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“Or, rather, let us be more simple and less vain.

Let us limit ourselves to the first sentiments that

we find in ourselves, since study always leads us

back to them when it has not led us astray.”

(Jean-Jacques Rousseau, Emile, or On Education)





RESUMO

MOTTA, F. C. Estimação Bayesiana de modelos de mistura dinâmica por ondaletas. 2023.
112 p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2023.

Modelos de mistura gaussiana são usados com sucesso em várias aplicações de aprendizado
estatístico. Os bons resultados fornecidos por esses modelos incentivam diversas generalizações
destes. Entre as possíveis adaptações, pode-se supor um comportamento dinâmico para os
pesos da mistura para tornar o modelo mais adaptável a diferentes conjuntos de dados. Ao
estimar esse comportamento dinâmico, bases de ondaletas surgem como uma alternativa. No
entanto, na literatura existente, os métodos baseados em ondaletas apenas estimam os pesos
dinâmicos da mistura, não fornecendo estimativas para os parâmetros das componentes do
modelo. Neste trabalho, propomos duas abordagens baseadas em ondaletas ortonormais para
estimar o comportamento dinâmico do peso da mistura sob algoritmos MCMC eficientes que nos
permitem estimar os parâmetros das componentes a partir de suas amostras posteriores. Usamos
conjuntos de dados simulados e reais para ilustrar o desempenho de ambas as abordagens. Os
resultados indicam que os métodos propostos são alternativas promissoras e computacionalmente
eficientes para estimar misturas gaussianas dinâmicas.

Palavras-chave: Problema de mistura; Detecção de Ponto de Mudança; Ondaletas; Priori spike
e slab; Bayes empírico em ondaletas.





ABSTRACT

MOTTA, F. C. Bayesian estimation of dynamic mixture models by wavelets. 2023. 112
p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2023.

Gaussian mixture models are used successfully in various statistical learning applications. The
good results provided by these models encourage several generalizations of them. Among
possible adaptations, one can assume a dynamic behavior for the mixture weights to make the
model more adaptive to different data sets. When estimating this dynamic behavior, wavelet bases
have emerged as an alternative. However, in the existing literature, the wavelet-based methods
only estimate the dynamic mixing probabilities, failing to provide estimates for the component
parameters of the mixture model. In this work, we propose two approaches based on orthonormal
wavelets to estimate the dynamic mixture weights under efficient MCMC algorithms that allows
us to estimate the component parameters from their posterior samples. We use simulated and
real data sets to illustrate both approaches’ performances. The results indicate that the proposed
methods are promising and computationally efficient alternatives for estimating jointly the
dynamic weights and the component parameter of two Gaussian mixtures.

Keywords: Mixture problem; Change-point detection; Wavelets; Spike and slab prior; Wavelet
empirical Bayes.
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CHAPTER

1
INTRODUCTION

In many situations, we want to model data sets that are not well described by a single
unimodal distribution. By allocating the data observations in subpopulations, mixture models
are a powerful tool for modeling heterogeneity in a cluster analysis context. For example, in Fu
et al. (2013), a mixture model coupled with a Dirichlet-process prior was used to cluster noisy
measurements of gene expression. For a general methodological review about data clustering
using mixture models, see Fraley and Raftery (2002). The flexibility of modeling provided by
mixture models enable their use in other major areas of statistics, such as latent class analysis,
discriminant analysis, survival analysis, among others. For more details and examples, see
McLachlan and Peel (2000).

Due to the importance of these models to this dissertation, in the following section,
we give a short historical review of finite mixture models. Then, in section 1.2, we introduce
the dynamic extension of the model that plays the central role in this study. In section 1.3, we
discuss another essential topic for the development of this dissertation: wavelet bases. At last, in
section 1.4, we detail the main purposes and the outline of this research.

1.1 History of Mixture Models

One of the first analyses involving mixture models is due to the work of the biostatistician
Karl Pearson. In Pearson (1894), the author fitted a mixture of two univariate Gaussian densities
with different means and variances to a data set formerly studied by Weldon (1893). The data
set consisted of measurements on the ratio of forehead to body length of 1000 crabs sampled
from the Bay of Naples. By applying the method of moments to fit the mixture model, Pearson’s
approach suggested that the asymmetry verified in the data histogram was due to the presence of
two different subspecies in the sample (PEARSON, 1894).

During the next 30 years, the method of moments for the mixture problem would continue



18 Chapter 1. Introduction

to be applied and extended (MCLACHLAN; PEEL, 2000). For example, Charlier and Wicksell
(1924) extended the approach to the case of bivariate normal components and Doetsch (1928)
considered a model with more than two univariate Gaussian components. However, because of
the amount of calculation associated with this approach, various attempts were made over the
years to simplify the method (see, e.g., Harding (1948), Preston (1953) and Cassie (1954)).

It was only with the development of high-speed computers that considerable advances
were made in mixture models research, in particular with the work by Dempster, Laird and Rubin
(1977). In this paper, the authors formalized the Expectation-Maximization (EM) algorithm
that enabled an efficient maximum likelihood (ML) estimation of the mixture parameters.
Furthermore, this new method provided the theoretical basis for the convergence properties of
the ML solution (MCLACHLAN; PEEL, 2000).

The advance of computer technology also played a crucial role in developing the Bayesian
approach to the mixture estimation problem. Lavine and West (1992), Diebolt and Robert (1994),
Smith and Roberts (1993), Escobar and West (1995) are some of the works that helped to
incorporate the concepts of computational Bayesian statistics into the estimation process of
mixture models. By using Gibbs sampling and data augmentation methods, these pioneering
papers introduced some of the most commonly used Bayesian approaches for obtaining draws
from the mixture posterior (FRÜHWIRTH-SCHNATTER, 2006).

With the emergence of different approaches to address the estimation of mixture models,
the extent to which they are used has increased considerably. So far, they have been successfully
applied to solve problems in astronomy, biology, genetics, medicine, economics, and marketing,
among many other areas (FRÜHWIRTH-SCHNATTER; CELEUX; ROBERT, 2018). Further-
more, the possibility of adapting the mixture model to accommodate different data characteristics
is another factor that contributes to its applicability in various fields. In the next section, we
introduce one possible extension: the dynamic mixture.

