −Eθ∼g(θ |x)[log p(x|θ)]+KL(g(θ |x)‖p(θ))+Eθ∼g(θ |x)[log p(x)]

As p(x) does not depend on θ , minimizing (2.6) is equivalent to maximizing (2.7).

Eθ∼g(θ |x)[log p(x|θ)]−KL(g(θ |x)‖p(θ)) (2.7)

Having made these assumptions we trained the Variational Autoencoder by means of the
stochastic gradient descending method, explained later in this chapter.

2.3 Multidimensional Logistic 2-parameter Model

The ML2P is a model of IRT widely used in Psychometrics: in the Graduate Record
Examination (GRE) 11 and in the Programme for International Student Assessment (PISA) 16,
for example. This model defines the probability P that an individual j ∈ J responds correctly
to an item i ∈ I, i.e. x ji = 1, given that the individual possesses the latent trait vector θ j =

(θ j1,θ j2, . . . ,θ jm) of dimension m. This probability is given by equation (2.8).

P(x ji = 1|θ j) =
1

1+ exp
(
−

m
∑

d=1
adiθ jd +bi

) , (2.8)

where the discrimination parameter adi relates the latent trait d and the item i, and bi

is the difficulty parameter1 related to the item i. The relationship between the latent traits and
the items can be defined by a Q-matrix, of dimension m× I, with elements Qdi = 1 if the item i

needs the ability d to be answered correctly, and Qdi = 0, otherwise. It is not uncommon to know

1 Note that b in the equation 2.8 represents the difficulty parameter in the IRT model, while b in the 2.1
section represents the Autoencoder bias. We use the same notation for both, as it is usual in each area,
and also as it will be useful to incorporate ML2P in VAE.
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which items are related to which latent variables, especially in the educational area. In this way,
equation (2.8) can be rewritten by:

P(x ji = 1|θ j) =
1

1+ exp
(
−

m
∑

d=1
adiQdiθ jd +bi

) , (2.9)

In IRT models, there are various ways to estimate parameters, such as using the likelihood
function, Bayesian methods, and Markov Chain Monte Carlo (MCMC) methods. This work will
compare the proposed approach to the two most commonly referenced methods for low- and
high-dimensional latent variable vectors, presented below.

2.4 Marginal Maximum Likelihood and Expected a Pos-
teriori

The Marginal Maximum Likelihood (MML) is the most commonly used method for
estimating item parameters in IRT models. Proposed by Bock and Aitkin in 1981, it is based
on the expectation–maximization algorithm. Integrating out the latent trait parameters of the
likelihood function, the item parameters are estimated based only on the marginal probabilities
of the observed responses.

There are two initial assumptions to the estimation: (i) an individual’s responses to
items are independent of one another, and (ii) that the item responses of a given individual are
independent given his/her latent trait value. Under these assumptions, the marginal likelihood of
the observed data can be written as:

∏
j

∫
∏

i
Px ji

ji (1− ji)
1−x jidF(θ),

where Pji is the IRT model, given in (2.8), and the latent variables θ are considered
random effects sampled from some larger distribution, F(θ).

The marginal likelihood is maximized with respect to the item parameters to derive their
MML estimates.

It is important to highlight that location and scale constraints are required to identify
the model. They can either be placed on the mean and standard deviation of the latent trait
distribution, F, or on the item parameters. It is very usual to assume that F is the standard normal
distribution.

MML requires numerical approximation integration techniques. And, when the latent
trait dimension is high, resulting in multiple integrals to approximate, it becomes unfeasible in
practice.
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In the second step, given obtained estimates of the item parameters, the latent traits can
be estimated either via maximum likelihood estimation (MLE) or using Bayesian methods such
as maximum a posteriori (MAP) estimation or expected a posteriori (EAP) estimation.

All these methods are implemented in MIRT package in software R. The default options
are MML for item parameter estimation and EAP for latent trait estimation, considering N(0,1)
as the prior distribution.

2.5 Joint Maximum Likelihood

In contrast to MML method, in the JML, only one- and two-dimensional numerical
integrals need to be evaluated even for high-dimensional cases, making it more computationally
efficient.

In the JML method, proposed originally in the 60s, item and latent trait parameters are
treated as fixed effects. The likelihood function is then maximized with respect to all of them.
However, when the number of individuals tries to infinity, and the number of items is fixed, the
number of parameters in the joint likelihood function also grows to infinity, which makes the
JML inconsistent.

Chen 2019 proposes a Constrained Joint Maximum Likelihood Estimator (CJMLE),
which we refer to as JML for simplicity in this text. In summary, a constraint on the Euclidian
norms of both the item and individual parameters is proposed to guarantee a solution for the
optimization problem and, consequently, allow estimation for items or persons with perfect
scores. It is shown that the estimates are asymptotically consistent when both the numbers
of individuals and items grow to infinity. Additionally, the proposed algorithm is suitable for
high dimensional scale due to the possibility of updating the parameters in parallel: updating
individual parameters given item parameters and vice versa. For more details on this method, see
Chen 2019.

2.6 AE and VAE combined with the ML2P

Inspired by the work of Guo 2017, where the authors proposed the use of an AE
to obtain probability estimates of master latent classes for cognitive diagnostic assessments,
Curi et al. 2019 proposed a new method for parameter estimation in IRT. They defined a VAE
with the decoder as a ML2P model and illustrated the utility of the method to obtain the parameter
estimators of the IRT model, useful especially for high latent trait dimensions. In Converse 2019,
this last model was compared with an analogous adaptation established between AE and an IRT
model, considering three latent traits. In the present work, we extend these comparisons to a
greater dimension of the latent trait space.
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Figure 3 – VAE with the decoder as a ML2P model

The VAE and the AE in this work, as well as in the model of Curi et al. 2019, have no
hidden layers in the decoder and have a sigmoidal activation function that joins the latent trait
layer nodes θ with the output layer x′, and with some weights, w, forced to be zeros by the
Q-matrix (see figure 3). In this way, the equation (2.2) can be re-written as:

x′ =
1

1+ exp
(
−

D
∑

d=1
wdiθ jd +bi

) (2.10)

From the relation between the equation (2.8) and the equation (2.10), we can interpret
the weights wdi of the decoder as estimates for the discrimination parameters ad j and the bias bi

as estimates for the parameters of difficulty bi of a model ML2P.