1.2 Dynamic mixture weights

Among possible adaptations of mixture models, one can assume a dynamic behavior
for the mixture weights. This extension is familiar to the generalization of Hidden Markov
Models (HMM) to incorporate a “non-homogeneous” structure for the transition probabilities,
first described by Hughes and Guttorp (1994). In both scenarios, unobserved probabilities are
allowed to vary to make the models more adaptive to different data sets, specially when the
observations are indexed by another information such as time or space.

An often-quoted example of an application where a dynamic structure for mixture weights
is needed is quality control problems. In these applications, the probability of the supervised
system operating in a failure-free regime is most likely not constant across time (NAGY et

al., 2011). However, the applicability of these models is not restricted to system supervision
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problems. Mixture models with dynamic weights can be applied across a wide range of fields,
from traffic flow studies (see Nagy et al. (2011)) to applications in genetics (see Montoril,
Pinheiro and Vidakovic (2019) and Montoril, Correia and Migon (2021)).

From a frequentist framework, Montoril, Pinheiro and Vidakovic (2019) uses wavelets
to estimate the dynamic weights of a mixture of two random variables. Although their wavelet
approaches showed good performance in estimating the dynamic mixture weights, their procedure
depends on the assumption of known means and variances for the mixture components. In
practice, this might be unrealistic. An alternative is to consider a Bayesian framework and use the
Gibbs sampling algorithm to obtain joint estimates from both dynamic weights and component
parameters.

In this work, we also study the dynamic mixture using wavelet bases. Several properties
of wavelets make them profitable tools when it comes to estimating curves. As a result, wavelets
have been thrivingly used to address a vast scope of statistical problems (ABRAMOVICH;
BAILEY; SAPATINAS, 2000). In the following section, we introduce the main properties
of wavelets and provide some references on well-established statistical applications of these
mathematical tools.

1.3 Wavelets in statistics

The wavelet transform emerged as a synthesis of ideas from multidisciplinary fields,
prominently mathematics, physics, and engineering. In general terms, the wavelet transform can
provide sparse and informative representations of functions, preserving the local features of these
objects. Furthermore, these representations can be very easily obtained through fast algorithms,
available in various computer packages (ABRAMOVICH; BAILEY; SAPATINAS, 2000). Due
to these properties, wavelet bases have proved to be of significant value to many fields, including
statistics.

Among the well-established uses of wavelets within statistical applications, we highlight
nonparametric regression (see Donoho and Johnstone (1994) and Cai and Brown (1999)), density
estimation (see Donoho (1993); Donoho et al. (1996) and Hall and Patil (1995)), survival analysis
(see Antoniadis, Gregoire and Nason (1999)), and classification problems (see Chang, Kim and
Vidakovic (2003) and Mallat and Hwang (1992)). Wavelet bases also offer significant advantages
in time series analysis (see, e.g., Morettin (1996); Priestley (1996); Percival and Walden (1999)).
A comprehensive survey of wavelets in statistics can be found in, for instance, Vidakovic (1999)
and Ogden (1997).

In this work, wavelets are used to estimate the dynamic weight of a Gaussian mixture
model mimicking the nonparametric regression setup. This is made through wavelet shrinkage,
which is essentially used to address the denoising problem (see Donoho and Johnstone (1994),
Abramovich, Sapatinas and Silverman (1998), Johnstone and Silverman (2005a)). In the next
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section, we discuss our central purposes in this research and offer more details about how to use
wavelet bases to solve the dynamic mixture estimation problem.

1.4 Goals and structure
In this dissertation, the main subject of study is a two-component Gaussian mixture

model whose mixture weight is allowed to vary according to some other factor, such as time or
space. To address the dynamic structure of the model, we use wavelet bases. This setup is similar
to the one approached by Montoril, Pinheiro and Vidakovic (2019), where wavelets are also
used within a dynamic mixture model. However, unlike the aforementioned paper, the leading
motivation of this research is to provide a Bayesian method capable of jointly estimating the
component parameters and the dynamic mixture weights.

Following a Bayesian framework, we implement a straightforward and efficient Gibbs
sampling algorithm to carry out the estimation. By giving conjugate prior distributions to the
component parameters, we are able to make inference using the distribution of the posterior
draws. Regarding the dynamic mixture weights, we implement two wavelet-based approaches
within the MCMC algorithm. The first consists of rescaling the original data to obtain a regression
setup, where Bayesian wavelet shrinkage techniques can be applied. The second approach adapts
the data augmentation method, proposed by Albert and Chib (1993), to efficiently sample from
the posterior distribution of the dynamic mixture weights.

The dissertation structure is the following. In Chapter 2, we present some important
concepts of wavelet theory, necessary to a better understanding throughout the dissertation. In
Chapter 3, we discuss the wavelet shrinkage techniques and their value to statistics denoising
applications. We detail the dynamic Gaussian mixture model and the procedures that we im-
plement to estimate the component parameters and the dynamic mixture weights in Chapter 4.
In Chapter 5, we present some numerical results based on simulated and real data to illustrate
the performance of the proposed methods. Finally, we present some considerations about the
results and discuss further directions for this research in Chapter 6. Results concerning Chapter 2,
Chapter 3 and Chapter 4 are presented in Appendix A, Appendix B, Appendix C respectively.
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CHAPTER

2
WAVELET BACKGROUND

In this second chapter, we introduce basic concepts related to wavelet theory. Our idea is
to develop a succinct review of orthonormal wavelet bases, providing a general idea about the
wavelet analysis to the reader who may not be conversant with it. We begin by motivating the
use of wavelets in section 2.1. In section 2.2, we provide some mathematical exposition related
to the construction of orthonormal wavelet bases. In section 2.3, we introduce the Daubechies
wavelet families, which correspond to the bases used in this work. At last, in section 2.4, we
detail the Discrete Wavelet Transform (DWT) and the pyramidal algorithm used to perform it.

2.1 What can wavelets offer?

The word “wavelets” means “small waves” and, in mathematics, denotes a set of basis
functions that represent other functions, signals, and images as a series of successive approx-
imations (HÄRDLE et al., 2012; ABRAMOVICH; BAILEY; SAPATINAS, 2000). The first
wavelet basis is due to the work of Haar (1910). However, it was only 70 years later that the
mathematical framework needed to develop other wavelet bases was provided (see, e.g., Morlet
(1983), Grossmann and Morlet (1984), Meyer (1985), Mallat (1989), Daubechies (1988)). With
these contributions, not only new wavelet bases were created, but the whole wavelet theory
thrived.

By introducing the concept of multiresolution analysis (MRA) to the wavelet theory,
Mallat (1989) was able to design an efficient algorithm to perform the wavelet transform. Another
essential contribution was the work by Daubechies (1988), who derived families of orthonormal
wavelet bases with compact support. This was an important step for the wavelet theory. Until
then, the only orthonormal compactly supported wavelet basis was Haar’s, whose discontinuous
functions are not appropriate for decomposing smooth signals (VIDAKOVIC, 1999).

Like the Fourier bases, wavelet bases are mathematical tools used in different fields,
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from signal processing and numerical analysis to geophysics and astronomy (ABRAMOVICH;
BAILEY; SAPATINAS, 2000). However, in contrast to sines and cosines, the oscillations of the
wavelet functions are concentrated in a small interval, allowing them to be localized both in
frequency and time domain (FARGE, 1992).

The localization property of wavelet functions makes the wavelet transform more ad-
vantageous than the Fourier transform to decompose functions that are smooth everywhere,
except for a few points. For instance, if the Fourier transform is used to decompose a signal with
discontinuities, all Fourier coefficients are affected by these local features. On the other hand, if
the wavelet transform is used, the affected coefficients are only those associated with the wavelet
functions that overlap those discontinuities (FARGE, 1992).

Besides efficiently capturing local features of signals, wavelet bases are known for
providing sparse representations of other functions. This property is among the reasons why
wavelets are beneficial tools in a wide range of fields. In statistical applications, for instance,
wavelet bases are often used to address the denoising problem. In Chapter 3, we discuss in more
detail this topic.

Before discussing the statistical use of wavelets, it is important to emphasize a few
mathematical aspects related to this kind of basis. In the following section, we begin with the
concept of multiresolution analysis (MRA). Then, we show how the use of wavelets within the
MRA allows us to expand functions through different levels of resolution.

2.2 The wavelet series expansion
A multiresolution analysis (MRA) is a sequence of nested closed subspaces {Vj} j∈Z that

allows one to make approximations of square integrable real functions (VIDAKOVIC, 1999).

Definition 1. A function f : R −→ R is said to be a square integrable real function if their
L2-norm is finite

|| f ||2 =
√∫

∞

−∞

| f (x)|2 dx < ∞.

The set of all square integrable real functions corresponds to a space named L2(R). This space is
endowed with the inner product

⟨ f ,g⟩=
∫

∞

−∞

f (x)g(x)dx.

For a sequence of closed subspaces {Vj} j∈Z to constitute a multiresolution analysis, the
following conditions must be satisfied:

1. Vj ∈Vj+1,∀ j ∈ Z;

2. f (x) ∈Vj⇔ f (2− jx) ∈V0,∀ j ∈ Z;
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3.
⋃
j∈Z

Vj = L2(R);

4.
⋂
j∈Z

Vj = {0};

5. There exists a function ϕ(·) ∈V0 such that {ϕ(·− k),k ∈ Z} is an orthonormal basis for
V0.

The last condition requires the existence of ϕ(·). This function is known as scaling

function. In a broader context, the condition imposed over the integer-translates of ϕ(·), {ϕ0k,k ∈
Z}= {ϕ(·− k),k ∈ Z}, is that they must constitute a basis for V0, not necessarily orthonormal
(Riesz Basis). However, we restrict our study to orthonormal bases for V0 to focus only on the
construction of orthonormal wavelet bases, due to their central role in the estimation process of
this work. The definition of orthonormal bases follows.

Definition 2. A system of functions {ϕ(· − k),k ∈ Z}, where ϕk ∈ L2(R), is said to be an
orthonormal system (ONS) if

⟨ϕ j,ϕk⟩= δ jk,

where δ jk is the Kronecker delta, which is zero, when j ̸= k, and one, when j = k. An ONS
{ϕ(·− k),k ∈ Z} is called orthonormal basis (ONB) in a subspace V of L2(R) if any function
f ∈V can be represented as

f (x) = ∑
k∈Z

ckϕk(x),

where the coefficients ck satisfy ∑
k∈Z
|ck|2 < ∞.

It is worth noticing that the containment hierarchy of an MRA, as shown in Figure 1, is
constructed such that the subspaces are attached by dyadic scaling of functions (VIDAKOVIC,
1999). Therefore, the system of dilations and translations of ϕ(x), given by

ϕ jk(x) = 2 j/2
ϕ(2 jx− k), j,k ∈ Z,

allows us to construct orthonormal bases for every subspace Vj.

An important condition imposed on the scaling function is
∫
Rϕ(x)dx ̸= 0. Furthermore,

since V0 ⊂V1, one can represent ϕ(x) as a linear combination of functions from V1,

ϕ(x) = ∑
k∈Z

hk
√

2ϕ(2x− k), (2.1)

where the sequence of coefficients {hk}k∈Z is called wavelet filter and (2.1) is known as scaling
or dilation equation (VIDAKOVIC, 1999). This equation dictates how the scaling function can
be constructed as a linear combination of dyadic rescalings of itself and is fundamental for the
development of orthonormal wavelet bases.
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Figure 1 – Illustration of nested subspaces from V0 to V3. The black point represents the null element of
space L2(R).

In an MRA, we can define Wj as the orthogonal complement of Vj in Vj+1, where

Vj+1 =Vj⊕Wj, j ∈ Z.

Then,

Vj+1 =Vj⊕Wj =Vj−1⊕Wj−1⊕Wj = · · ·=Vj0⊕
j⊕

l= j0

Wl. (2.2)

Following the construction of a multiresolution analysis, the union of subspaces {Vj} j∈Z is dense
in L2(R). Therefore, using (2.2), one can obtain

L2(R) =Vj0⊕
∞⊕

j= j0

Wj.

This means that every f ∈ L2(R) has a unique representation as a convergent series in L2(R) of
the following form

f (x) =
∞

∑
k=−∞

c j0kϕ j0k(x)+
∞

∑
j= j0

∞

∑
k=−∞

d jkψ jk(x), (2.3)

where c j0k’s and d jk’s are coefficients of the multiresolution expansion of f and {ψ jk,k ∈ Z} is a
general basis for Wj. The space Wj is the resolution level of an MRA.