The relationship between the latent traits and the items can be defined by a Q-matrix, of
dimension m× I, where Qdi = 1 if the item i needs the ability d to be answered correctly, and
Qdi = 0, otherwise. This is important in order to identify the decoder part of the network and
avoid (or preclude) multiple solutions.

This parallel drawn between IRT models and VAE is interesting in two ways: (I) to
include some interpretation for the intermediate hidden layer, and (ii) to make computation
feasible for high dimensional cases. For the educational area, the observed responses x correspond
to the dichotomous responses of an individual to the group of items, which will be called input
due to the role it will play within the structure of the network. If there is no hidden layer in the
decoder, p(x|θ) may correspond to the product of Bernoulli distributions depending continuously
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on latent traits, θ . And for θ , which corresponds to the latent abilities of each individual located
in the hidden layer of the network, we assume p(θ) with distribution N(0,I), where I is the
identity matrix, as is usual in VAE and MML for IRT estimation.

2.7 VAE versus EM algorithm
The EM algorithm Dempster 1977 is an iterative method to find maximum likelihood

or maximum a posteriori (MAP) estimates of parameters in statistical models, with unobserved
latent variables.

In this iteration, this method is considered an arbitrary distribution for the underserved
data, and once this assumption is made, the model parameters are estimated, so the unobserved
data distribution is updated (with the last estimated parameters) and the parameters are estimated
again. This process is repeated until some criterion is met.

If we approach q(θ |x) by p(θ) (instead of g(θ |x)) in the equation 2.7, aggregate again
the term Eθ∼g(θ |x) log p(x) that was taken for not relying on θ and reorganized the terms we
have:

KL(g(θ |x)‖q(θ |x)) = −Eθ∼g(θ |x)[log p(x|θ)]+KL(g(θ |x)‖p(θ))+Eθ∼g(θ |x)[log p(x)]

m

KL(p(θ)‖q(θ |x)) = −Eθ∼p(θ)[log p(x|θ)]+KL(p(θ)‖p(θ))+Eθ∼p(θ)[log p(x)]

Which is equivalent to the equation (2.11) that is optimized in EM algorithm.

Eθ∼p(θ)[log p(x|θ)] = Eθ∼p(θ)[log p(x)]−KL(p(θ)‖q(θ |x)) (2.11)

So we can consider the Variational Autoencoder as a generalization of the EM algorithm.

2.8 Stochastic Gradient Descent (SGD)
The SGD is the optimization method adopted for the deep learning techniques.

Remember that the Gradient Descent (GD) is an iterative method that searches for the
minimum of a function. To use this method, we need a point, the gradient of the function at that
point, and to stipulate the step size we will take to get a new point.

Suppose that we have N observed data of the form (xi,x′i)
N
i=1 and we want to find fω∗ ∈F ,

with F a family of functions parameterized by the vector ω , where fω∗ minimizes the loss J

when we approach x′i by fω(xi).
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Each iteration t of the gradient descent will be defined as in the equation (2.12), where α

is the step size that will be given toward a local minimum of the function:

ωt+1 = ωt−α∇ωJ(ωt), (2.12)

The objective function gradient is obtained from the mean evaluated in each of the N

sample data. As we can imagine, if N is too large this method can be very expensive:

∇ωJ(ωt) =
N

∑
i=1

∇ωJ( fωt (xi),x′i)
N

(2.13)

In our case, we need to minimize the neural network loss function that we are proposing
to estimate parameters of a ML2P model, incorporated in the decoder, as well as the weights of
the encoder neural network of the VAE. Since we can usually have large datasets, we will use a
modified version of the GD that can handle such situations.

The SGD (or sometimes called Mini Batch Gradient Descent) is a variation of the GD
method, which instead of calculating the objective function gradient across the entire dataset,
calculates the gradient based on a random subset of the original database at each iteration. This
is why SGD is the algorithm commonly used to optimize objective functions in VAEs, because
each iteration of the SGD is more computationally economical than the iterations of the GD.
Therefore, in this case ∇ωJ(ωt) is defined as in the equation 2.14. Where Nt is some subset of
{x1, . . . ,xN}.

∇ωJ(ωt) = ∑
i∈Nt

∇ωJ( fωt (xi),x′i)
Nt

(2.14)

The random subset Nt is called batch. In each iteration t of the SGD, the gradient ∇ωJ

is calculated in a different batch. After several batches, when all the data set has been used, we
say that we have completed an epoch. In the case of the GD, the batch is the complete dataset.
Therefore, each iteration of the GD corresponds to an epoch, while in the SGD we need several
iterations to use the entire dataset and complete a single epoch.

To understand more about this method, such as convergence conditions, see Bottou 2010.
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CHAPTER

3
PROPOSAL: IVAE, AN ADAPTATION OF

VAE FOR MISSING DATA

In the previous chapter, we saw, among other methods, how the VAE can be adapted
to estimate the parameters and latent traits of an M2PL. In this chapter, we will propose its
generalization to use in cases with missing data. This is crucial because it is a computationally
economical method to deal with high-dimension latent trait vector, many items and respondents
in the presence of incomplete data, which is very common in practice.

3.1 VAE for missing data

We modified the VAE to be able to estimate parameters even in the presence of missing
data, based on the motivation provided by the EM algorithm.

As a first attempt, we propose modifications to the objective function (2.7) to estimate
the parameters, disregarding the loss given by missing data.

Let us consider a database associated with the responses of a group of individuals to a
test. Represented by a matrix of entries 0 when the item was answered wrongly, 1 if the item
was answered correctly and - 1 if the subject did not answer a given item.

We can assume, as seen in section 2.2, that the decoder p(x|θ) is a product of Bernoulli
distributions that depend continuously on the latent traits θ and a priori p(θ), assumed as the
N(0,I) distribution.

Thus, the objective function (2.7) that is optimized by VAE is in the form of (3.1) and
(3.2).
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KL(g(θ |x)‖q(θ |x)) = Eθ∼g(θ |x)[log p(x|θ)]−KL(g(θ |x)‖p(θ)) (3.1)

Eθ∼g(θ |x)[log p(x|θ)] =− 1
N

N

∑
i=1

xi log(x′i)+(1− xi) log(1− x′i), (3.2)

where N is the size of the sample being considered.

The equation (3.2) works perfectly if we have complete data, i.e., all individuals answer
all items. But in the case of missing data, we would like to codify the missing value as “-1”
(some different value from the real observations, coded as 0 and 1), for instance, and eliminate
this observation from the calculation of the loss function. For this reason, we adapted equation
(3.2) so that the summation also considers missing answers inputted as “-1” in the following
way:

Eθ∼g(θ |x)[log p(x|θ)] =− 1
N

N

∑
i=1

(0.5x2
i +0.5xi) log(x′i)+(1− x2

i ) log(1− x′i) (3.3)

Note that in the presence of complete data (3.2) e (3.3) are equivalent. In contrast, when
xi =−1, the element in the sum operator equals 0, i.e., is not considered in the loss function. For
this reason, we will continue calling this method VAE (see Figure 4).

Figure 4 – Representation of the VAE algorithm

To run and train a VAE in Figure 4, we first define the estimation problem, giving the
network the right, wrong or missing answers of all individuals to all test items through a matrix
of 1, 0, and -1, respectively. In the decoder, the Q matrix defines the existent connections among
the nodes of the last two layers of the network, representing which latent traits evaluate each
item. On the other hand, we must define the number of lots selected from the sample set to carry
out the stochastic optimization method that will minimize the loss function. Then we define the
network architecture in the encoder and the decoder, the number of layers and nodes, and the
activation functions that relate these layers. In this work, we use the activation functions tanh in
the encoder, which has one hidden layer, and sigmoid in the decoder, mandatory to represent the
IRT model. We define a function that restricts the network weights from the Q matrix. And finally,
we train the network through the optimization function SGD. We can retrieve the weights of the
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Figure 5 – Representation of the IVAE algorithm with one iteration.

network decoder and the latent trait layer, which will be the parameter estimates of difficulty,
discrimination, and latent traits.

We have proposed a second solution for handling missing data, viewing the VAE as a
generalization of the EM algorithm, as shown in equation (2.7). Analogously, we can extend
the way the EM algorithm works. For this purpose, we will use the VAE with the modified
loss function (3.3) to estimate the latent traits of an incomplete database. Initially, the current
estimated latent traits are used to impute individuals’ missing responses in the second step of the
proposed algorithm. If the output of the VAE id is greater than 0.5, the imputed value is equal to
1. Otherwise, it is equal to 0. Then the network is retrained with the complete imputed database
to obtain the final estimates for the latent abilities. We will name this algorithm Incomplete
Variational Autoencoder (IVAE); see Figure 5. This process can be performed iteratively until
the estimates stabilize or by defining another stopping criterion.

Note that the first solution, proposed in Figure 4, is a particular case of the second
proposal, in Figure 5, with no network retraining with the imputed database.

Both the VAE represented in Figure 4 and the IVAE represented in Figure 5 will be
executed through codes implemented in Python in a single machine with an Intel(R) Core(TM)
i7-8565U CPU @1.80GHz (8CPUs). The codes, graphics, and databases implemented and used
in this work can be found in the repository 9.
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CHAPTER

4
SIMULATIONS

In this chapter, we will present some simulations to show DL methods are comparable to
the ones currently used to estimate parameters and latent traits of an M2PL model.

Initially, we present analysis for complete data case with latent trait dimension 18 and
compare the AE with the VAE, as they were the first two methods that we started to explore to
present the proposal for this work. As we are in a high-dimensional case, we will also compare
them with JML, the method currently recommended in the literature for IRT estimation in these
scenarios.

Next, we will demonstrate the efficiency of our innovative technique, IVAE, in managing
missing data scenarios. We will compare its performance with the MML method in a low-
dimensional setting and examine parameter recovery quality in a high-dimensional case.

4.1 AE vs VAE vs JML to complete data

Our first simulation study was inspired by the Brazilian test ANA Microdados 2014,
National Literacy Assessment developed by INEP in 2013, to inform the levels of mathematical
literacy of 3rd-year public school students. We simulated 50 replicates of the responses of
5000, 10000, and 20000 individuals, for two tests: one with 80 and the other with 160 items,
both involving 18 latent traits. This organization formed the six scenarios described in Table 1.
Discrimination and difficulty parameters were also independently generated from N(0,0.3) and
N (0,0.6), respectively.

ANA has 80 simple items that evaluate 18 skills. An item is called simple when it
evaluates only one skill. The relationship between the items and the skills is given by a Q-matrix
formulated by INEP researchers.

We trained the AE and VAE to calculate the estimates of adi, bi, and θ jd for the six
proposed scenarios and each of the 50 replicates. The structure of the networks followed the
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Scenario Itens Individuals
Sim1 80 5000
Sim2 80 10000
Sim3 80 20000
Sim4 160 5000
Sim5 160 10000
Sim6 160 20000

Table 1 – Scenarios simulated to compare the AE, VAE, and JML.

description in the previous Chapter: one hidden layer in the encoder with the tangent hyperbolic
activation functions in the encoder, an equal number of nodes in the input and output layers (that
corresponds to the number of items in the test), one latent variable layer to represent 18 latent
traits (skills), no hidden layer in the decoder, and connections to the output layer defined by the
Q matrix, using a sigmoid activation function. In addition, the number of nodes in the hidden
layer of the encoder was established as half the size of the input. Alternative structures in the
encoder were explored (more or no hidden layers, varying the number of nodes), but with no
significant improvement in the final accuracy. In this sense, we decided to fix this structure for
all the simulations.

Some indices were computed to study and compare the recovery of parameters through
the proposed methods: AE, VAE, and JML, the currently used method proposed by Chen to
estimate parameters and latent traits of high-dimensional IRT models. These indices are the
Pearson coefficient correlation (Corr), the root mean square error (RMSE), and the absolute
value of the bias (AVB). Equations (4.1) and (4.2) state the notation, where πl is the real value of
a parameter, π̂lr is its respective estimate obtained in the replica r, and ˆ̄πl =

1
50 ∑

5
r=1 π̂lr .