In moving from a coarser resolution level j to a finer j+1, for j ∈ Z, we are increasing
the resolution at which a function is approximated. However, for (2.3) to be a wavelet expansion,
ψ(·) must be a wavelet function (HÄRDLE et al., 2012).

Definition 3. A function ψ(x)∈ L2(R) is called wavelet function, or mother wavelet, if it satisfies
the admissibility condition

Cψ =
∫

∞

−∞

|Ψ(ω)|2

|ω|
dω < ∞,

where Ψ(ω) is the Fourier transformation of ψ(x). This condition implies that, in the time
domain, the average value of ψ(x) must be null,∫

∞

−∞

ψ(x)dx = 0. (2.4)
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In words, (2.4) means that ψ has an oscillatory behaviour, which associates it to the name
wavelet.

According to Vidakovic (1999), a definition of wavelets narrower than that given in
Definition 3 is a function whose translations and dyadic dilations,

ψ jk(x) = 2 j/2
ψ(2 jx− k), j,k ∈ Z,

constitute an orthonormal basis of L2(R).

Using a wavelet function as ψ(·) in (2.3) transforms the coefficients of the multiresolution
expansion into coefficients of a wavelet expansion (HÄRDLE et al., 2012). In this scenario, (2.3)
is termed inhomogeneous wavelet expansion, c j0k’s are known as scaling coefficients and d jk’s
are called detail coefficients. The scaling coefficients capture general aspects of the function,
while the detail coefficients give additional and local information about f (x). Notice that the
reference space of the expansion (2.3) is Vj0 , for some j0 ∈ Z. Conventionally, one chooses
Vj0 =V0 (HÄRDLE et al., 2012). We may also consider the homogeneous wavelet expansion,

f (x) =
∞

∑
j=−∞

∞

∑
k=−∞

d jkψ jk(x),

which has no reference space.

Due to the orthonormality of these functions, one can obtain the wavelet coefficients by
taking the inner product between f (x) and the functions ϕ j0k(x) and ψ jk(x), resulting in

c j0k = ⟨ f ,ϕ j0k⟩=
∫

∞

−∞

f (x)ϕ j0k(x)dx, (2.5)

d jk = ⟨ f ,ψ jk⟩=
∫

∞

−∞

f (x)ψ jk(x)dx. (2.6)

It is important to highlight that, since ψ(x) ∈W0 ⊂V1, it can be represented as

ψ(x) = ∑
k∈Z

gk
√

2ϕ(2x− k),

where the sequence of coefficients {gk}k∈Z is a wavelet filter. The coefficients {hk} in (2.1) and
{gk} are known in signal processing literature as coefficients to the quadrature mirror filters,
and they are given by

hk =
√

2
∫

∞

−∞

ϕ(x)ϕ(2x− k)dx, (2.7)

gk =
√

2
∫

∞

−∞

ψ(x)ϕ(2x− k)dx. (2.8)

Remark 1. In signal processing literature, hhh = {hk,k ∈ Z} corresponds to coefficients of a
low-pass filter and ggg = {gk,k ∈ Z} are coefficients of a high-pass filter. These filters are related
by

gk = (−1)kh1−k. (2.9)

The relation (2.9) is known as quadrature mirror relation.



26 Chapter 2. Wavelet background

2.3 Daubechies wavelet bases
One of the simplest orthonormal wavelet basis is the Haar basis, where the scaling and

wavelet functions are, respectively,

ϕ(x) =

1, x ∈ [0,1],

0 otherwise.
ψ(x) =


1, x ∈ [0, 1

2),

−1, x ∈ [1
2 ,1),

0 otherwise.

(2.10)

The Haar basis, although orthonormal and compactly supported, is ineffective in approximating
smooth functions for several reasons. One of them is the fact that the Haar wavelet function has
only one vanishing moment.

Definition 4. A function ψ(x) ∈ L2(R) has n vanishing moments if∫
∞

−∞

xl
ψ(x)dx = 0, l = 0, . . . ,n−1. (2.11)

Decomposing a function using a wavelet basis with high-order vanishing moments for its
wavelet function ψ may imply a sparse representation. In this case, the detail wavelet coefficients
corresponding to regions where the function is very smooth (polynomial regions) are very small
or even null (FARGE, 1992), as stated by Proposition 1.

Proposition 1. Decomposing any polynomial of degree m (or less) by a wavelet basis whose ψ

has m+1 vanishing moments results in null detail coefficients.

Proof. See Appendix A

In this perspective, applying orthonormal wavelets, with preassigned number of vanishing
moments for ψ , brings several advantages in terms of data compression. A key development for
the wavelet theory was the work by Daubechies (1988), who constructed compactly supported
orthonormal wavelet bases whose wavelet functions have a finite number of vanishing moments.
Daubechies (1988) showed that, if the sequence of non-null coefficients {hk} in (2.7) is a Finite
Impulse Response (FIR) that satisfies certain conditions, the corresponding wavelet functions
generated by it are compactly supported.

Definition 5. Let hhh be a filter and consider the integers M ≤ 0 and L > 0. We say that hhh is a
Finite Impulse Response (FIR) if hk = 0 for k < M or k > L, and hM,hL ̸= 0. Then, we can write

hhh = {hM,hM+1, . . . ,hL}.

Daubechies wavelets consist of three families of orthonormal wavelet bases, the extremal-

phase, also known as daublets; the least-asymmetric, or symmlets, and the coiflets. A summary
of the properties of each wavelet family is shown in Table 1.
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Table 1 – Properties of Daubechies wavelets.

Property Daublets Symmlets Coiflets
ψ support [−N +1,N] [−N +1,N] [−N,2N−1]
ϕ support [0,2N−1] [0,2N−1] [−N,2N−1]∫

∞

−∞
xlψ(x)dx = 0 l = 0, . . . ,N−1 l = 0, . . . ,N−1 l = 0, . . . ,2N−1∫

∞

−∞
xlϕ(x)dx = 0 - - l = 1, . . . ,2N−1

The standard convention is to denote a Daubechies wavelet by its low-pass filter length
(VIDAKOVIC, 1999). However, as the number of vanishing moments of the wavelet function,
for daublets and symmlets, is half the number of taps of the low-pass filter, these wavelets can
also be denoted by the number of vanishing moments they possess. For instance, a daublet with
two vanishing moments is frequently called in the literature by D4 or db2. In this work, we use
the former standard convention for notation purposes.