RMSE =

√√√√ 1
50

50

∑
r=1

(π̂lr−πl)2 (4.1)

AV B = | ˆ̄πl−πl| (4.2)

In Figure 6 and Table 2, we can see the means of the correlations between the actual
parameters and the estimates obtained in each scenario for each method. The prominence of the
VAE, about the other two methods, is noted once its correlation means are closer to 1, for the
model parameters: the latent traits, and the item parameters of discrimination and difficulty.

It is also observed that increasing the number of items from 80 to 160 improves the
quality of the estimates of the three methods.

On the other hand, in Figure 7 and Table 3, we can see that each of the three methods
stands out negatively in the mean squared error of each of the three parameters. AE is the worst
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Scenario Corra
AE

Corra
VAE

Corra
JML

Corrb
AE

Corrb
VAE

Corrb
JML

Corrθ

AE
Corrθ

VAE
Corrθ

JML
Sim1 0.535 0.643 0.362 0.898 0.979 0.935 0.653 0.663 0.603
Sim2 0.439 0.555 0.348 0.860 0.975 0.924 0.633 0.654 0.587
Sim3 0.522 0.644 0.208 0.894 0.969 0.923 0.601 0.655 0.585
Sim4 0.872 0.869 0.636 0.937 0.985 0.933 0.787 0.784 0.695
Sim5 0.877 0.923 0.684 0.901 0.978 0.926 0.781 0.782 0.687
Sim6 0.925 0.961 0.633 0.910 0.983 0.918 0.787 0.790 0.592

Table 2 – Mean of the correlations of the a, b and θ .

Figure 6 – Comparison of the correlations regarding θ , a, and b, respectively, for three methods in the six
different scenarios.

for the latent trait estimation, JML is the worst for the discrimination parameters, and VAE is
the one that shows the worst result in the difficulty parameter. Considering that the correlation
means between the estimates and the actual difficulty parameters are high for the 3 methods, we
conclude that the one with the best result in general in the mean squared error metric would be
the VAE, as it has better errors both in the latent trait and in the discrimination parameter.

Scenario RMSEa
VAE

RMSEa
AE

RMSEa
JML

RMSEb
VAE

RMSEb
AE

RMSEb
JML

RMSEθ

VAE
RMSEθ

AE
RMSEθ

JML
Sim1 0.331 0.346 16.476 1.098 1.063 1.142 1.015 1.365 0.866
Sim2 0.471 0.430 20.193 1.111 1.077 1.067 0.973 1.392 0.885
Sim3 0.766 0.710 26.766 1.199 1.174 1.199 0.949 1.734 0.886
Sim4 0.400 0.486 7.132 0.905 0.919 1.004 1.098 1.506 0.726
Sim5 0.199 0.369 7.945 0.933 0.937 0.960 0.932 1.392 0.739
Sim6 0.106 0.364 10.457 0.932 0.929 0.949 0.805 1.379 0.797

Table 3 – Mean of the root mean square error of the a, b and θ .

In Figure 8 and in Table 4, we have the mean of the bias measure for the three methods
for the item and individual parameters. In general, we see that the VAE delivers better estimates,
as it is the only one that keeps the bias value closer to zero for most of the cases. It is important
to highly that Figures 6, 7 and 8 and Tables 2, 3 and 4 represent the mean of the indexes among
each type of parameters.

Complementing the comparative study of the three methods, we have Figures 9, 10, and
from figure 11 to figure and 16 that show the relationship between the actual parameters and
their estimates obtained by the three methods for one of the simulations. In this case, we hope
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Figure 7 – Comparison of the mean square error regarding θ , a and b, respectively, for three methods in
the six different scenarios.

Scenario AV Ba
VAE

AV Ba
AE

AV Ba
JML

AV Bb
VAE

AV Bb
AE

AV Bb
JML

AV Bθ

VAE
AV Bθ

AE
AV Bθ

JML
Sim1 0.123 0.159 12.627 1.092 1.028 1.122 0.192 0.369 0.339
Sim2 0.302 0.189 15.988 1.107 1.037 1.050 0.203 0.360 0.364
Sim3 0.533 0.356 21.852 1.196 1.146 1.186 0.191 0.479 0.362
Sim4 0.386 0.481 5.921 0.901 0.897 0.993 0.390 0.732 0.275
Sim5 0.189 0.365 7.629 0.931 0.923 0.958 0.256 0.638 0.288
Sim6 0.099 0.363 9.638 0.930 0.914 0.943 0.188 0.652 0.365

Table 4 – Mean of the AVB of the a, b and theta.

Figure 8 – Comparison of bias regarding θ , a, and b, respectively, for three methods in the six different
scenarios.

that the points in the graphs arrive as close as possible to an identity line. We have such a graph
for a, b and θ in each of the six scenarios, in each of the 50 replicates, and for each method,
we chose only a few graphs to illustrate the behavior of the methods. Note that in all figures
mentioned above, the VAE estimates appear first, then the AE, and finally the JML.

Although Figure 9 corresponds to Sim5, replica 1, it well represents the behavior of the
three methods for estimating the discrimination parameters in each scenario and each replica. We
can see that the VAE presents points closer to a line of identity, while the JML tends to provide
estimates of the discrimination parameter that are larger than the actual value of the parameter.
This shows the advantage of VAE in estimating these parameters.

On the other hand, and as previously mentioned, the three methods, in all scenarios and
all replicates, are capable of estimating very well the b-difficulty parameters, or intercept of the
model, as we can see in Figure 10.

In Figures 11, 12 and 13 we have from left to right the graphs related to VAE, AE, and
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Figure 9 – Actual versus estimated discrimination parameter by VAE, AE, and JML methods, respectively,
for the simulation with 160 items and 10000 individuals.

Figure 10 – Real versus estimated difficulty parameter by VAE, AE, and JML methods respectively, for
the simulation with 160 items and 10000 individuals.

JML with the dispersion plot of estimate and actual latent trait values for Sim1, Sim2, and Sim3,
respectively.

As we can see, the AE and JML are the ones that present more instability in the estimates
because, in the different scenarios, Sim1, Sim2, and Sim3 the representations of the estimates
seem to worsen when we increase the number of individuals, which does not happen with the
VAE, which in the three scenarios has a similar behavior.

The instability in the estimates observed in scenarios Sim1, Sim2, and Sim3 remains
in scenarios Sim4, Sim5, and Sim6. We can see that the VAE provides better estimates, as the
points are more like an identity line, and are always in the range [-4.4], which is where the actual
skill is found, as opposed to AE and JML, which apparently get worse as the amount of data
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Figure 11 – Real versus estimated latent trait for the scenario Sim1

Figure 12 – Actual versus estimated latent trait for the scenario Sim2

involved increases.

One aspect draws attention in Figure 16 for the JML method in Sim6: some latent trait
estimates are inversely correlated with their real value.

According to an in-depth analysis, we find that the inversion is only happening for the
seventh dimension, θ7, only for some replicates, only in Sim6, and only for the JML method, as
we can see in the figure 17. It represents the dispersion plot between estimates and actual values
for the latent traits of dimension 7, by the three methods, for replicates 1 and 3, respectively.
This behavior indicates a JML identifiability issue.

According to our analysis of latent traits estimation by dimension, we found that di-
mensions that had more associated items obtained better estimates in all methods. As was the
case of θ4, θ7, and θ9, with 6, 7, and 7 items associated with the 80-question tests and 12, 14,
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Figure 13 – Real versus estimated latent trait for the scenario Sim3

Figure 14 – Real versus estimated latent trait for the scenario Sim4

and 14 items in the 160-question tests, which reached correlations of 0.873. They had the best
correlations. In contrast, the latent traits θ2 that have 3 and 6 associated items in the tests of 80
and 160 questions respectively, had the worst correlations, around 0.474.

Another fact that caught our attention was that while the AE and VAE took between
0 and 2 minutes to estimate all parameters and latent traits in each scenario and each replica,
the JML took from 10 minutes, for scenarios with 5 thousand individuals, to nearly 4 hours for
scenarios with 20,000 subjects and 160 items. This shows an additional advantage for the neural
network methods, as the three methods were run on conventional and equivalent notebooks.

In the next illustrations, we have a graphical representation of the estimated probability
of correctly answering an item as a function of the estimated latent trait evaluated in that item,
for each method, and we compare it with the same representation made from real data. We can



48 Chapter 4. Simulations

Figure 15 – Real versus estimated latent trait for the scenario Sim5

Figure 16 – Real versus estimated latent trait for the scenarios Sim6 respectively

have a clear view of which method is delivering better estimates when we find the curve of the
method that comes closest to the real curve, which is represented in red color. We chose only a
few items estimated in the first replica, and in the Sim6 scenario to illustrate this comparison.

In Figures 18, 19, and 20, the probability of correcting the item as a function of the real
latent trait is represented in red. And as we can see, the VAE represented in blue color is the
closest to the real graph, so it is the one that delivers the best estimates in the Sim6 scenario that
involves 160 items, 18 latent traits, and 20000 individuals. The graphics for the other scenarios
deliver similar results, which is why they were not included in this text.

Although we are quite satisfied with the VAE method and consider it a promising method
to be used in Psychometrics to estimate high-dimensional latent traits, due to the quality of the
estimates and the speed in achieving them, there is still much to improve and explore. We hope,



4.1. AE vs VAE vs JML to complete data 49

Figure 17 – Actual θ7 versus θ7 estimated for Sim6 in replica 1 (top) and replica 3 (bottom) for the three
methods.

Figure 18 – From left to right: Probability of correctly answering item 1 as a function of the latent trait
θ7 and the probability of correctly answering item 2 as a function of the latent trait θ8 in the
scenario Sim6

for example, that some customizations in its architecture can solve the difficulties it presents in
estimating the parameters at the extremes.
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Figure 19 – From left to right: Probability of correctly answering item 3 as a function of the latent trait θ7
and the probability of correctly answering item 4 as a function of the latent trait θ10 in the
scenario Sim6

Figure 20 – From left to right: Probability of correctly answering item 5 as a function of the latent trait
θ12 and the probability of correctly answering item 6 as a function of the latent trait θ16 in the
scenario Sim6

4.2 IVAE vs MIRT

MIRT is a package in the R programming language to estimate multidimensional item
response theory parameters for exploratory and confirmatory models using maximum-likelihood
methods. It adopts MML based on the EM as the default method for estimating item param-
eters, and EAP for estimating a low-dimensional latent trait vector, up to 3 or 4 dimensions
approximately.

Therefore, to enhance the study of the quality of the proposed model, we will use a
database of a test that assesses three latent abilities. In Table 5, we define the simulations
considered in this section to perform the comparisons among IVAE and MIRT estimation results.

To assemble the scenarios in Table 5, we used the database of a test with 28 items, which
assess 3 skills, answered by 10,000 individuals, and we called this first scenario with the name
Complete_Dim3. From it, we randomly delete four responses from each individual, which we
call Incomplete_Dim3. Additionally, we randomly delete a maximum of four responses from
each individual, which we call Semi complete_Dim3. Then we estimate the parameters for the
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Scenario Individuals Skills Answered items Total items
Complete_Dim3 10000 3 28 28

Incomplete_Dim3 10000 3 24 28
Semi_complete_Dim3 10000 3 ≥ 24 28

Table 5 – Scenarios simulated to compare IVAE with MIRT.

three scenarios by the traditional MIRT method, the proposed VAE, and IVAE method. Note that
in the case where the database is complete, the VAE and IVAE coincide.

Scenario Corrθ

MIRT
Corrθ

VAE
Corrθ

IVAE
RMSEθ

MIRT
RMSEθ

VAE
RMSEθ

IVAE
Incomplete_Dim3 0.8015 0.6238 0.7548 0.5993 0.8182 0.7017

Semi_Incomplete_Dim3 0.8145 0.6335 0.7873 0.5815 0.8080 0.6556
Complete_Dim3 0.8248 0.8179 0.8179 0.5667 0.6178 0.6178

Table 6 – Comparation of correlations and mean square error of estimated parâmeters by different methods

Table 6 and figure 21 present the correlations between the latent traits estimated by
the three previously mentioned methods and the real latent traits. The proportion of missing
data affects IVAE much more than MIRT. In the Incomplete_Dim3 scenario where we have
approximately 14.3% missing data, the IVAE correlations for the latent traits dropped from
0.8179 to 0.7548, while the MIRT ones dropped from 0.8248 to 0.8015. But the correlations
associated with the IVAE show how the adaptation made to the VAE improved the estimates
since in the case of the VAE the drop was much more abrupt, changing from 0.8179 to 0.6238.