Daublets

Daubechies (1988) constructed 10 classes of daublets, each differing from the others by
the number of taps of their low-pass filters and, consequently, by their support width and number
of vanishing moments. The coefficients {hk} for daublets with vanishing moments varying from
1 to 10 are tabulated in Daubechies (1992, p. 195).

The daublet whose wavelet function has only one vanishing moment is actually the Haar
wavelet. Although discontinuous, the Haar functions are the only Daubechies wavelets that
are symmetric and have analytical expression, as shown in (2.10). Haar and other examples of
extremal-phase wavelets are presented in Figure 2.

(a) D2. (b) D4. (c) D12.

Figure 2 – Graphs of scaling and wavelet functions of daublets: (a) D2 is a daublet basis (also known as
Haar basis) with one vanishing moment; (b) D4 is a daublet basis with two vanishing moments;
(c) D12 is a daublet basis with six vanishing moments.

Symmlets

Daubechies (1988) constructed 7 classes of symmlets. As with daublets, the difference
between each symmlet lies in their low-pass filter length and support width. The coefficients
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(a) S8. (b) S12. (c) S16.

Figure 3 – Graphs of scaling and wavelet functions of symmlets: (a) S8 is a symmlet basis with four
vanishing moments; (b) S12 is a symmlet basis with six vanishing moments; (c) S16 is a
symmlet basis with eight vanishing moments.

{hk} for symmlets with vanishing moments varying from 4 to 10 are tabulated in Daubechies
(1992, p. 198).

Although symmlets are not symmetric, they were constructed to be as close as possible
to symmetry given the support [0,2N−1]. For that reason, Daubechies (1988) called this family
of wavelets least-asymmetric. A deeper discussion about the phase properties of these wavelet
filters can be found in Percival and Walden (1999, p. 108-116). Figure 3 presents the scaling and
wavelet functions for some symmlets.

Coiflets

Daubechies named this family of wavelets after R. Coifman, who was the one to suggest
that orthonormal wavelet bases with vanishing moments for both wavelet and scaling functions
could lead to higher compressibility (DAUBECHIES, 1992; BEYLKIN; COIFMAN; ROKHLIN,
1991). Therefore, in contrast to the daublets and symmlets that have vanishing moments only
for the wavelet function, the coiflets were constructed to also have vanishing moments for the
scaling function.

Coiflets are even less asymmetric than symmlets. However, because of that, their wavelets
have larger support than the symmlets’ wavelets (VIDAKOVIC, 1999). The coefficients {hk} for
all the 5 coiflets constructed are tabulated in Daubechies (1992, p. 261). Figure 4 presents the
scaling and wavelet functions for some wavelets of this family.

2.4 The discrete wavelet transform

Up to now, the function space of interest has been L2(R). However, in many practical sit-
uations, the data is sampled over a finite interval, such as the unit interval [0,1] (ABRAMOVICH;
BAILEY; SAPATINAS, 2000). In this perspective, transforming a signal within [0,1] to the
wavelet domain may require some boundary handling (OGDEN, 1997). To address this condition,
a usual approach is to assume that the function that lies within [0,1] is a periodic function with
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(a) C6. (b) C12. (c) C18.

Figure 4 – Graphs of scaling and wavelet functions of coiflets: (a) C6 is a coiflet basis with two vanishing
moments; (b) C12 is a coiflet basis with four vanishing moments; (c) C18 is a coiflet basis with
six vanishing moments.

period one. For more details about different boundary handling approaches see Ogden (1997),
Cohen, Daubechies and Vial (1993), and Restrepo and Leaf (1997).

Without loss of generality, consider f (t) ∈ L2([0,1]) to be the function of interest of
some application. In practice, we only have access to f applied to a grid of points in time or
space. Thus, let fff = ( f (t1), . . . , f (tn))T be a vector of samples of f (t) on a discrete grid of n

equally spaced points ti, with n = 2J , for some positive integer J. The discrete wavelet transform
(DWT) allows us to transform fff to the wavelet domain, which means obtaining the scaling and
detail coefficients, as in (2.5) and (2.6).

The DWT maps discrete time series from the time domain into the wavelet domain. The
outputs of the DWT are a set of wavelet coefficients that preserve the local behavior of the
transformed data (VIDAKOVIC, 1999). In matrix notation, the DWT of fff is

θθθ =WWW fff ,

where θθθ = (c00,d00,dddT
1 , . . . ,ddd

T
J−1)

T is a vector of size n, having both scaling and detail coeffi-
cients ddd j = (d j0,d j1, . . . ,d j2 j−1)

T , and WWW is an orthonormal matrix related to the orthonormal
wavelet basis chosen to perform the wavelet transformation.

Since WWW is orthonormal, we can perfectly reconstruct the original vector fff from θθθ , using
the inverse discrete wavelet transform (IDWT), that is,

fff =WWW T
θθθ , (2.12)

because WWW T =WWW−1, where WWW T is the transpose of WWW . The matrix WWW is constructed by combining
the quadrature mirror filters given in (2.7) and in (2.8). In Example 1, we present the transform
matrix WWW related to the Haar basis. For a comprehensive treatment of the construction of the
wavelet transform matrix, see, e.g., Fleet (2011).

Example 1. Let fff = (1,0,2,−1,0,3,1,2)T be a data set we want to transform by Haar’s DWT.
Then, the wavelet coefficients can be calculated as
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.

The DWT performed by matrix multiplication demands 𝒪(n2) operations. Therefore, it
is not viable when the input vector is very long. Mallat (1989) developed a pyramidal algorithm,
also known as cascade algorithm, to perform discrete wavelet transforms more efficiently than by
matrix multiplication. Mallat’s method takes only𝒪(n) operations to perform the DWT of a data
set of size n. The algorithm does this through successive convolution and decimation operations.

Definition 6. Let hhh and aaa be two bi-infinite sequences. The convolution product yyy of hhh and aaa is a
bi-infinite sequence denoted by yyy = hhh⋆aaa, whose n-th component is given by

yn =
∞

∑
k=−∞

hkan−k.