Figure 21 – Correlation and Mean Quadratic Error for the MIRT, VAE, and IVAE methods for the three
dimension 3 scenarios of this section.

For better visualization of the results, we can see Figures 22, 23 and 24 which represent
a comparison between the real latent traits and the actual parameter, and those estimated by
MIRT and IVAE in the three scenarios presented in Table 5. Figure 22 shows how the two
methods achieve better estimates when the database is complete, while the figures 23 and 24
show the same comparison for incomplete and semi-complete cases respectively. The orange
dots correspond to the traditional method and the blue triangles correspond to the IVAE.
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Figure 22 – MIRT vs IVAE for complete data

In Figure 23 where we have 14.3% of missing data, we can see how the orange dots
representing MIRT are closer to the identity line than the blue triangles representing IVAE.
Difference that is smaller in Figure 24 when missing data is at most 14.3%.

Figure 23 – MIRT vs IVAE for incomplete data.

As we can see, the IVAE method that uses data imputation and parameter estimation
both through the VAE delivers better estimates than the VAE with modified loss without data
imputation. It is not as good as the traditional MIRT method for low-dimensional latent traces, as
was expected. But the advantage of this method is that it manages to work with large databases
and with high-dimensional latent traces, which the traditional MIRT method cannot

Figure 24 – MIRT vs IVAE for semi-incomplete data.

4.3 IVAE with iterations

Note that it is possible to replace the missing values from the input database each time
we obtain new estimates for the latent traits. To compare whether this practice leads to better
results for the estimates after imputing the data several times, we compared the correlations
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and errors for different numbers of iterations of the IVAE. This test will be performed using the
Semi_Incomplete_Dim3 and Incomplete_Dim3 scenarios.

Figure 25 – Correlations for 20 iterations of the Semi_Incomplete_Dim3 and the Incomplete_Dim3
respectively.

Figure 26 – Mean square error for 20 iterations of the Semi_Incomplete_Dim3 and the Incomplete_Dim3
respectively.

Please observe Figures 25 and 26. It is important to note that only the VAE’s correlation
and mean squared error are shown in iteration 0. The metrics related to the IVAE are displayed
from the first iteration onward. Despite seeing a valley in the correlation graph in iteration 3 and
a mountain in the mean squared error graph, which shows the IVAE worse than the VAE in this
iteration, in general, we can see that the IVAE stabilizes and obtains better estimates than the
VAE. As we see stability in the IVAE estimates with several iterations. These results ensure our
choice of considering the estimates after a single iteration for the IVAE method.

4.4 IVAE for high latent trait dimension
In this section, we will show the behavior of IVAE involving higher dimensional latent

features, where traditional methods are not able to produce any result.

To assemble the scenarios studied in this section, we considered the Sim1, Sim2, Sim4,
and Sim5 from section 4.1 and randomly excluded 12.5% and 25% of the responses of each
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individual. The new scenarios are named Sim1_Rde80, Sim2_Rde80 for R= 70,60 and Sim4_-
Pde160 and Sim5_Pde160 for P=140, 120, as depicted in table 7.

Scenario Individuals Skills Answered items Total items
Sim1 5000 18 80 80

Sim1_70de80 5000 18 70 80
Sim1_60de80 5000 18 60 80

Sim2 10000 18 80 80
Sim2_70de80 10000 18 70 80
Sim2_60de80 10000 18 60 80

Sim4 5000 18 160 160
Sim4_140de160 5000 18 140 160
Sim4_120de160 5000 18 120 160

Sim5 10000 18 160 160
Sim5_140de160 10000 18 140 160
Sim5_120de160 10000 18 120 160

Table 7 – Scenarios simulated to compare IVAE with MIRT.

We simulated 10 replicates of responses for a test under the conditions of scenarios Sim1,
Sim2, Sim4, and Sim5 and arbitrarily excluded 12.5% (25%) responses from each individual
in the first replica, as it is natural that different individuals can have different items without
responding. Then, to delete the responses in the other 9 replicates, we follow what was deleted
in the first one, as we want to create 10 possible responses from the same individual for the
same test, and thus we obtain 10 replicates for Sim1_70de80, Sim2_70de80, Sim4_140de160,
and Sim5_140de160 respectively (Sim1_60de80, Sim2_60of80, Sim4_120of160, and Sim5_-
120of160).

We estimated the parameters and latent traits using the IVAE and compared them with
the JML, as a competitive method proposed in the literature for high dimension. In Tables 8, 9,
and 10 and Figures 27, 28, and 29, we present the metrics related to said comparison. Remember
that in the complete case, the IVAE coincides with the VAE.

In general, we can see that from the complete case to the incomplete one, in both methods,
we have a small decrease in the correlation and an increase in the RMSE and AVB, which is
natural since we have less information to estimate the same amount of parameters and latent
traits. We also observed, once again, an advantage in IVAE with respect to JML, as expected
since JML works really well in scenarios with the number of individuals tending to infinity.

In Tables 9 and 10, we observed that the RMSE and AVB of the a discrimination
parameter are very high in the case of JML, which we can see as a huge disadvantage of this
method compared to what we are proposing. In contrast, IVAE presents higher RMSE for θ ,
but the differences are much less expressive. These results stimulate further studies to continue
enhancing VAE method proposals for psychometric assessment.
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Scenario Corra
IVAE

Corra
JML

Corrb
IVAE

Corrb
JML

Corrθ

IVAE
Corrθ

JML
Sim1 0.624 0.341 0.978 0.934 0.660 0.603

Sim1_70de80 0.325 0.399 0.984 0.917 0.556 0.517
Sim1_60de80 0.204 0.508 0.984 0.905 0.464 0.554

Sim2 0.555 0.348 0.975 0.924 0.654 0.587
Sim2_70de80 0.426 0.290 0.977 0.885 0.581 0.563
Sim2_60de80 0.292 0.427 0.975 0.893 0.450 0.540

Sim4 0.869 0.636 0.985 0.933 0.784 0.695
Sim4_140de160 0.840 0.654 0.987 0.938 0.741 0.688
Sim4_120de160 0.747 0.659 0.988 0.944 0.674 0.656

Sim5 0.923 0.684 0.978 0.926 0.782 0.687
Sim5_140de160 0.907 0.680 0.987 0.917 0.737 0.661
Sim5_120de160 0.858 0.690 0.989 0.927 0.667 0.631

Table 8 – Mean of the correlations of the a, b and θ .

Figure 27 – Comparison between the averages of the correlations for the discrimination and difficulty
parameters and for the latent traits. For the IVAE and JML methods in the different scenarios
with and without missing data

To better illustrate the comparison between IVAE and JML, we present some graphs
of the results. As we did before, because there is not a big difference in the graphics between
replicas and scenarios, only the graphics referring to replica 1 of scenarios Sim1_70de80 and
Sim5_120de160 follow.
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Scenario RMSEa
IVAE

RMSEa
JML

RMSEb
IVAE

RMSEb
JML

RMSEθ

IVAE
RMSEθ

JML
Sim1 0.331 16.476 0.135 0.232 1.015 0.866

Sim1_70de80 0.488 17.602 0.146 0.263 1.115 1.223
Sim1_60de80 0.545 15.538 0.201 0.274 1.162 0.862

Sim2 0.430 20.193 1.077 1.067 1.392 0.885
Sim2_70de80 0.414 21.493 0.128 0.281 0.956 0.752
Sim2_60de80 0.480 18.836 0.182 0.259 1.059 0.770

Sim4 0.486 7.132 0.919 1.004 1.506 0.726
Sim4_140de160 0.390 7.218 0.110 0.161 0.883 0.605
Sim4_120de160 0.439 8.852 0.166 0.160 0.940 0.640

Sim5 0.369 7.945 0.937 0.960 1.392 0.739
Sim5_140de160 0.192 8.854 0.098 0.171 0.748 0.628
Sim5_120de160 0.254 10.649 0.155 0.163 0.819 0.663

Table 9 – Mean of the root mean square error of the a, b and θ .

Figure 28 – Comparison between the averages of the RMSE for the discrimination and difficulty parame-
ters and for the latent traits. For the IVAE and JML methods in the different scenarios with
and without missing data

Figure 30 and 31, we can see the relationship between the discrimination parameters
estimated by each method and the real values for scenarios Sim1_70de80 and Sim5_120de160
respectively. Here, as in the previous tables, we can see how the two methods improve the
estimates when we increase the amount of data involved.
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Scenario AV Ba
IVAE

AV Ba
JML

AV Bb
IVAE

AV Bb
JML

AV Bθ

IVAE
AV Bθ

JML
Sim1 0.123 12.627 1.092 1.122 0.192 0.339

Sim1_70de80 0.291 13.209 0.124 0.197 0.520 0.960
Sim1_60de80 0.361 13.275 0.184 0.230 0.608 0.509

Sim2 0.189 15.988 1.037 1.050 0.360 0.364
Sim2_70de80 0.169 17.519 0.102 0.249 0.790 0.734
Sim2_60de80 0.189 17.101 0.160 0.243 0.845 0.757

Sim4 0.481 5.921 0.897 0.993 0.732 0.275
Sim4_140de160 0.375 6.996 0.102 0.157 0.786 0.605
Sim4_120de160 0.421 8.271 0.160 0.151 0.807 0.639

Sim5 0.365 7.629 0.923 0.958 0.256 0.288
Sim5_140de160 0.183 8.760 0.093 0.169 0.696 0.628
Sim5_120de160 0.234 10.421 0.153 0.159 0.745 0.662

Table 10 – Mean of bias of the a, b and θ .

Figure 29 – Comparison between the averages of the AVB for the discrimination and difficulty parameters
and for the latent traits. For the IVAE and JML methods in the different scenarios with and
without missing data

Figure 32 and 33, represent the relationship between the difficulty parameters estimated
by each method and the real values for the same scenarios. We can see how both methods deliver
good estimates, as expected, due to the fact that b is the intercept of the model.

In the latent traits, in figures 34 and 35, we can see how the JML seems to be lost in
some dimensions, which may be related to the problem of lack of identifiability that the method
has, as mentioned in the previous sections. IVAE, on the other hand, manages to recover latent
traits considerably better, turning it into a promising method for IRT models.
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Figure 30 – Actual versus estimated discrimination parameter by IVAE and JML methods respectively.

Figure 31 – Actual versus estimated discrimination parameter by IVAE and JML methods respectively.
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Figure 32 – Actual versus estimated difficulty parameter by IVAE and JML methods respectively.

Figure 33 – Actual versus estimated difficulty parameter by IVAE and JML methods respectively.
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Figure 34 – Real versus estimated latent trait by IVAE and JML methods respectively.

Figure 35 – Real versus estimated latent trait by IVAE and JML methods respectively.
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CHAPTER

5
REAL APLICATION

In this chapter, we apply the proposed method to a real data Math assessment obtained
from practice simulations for the ACT test.

ACT corresponds to a group of tests used as part of the admission process to American
universities, similar to the Brazilian ENEM. We consider the set of the Math items, which have
60 items related to 22 latent traits, which can be regrouped into 4 more general constructs.

The methods used to estimate the parameters of this real application will be IVAE
and JML to 22 dimensions of the latent feature, and IVAE, JML, and MIRT in the case of 4
dimensions.

5.1 Four dimensions
In this section, we will consider the responses of 4898 individuals to the ACT practice

test in Mathematics. The test assesses the skills: Geometry and Measurement (GM), Number
and Quantity (NQ), Operations, Algebra and Functions (OAF), and Statistics and Probability
(SP). A group of items assesses each skill according to Table 11.