Corollary 1. The n-th component of a convolution product of a Finite Impulse Response hhh and
an input sequence aaa (bi-infinite or finite) is a finite sum

yn =
L

∑
k=M

hkan−k = hMan−M + · · ·+h−1an+1 +h0an +h1an−1 + · · ·+hLan−L. (2.13)

Mallat’s algorithm starts by convolving the original signal with the mirror filters hhh, in
(2.7), and ggg, in (2.8). In case of Daubechies wavelets, these filters are FIR. Therefore, the output
sequences of the convolution products are given by (2.13). Subsequently, the method discards
the sequence values on positions with odd indices. This procedure is called downsampling or
decimation by two.
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The outputs are the sequences of detail and scaling coefficients of the finest level J−1
of the wavelet decomposition. Then, the algorithm keeps convolving and downsampling the
sequence of scaling coefficients until all wavelet coefficients are generated. Figure 5 illustrates
the cascade organization of coefficients obtained through this algorithm.

: Convolve with filter x

: Downsampling by two

Figure 5 – Illustration of the wavelet decomposition through the cascade algorithm. H represents the
low-pass filter and G represents the high-pass filter.

The cascade algorithm also performs the inverse discrete wavelet transform (IDWT). It
first expands the sequences of scaling and detail coefficients of the coarsest level by inserting
zeros between each entry. This process is called upsampling or dilation by two. Subsequently,
the algorithm convolves the expanded sequences with the corresponding mirror filters (hhh for the
scaling coefficients and ggg for the detail coefficients) and sums the outputs.

The result is the sequence of scaling coefficients belonging to the subsequent finer scale.
Then, the algorithm keeps upsampling and convolving the sequences of coefficients until the
signal is reconstructed from the coefficients of the finest level J−1. Figure 6 presents a diagram
for the wavelet reconstruction process by the pyramidal algorithm.
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: Convolve with filter x

: Upsampling by two

Figure 6 – Illustration of the wavelet reconstruction through the cascade algorithm. H represents the
low-pass filter and G represents the high-pass filter.
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CHAPTER

3
WAVELET SHRINKAGE

In this chapter, we present a well-established wavelet procedure used in statistics: wavelet
shrinkage. In this approach, wavelets are employed under a problem of nonparametric regression
to estimate the regression function. In section 3.1, we introduce this technique, and in section 3.2,
we describe the Bayesian framework for wavelet shrinkage. The final section 3.3 shows some
examples, on synthetic data sets, of the performance of the presented methods to wavelet
shrinkage.

3.1 Denoising problem

Consider the nonparametric regression model

yyy = fff + eee, (3.1)

where yyy = (y1,y2, . . . ,yn)
T is the vector of observed values, fff = ( f (1/n), f (2/n), . . . , f (n/n))T

is the function of interest applied to a grid of equally spaced points, and eee = (e1,e2, . . . ,en)
T

is a vector of zero-mean random variables, known in the literature as white noise vector (VI-
DAKOVIC, 1999). For most applications, unless otherwise specified, et’s are independent and
identically distributed normal random variables with zero mean and constant variance σ2.

The goal of nonparametric regression is to recover the unknown function f from the noisy
observations yyy. With that in mind, Donoho and Johnstone (1994) proposed a simple method,
using wavelets, to estimate f . The motivation for this approach, known as wavelet denoising,
lies in transforming the noisy observations to the wavelet domain through some orthonormal
wavelet basis.

When using an orthonormal basis to perform the DWT of (3.1), the DWT of eee is also a
vector of independent and identically distributed normal random variables with zero mean and
variance σ2. Hence, the DWT of yyy spreads the noise equally over all wavelet coefficients but
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concentrates most of the signal related to the function f in a few large coefficients (DONOHO;
JOHNSTONE, 1994).

Following this scenario, the authors propose transforming the observations yyy through the
DWT to shrink the noisy wavelet coefficients or even equal them to zero using some threshold.
Then, once these coefficients have been shrunk/thresholded, the method applies the IDWT to
obtain the estimate of fff . Let n be a power of two, n = 2J for some positive integer J, then we
can represent (3.1) in the wavelet domain as

ddd* = θθθ + εεε, (3.2)

where ddd*=WWWyyy, θθθ =WWW fff , and εεε =WWWeee, with WWW being the matrix associated with the orthonormal
wavelet basis chosen to perform the wavelet transformation.

There are many threshold rules to process the coordinates of vector ddd*. Under all of them,
one sets to zero all wavelet coefficients whose absolute values are below a threshold λ . The
difference between distinct rules lies in how they deal with coefficients whose absolute values
exceed λ . Figure 7 depicts the two most common threshold rules: hard thresholding,

δ
h(d*,λ ) = dI{|d*|>λ}, λ ≥ 0,d* ∈ R,

and soft thresholding,

δ
s(d*,λ ) = sgn(d)max(0, |d*|−λ ) λ ≥ 0,d* ∈ R.

Although these methods determine if the coefficients should be discarded or kept/shrunk,
their effectiveness depends on an appropriate choice of threshold. If λ is too small, only a few
noisy coefficients would be discarded. On the other hand, if λ is excessively large, one can
compromise features of the unknown function (ABRAMOVICH; BAILEY; SAPATINAS, 2000).

Donoho and Johnstone (1994) proposed the RiskShrink threshold, also called universal

threshold, given by
λ = σ

√
2log(ι),

with σ being the standard deviation of εεε and ι the number of coefficients at the finest resolution
level, i.e., ι = 2J−1. In real problems, σ is replaced by its estimate σ̂ . Donoho and Johnstone
(1994) suggested estimating σ by computing the median absolute deviation (MAD)1 of the
finest-scale coefficients, because, usually, the empirical wavelet coefficients at that level are
essentially noise (NASON, 2008).

Another possible choice for λ is the argument that minimizes Stein’s unbiased risk esti-
mate (SURE) (STEIN, 1981). Donoho and Johnstone (1995) proposed specifying this threshold
level-wise and called this procedure of SureShrink. There are several other alternative data-
adaptive thresholding rules. We emphasize the Bayesian approaches for thresholding, because it
is a topic of interest in this work.
1 The MAD of a data set is the median of the absolute deviations from the data’s median.
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Figure 7 – Hard (full line) and soft thresholding (dashed line) rules for a threshold λ .

3.2 Bayesian regularization: spike and slab priors
A Bayesian wavelet shrinkage consists in placing a prior distribution to each wavelet

coefficient of the unknown function. The prior is designed to capture the sparseness associated
with most wavelet decompositions. Then, the vector θθθ = (c00,d00,dddT

1 , . . . ,ddd
T
J−1)

T , where ddd j =

(d j0,d j1, . . . ,d j2 j−1)
T , is estimated using some Bayes estimator and the resulting posterior

distribution of the wavelet coefficients. Applying the IDWT to the estimated θθθ gives us an
estimation of vector fff .