Latent trait Number of Items
θ1 (GM) 19
θ2 (NQ) 4

θ3 (OAF) 28
θ4 (SP) 9

Table 11 – Number of items that evaluates each latent trait of the Mathematics ACT (dimension 4)

We estimate the skills and parameters of discrimination and the difficulty of the M2LP
using three different methods. IVAE for being the proposal of this work, JML for being the
method currently used in cases of estimating a high-dimensional M2LP, and MML and EAP
via MIRT for being the most used method for estimating IRT in low-dimensional latent trait,
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since we are working with dimension 4. This last method will be called MIRT (or M2PL) in
the graphics because it is the name of the package in R where this method is implemented as a
particular case (or because is the most used method in this case).

In parallel to the aforementioned study, we will randomly delete 10% and 20% from the
subjects’ responses to compare the methods in the presence of missing data.

Figure 36 – Comparison of discrimination parameter estimates, for complete data, with 10% and 20% of
missing data. Methods used IVAE, JML, and MIRT.

In Figures 36 and 37, we have the position of the estimated parameter on the x-axis. In
this case, we have 60 discrimination and difficulty parameters to estimate, so we organize them
in positions 1 to 60 and leave the respective estimated value for each of them on the y-axis, with
different colors for each method.

Figure 37 – Comparison of difficulty parameter estimates, for complete data, with 10% and 20% of
missing data. Methods used IVAE, JML, and MIRT.

In the legend of the graphs of the figures 36 and 37, we can read VAE (understood IVAE
in the presence of missing data). On the other hand, note that the R VAE and Python VAE are
the same methods, implemented in two different programming languages.

The dark pink line in the middle in Figure 36 and at the bottom in Figure 37 corresponds
to the estimates for the discrimination and difficulty parameters obtained through the MML (the
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most used model for estimating M2LP), so in this section, it will be our reference to be reached
by the other methods.

We can see that the estimates of both discrimination and difficulty of the two methods
(IVAE and JML) are proportional to the estimates given by the MML. We can see a relationship
between them despite being on different scales.

In the following figures 38, 39, and 40 we see the comparison between the average
estimates of two methods for the four latent traits (θ1, θ2, θ3, and θ4). In these, we can see that
the quality of the IVAE estimate in relation to the MML is comparable with that of the JML in
relation to the same MML.

Figure 38 – Comparison between latent traits estimated by JML and IVAE

We can see, for example, that both IVAE and JML methods presented worse estimates, in
relation to MML, for θ2, which according to Table 11 corresponds to the latent trait that evaluates
fewer items, namely 4, which, as we have seen through the simulation study and as has been
commented throughout this work, is not a scenario that favors the quality of the estimates of
either method.

Figure 39 – Comparison between latent traits estimated by MML and JML

On the other hand, θ1 and θ3 seem to present better estimates, if we consider the
relationship of the methods with the MML, these latent traits are precisely those that involve
more items, namely 19 and 28 respectively.
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Figure 40 – Comparison between latent traits estimated by MML and IVAE

5.2 Twenty-two dimensions

Analogously to what was done in the previous section, in this section, we will consider
the same responses of the 4898 individuals to the ACT in mathematics, but now looking at this
test from a more specific point of view, which allows us to organize it as assessing 22 skills,
according to Table 12.

Latent trait Items Number Latent trait Items Number Latent trait Items Number
θ1 3 θ9 1 θ17 1
θ2 6 θ10 10 θ18 1
θ3 7 θ11 1 θ19 1
θ4 1 θ12 4 θ20 3
θ5 2 θ13 1 θ21 2
θ6 1 θ14 1 θ22 4
θ7 2 θ15 1
θ8 1 θ16 6

Table 12 – Number of items that evaluates each latent trait of the Mathematics ACT (dimension 22)

We estimated M2LP skills and discrimination and difficulty parameters using two differ-
ent methods. IVAE for being the proposal of this work and JML for being the method currently
used in cases of estimating a high-dimensional M2LP In parallel with the aforementioned study,
we will randomly exclude 10% and 20% from the subjects’ responses to compare the methods in
the presence of missing data.

Figure 41 – Comparison between latent traits estimated by JML and IVAE to complete data



5.2. Twenty-two dimensions 65

We chose 4 out of 22 latent traits to show the comparison between JML and IVAE
methods. These are the θ6, θ10, θ16 and θ20 arranged in the same order in the figures 41, 42 and
43 . They are representative of the number of related items.

Figure 42 – Comparison between latent traits estimated by JML and IVAE with 10% missing data

As we can see in the figures 41, 42 and 43, the IVAE distributes the latent trait estimates
more than the JML. We can also observe that the relationship between the two methods for
the latent features θ10 and θ16 is more defined than in the cases of θ6 and θ20, this is due to
the number of items that evaluate each chosen latent trait, as we can see in table 12, the latent
traits θ10 and θ16 have more items evaluating them, 10 and 6 respectively, while θ6 and θ20 are
evaluating only 1 and 3 items respectively.

Figure 43 – Comparison between latent traits estimated by JML and IVAE with 20% missing data

Another way to understand the estimates given by both methods, JML and IVAE, is with
the estimated probability of correcting an item, we can calculate this probability through the
estimated parameters of the items and the estimated probability of correcting each individual.

We can observe the characteristic format of the probability of correcting an item of
an IRT model for both methods. We see a better distribution achieved by the IVAE estimate,
whereas, in the case of the JML, we observe some gaps, theta values that would not have been
obtained by any individual, which does not mean that there is an error in the method, considering
that this probability corresponds to the estimated one from a sample of just over 4500 individuals.
But yes, we can conclude that the LAVI can be compared to methods currently accepted by the
literature for estimating parameters and latent traits jointly for high-dimensional M2LP.

To see all graphs related to this simulation study, see 9.
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Figure 44 – Estimated probability of getting the item 6 right as a function of θ10
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CONCLUSION

After comparing two DL methods capable of dealing with large databases, we made a
more detailed study of the VAE method that presented the best simulation results. We propose
a VAE method of estimation for psychometric models capable of handling high-dimensional
estimation both for complete data and in the presence of missing data. Also, we clarify a
connection between the VAE and the EM algorithm, the most used classical method for estimating
IRT parameters. We modify the loss function that the SGD minimizes to get the VAE estimation,
to deal with missing data as a first approach. Enhancing it, we propose an extension, the IVAE,
as an imputation method from the VAE to improve the quality of the estimates in the presence of
missing data.
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