One of the earliest contributions to Bayesian wavelet shrinkage is Chipman, Kolaczyk
and McCulloch (1997), who propose a mixture between two Gaussian components as prior for
each wavelet coefficient related to the function we want to estimate. This prior can be specified
as

π jN(0,υ2
j )+(1−π j)N(0,c jυ

2
j ), (3.3)

k = 0,1, . . . ,2 j−1, j = 0,1, . . . ,J−1, where π j,c j and υ2
j are prior parameters to be chosen at

each resolution level j. This procedure is due to the fact that, typically, at finer resolution levels,
the wavelet coefficients contain more noise than signal. The idea is to set considerably small
values to υ2

j and large values to c j, j = 0, . . . ,J−1. In this setup, the Gaussian component with
the largest variance would describe the behavior of coefficients to be considered as containing
some signal, while the other one would capture the null coefficients (CHIPMAN; KOLACZYK;
MCCULLOCH, 1997).

In Bayesian variable selection methods, (3.3) is also known as spike and slab prior,
precisely because the spike component shrinks coefficients associated with irrelevant predictors
and the slab component generates plausible values for the regression coefficients. The spike
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and slab prior in (3.3) is originally brought by the Stochastic Search Variable Selection (SSVS)
approach, proposed by George and McCulloch (1993).

Another type of spike and slab prior is the one presented by Kuo and Mallick (1998),
where the spike component is a point of mass at zero, also called Dirac spike. This spike and slab
prior is also incorporated in Bayesian wavelet shrinkage methods with the work of Abramovich,
Sapatinas and Silverman (1998), who assume that the detail wavelet coefficients are mutually
independent and each one is distributed following

π jN(0,υ2
j )+(1−π j)δ0(θ jk), (3.4)

k = 0,1, . . . ,2 j−1, j = 0,1, . . . ,J−1, with δ0 being a point mass at zero. The hyperparameters
π j and υ2

j are specified appropriately for each resolution level j. Observe that, in model (3.4),
the π j corresponds to a prior probability that a wavelet coefficient at level j is non-null. Because
of that, π j is called sparsity parameter.

Abramovich, Sapatinas and Silverman (1998) assume that the hyperparameters υ2
j and

π j are of the form

υ
2
j = 2−α jC1 and π j = min(1,2−β jC2),

k = 0,1, . . . ,2 j− 1, j = 0,1, . . . ,J− 1, where C1,C2,α and β are non-negative constants. Ac-
cording to Abramovich, Sapatinas and Silverman (1998), C1 and C2 are chosen empirically from
the data, while α and β are selected in conformity with the user’s prior knowledge about the
smoothness of the unknown function. In the absence of such knowledge, the authors suggest
using the default choice α = 0.5 and β = 1, since it is robust to various degrees of smoothness
(ABRAMOVICH; SAPATINAS; SILVERMAN, 1998).

To complete the prior specification, Abramovich, Sapatinas and Silverman (1998) places
a diffuse prior on the scaling coefficient at the coarsest level c00. Diffuse priors are extensions
of the uniform distribution, whose purpose is to minimize the bearing of the prior selection on
the inference (MARIN; ROBERT, 2007). As a result, c00 is estimated by the sample scaling
coefficient obtained from the DWT of the data (ABRAMOVICH; SAPATINAS; SILVERMAN,
1998).

Under the prior (3.4), the posterior distribution for each detail coefficient is also a mixture
between a Gaussian distribution and δ0, given by

θ jk|d*jk ∼ πpostN

(
υ2

j

1+υ2
j
d*jk,

υ2
j

1+υ2
j

)
+(1−πpost)δ0(θ jk),

πpost =
π jgυ2

j
(d*jk)

π jgυ2
j
(d*jk)+(1−π j)φ(d*jk)

,

(3.5)

k = 0,1, . . . ,2 j− 1, j = 0,1, . . . ,J− 1, where φ denotes the standard normal density and g
υ2

j

denotes the convolution between the slab component in (3.4) (in this case N(0,υ2
j )) and φ . Using
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γ to denote the slab density and ⋆ to denote the convolution operator, we can write g = γ ⋆φ . See
subsection B.1.1 for the complete derivation of (3.5).

To estimate the vector θθθ , Abramovich, Sapatinas and Silverman (1998) argue that
choosing the traditional L2-loss function as the Bayes rule would only shrink small coefficients
towards zero, but not necessarily equal them to zero. Thus, this procedure is known as shrinkage

rule. If the goal is to set all the estimated noisy coefficients to zero, i.e., if one wants a thresholding

rule, the authors suggest the posterior median instead of the posterior mean as the Bayes rule.
Abramovich, Sapatinas and Silverman (1998) refer to this Bayesian thresholding procedure as
BayesThresh.

Johnstone and Silverman (2005a, 2005b) propose an approach known as Empirical Bayes

thresholding. Instead of considering a Gaussian component to describe the behavior of non-null
coefficients, the authors consider heavy-tailed distributions. This replacement intends to provide
larger estimates for the true signal coefficients than those obtained from Gaussian distributions.

Concerning the slab component, the authors focus on two heavy-tailed distributions:
the Laplace density and another density whose tails have the same weight as those of the
Cauchy distribution. Because of that, the authors call the latter by quasi-Cauchy (JOHNSTONE;
SILVERMAN, 2005b). Considering the Laplace density as the slab component, the prior for
each detail wavelet coefficient can be written as

π jγa(θ jk)+(1−π j)δ0(θ jk), (3.6)

k = 0,1, . . . ,2 j − 1, j = 0,1, . . . ,J − 1, where γa(x) denotes the Laplace density with scale
parameter a > 0, i.e.,

γa(x) =
a
2

exp(−a|x|), x ∈ R. (3.7)

Johnstone and Silverman (2005a, 2005b) thresholding method is called Empirical Bayes
because the hyperparameters π j and a (when the slab component follows a Laplace distribution)
are chosen automatically from the data, using a marginal maximum likelihood approach. This
means that for each resolution level j of the wavelet transform, the method selects the arguments
π j and a that maximize the marginal log-likelihood and plugs them back into the prior. Then, the
estimation of θθθ is carried out with either posterior medians, posterior means, or other estimators.

Under the prior (3.6), the posterior distribution is given by

θ jk|d jk ∼ πpost f1(θ jk|d jk)+(1−πpost)δ0(θ jk),

πpost =
π jga(d*jk)

π jga(d*jk)+(1−π j)φ(d*jk)
,

(3.8)

k = 0,1, . . . ,2 j−1, j = 0,1, . . . ,J−1, with f1(θ jk|d jk) being the non-null mixture component
and ga = γa⋆φ . It can be shown that f1(θ jk|d jk) is a mixture of two truncated normal distributions
(see subsection B.1.2 for the complete derivation). Let X have a normal distribution with mean



38 Chapter 3. Wavelet shrinkage

µ and variance σ2 that lies within the interval (α,β ), where −∞≤ α < β ≤ ∞. Thus, we say
that x, conditional on α < x < β , has a truncated normal distribution and denote its density by
fTN(x|µ,σ ,α,β ). Then, with a slight abuse of notation, we can write f1(θ jk|d jk) as

f1(θ jk|d jk) = η× fTN

(
θ jk

∣∣∣∣d jk

σ j
−a,1,0,+∞

)
+(1−η)× fTN

(
θ jk

∣∣∣∣d jk

σ j
+a,1,−∞,0

)
,

(3.9)

where

η =
exp(−ad jk

σ j
)Φ(

d jk
σ j
−a)

exp(ad jk
σ j
)Φ̃(

d jk
σ j

+a)+ exp(−ad jk
σ j
)Φ(

d jk
σ j
−a)

,

with Φ denoting the standard normal cumulative function, and Φ̃ = 1−Φ.

3.3 Wavelet Shrinkage examples
In the previous sections, we present Frequentist and Bayesian methods that reduce

signal noise using wavelet bases. Although this work focuses on the Bayesian approaches of
section 3.2, for comparative purposes only, in this section, we use synthetic data sets to illustrate
the performance of all the presented methods. We consider five different functions to generate the
data sets, with the last three being among the test functions introduced by Donoho and Johnstone
(1994):

1. Parabolic:

f (t) = 3(t−0.5)2 +0.125. (3.10)

2. Sinusoidal:

f (t) = 0.4 cos(2π(t +π))+0.5. (3.11)

3. Heavisine:

f (t) = 4 sin(4πt)− sgn(t−0.3)− sgn(0.72− t). (3.12)

4. Blocks:

f (t) =
11

∑
i=1

hib(t− ti), where b(r) = (1+ sgn(r))/2. (3.13)

• {ti}= {0.1,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76,0.78,0.81};

• {hi}= {4,−5,3,−4,5,−4.2,2.1,4.3,−3.1,5.1,−4.2}.

5. Bumps:

f (t) =
11

∑
i=1

hib((t− ti)/si), where b(r) = (1+ |r|)−4. (3.14)
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• {ti}= {0.1,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76,0.78,0.81};

• {hi}= {4,5,3,4,5,4.2,2.1,4.3,3.1,5.1,4.2};

• {si}= {0.005,0.005,0.006,0.01,0.01,0.03,0.01,0.01,0.005,0.008,0.005}.

We apply each function to 1024 equally spaced points on [0,1]. Then, we corrupt these
samples with independent normally distributed noise N(0,σ2). The values for σ are taken to
satisfy a signal-to-noise ratio (SNR)1 equal to 4. Figure 8 shows the samples with their respective
corrupted versions. In real denoising problems, we have access only to the noisy versions. Thus,
we aim to reduce the noise and get the most reliable estimate of the signal that is not accessible.
In this simulated study, since we have access to the real signals, we can compare them with the
estimates provided by each method and obtain an idea of their performances.

Once the noisy data is generated, we obtain its wavelet coefficients by applying the
pyramidal algorithm implemented in wavethresh (NASON, 2016). Henceforth, we use the
coiflet basis with six vanishing moments to perform the transform. It should be stressed that,
regarding posterior simulations, using other Daubechies wavelet bases provides similar results to
those achieved by this specific coiflet basis. We will not present these supplementary analyses
due to space limitations. Additionally, following Donoho and Johnstone (1994), we estimate the
standard deviation of the noise by computing the MAD of the finest-scale coefficients.

In order to denoise the coefficients, we apply the four methods briefly introduced in this
chapter: universal threshold, SureShrink threshold, BayesThresh approach, and Empirical Bayes
thresholding. To apply the BayesThresh procedure, the default choices for α = 0.5 and β = 1
are used. Regarding the Empirical Bayes approach, we use the mixture between a point mass at
zero and the Laplace density as prior. In this scenario, the scale parameter a is estimated jointly
with the sparsity parameter through the marginal maximum likelihood approach (JOHNSTONE;
SILVERMAN, 2005a; JOHNSTONE; SILVERMAN, 2005b). For the Frequentist approaches,
we consider the soft thresholding rule, whereas in the Bayesian thresholding methods, we use
the posterior median as the point estimate.

Even though this is a simple simulation, it allows us to compare the methods and visualize
the denoising contexts where they are eligible. Figures 9 –13 show the estimated signals of all
the methods. When the signals are smoother (Parabolic and Sinusoidal), all procedures perform
similarly at denoising them. However, the estimates diverge when the functions are rougher
(Heavisine, Bumps, and Blocks). For instance, the reconstructions provided by the Universal and
SureShrink thresholds for the Heavisine function do not follow signal discontinuities as well
as the Bayesian methods do. Likewise, the Universal threshold underperforms when estimating
corners in the Blocks function and high peaks in Bumps. Although the estimates for the Blocks

1 The SNR is the ratio of the sample standard deviation of the signal to the standard deviation of the
noise.
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Figure 8 – On the left-hand side are presented,respectively, the functions: Parabolic, Sinusoidal, Heavisine,
Blocks and Bumps. On the right-hand, the same functions with added iid Gaussian noise with
a variance chosen to achieve a SNR of 4.
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(d) Empirical Bayes thesholding

Figure 9 – Original Parabolic function (full lines) and various reconstructions of the signal based on
different thresholding methods (dashed lines).

and Bumps of the other three methods are alike, the estimates of the SureShrink threshold are
noisier than the estimates of the Bayesian methods.

In reason of the good performance of Bayesian approaches in estimating curves through
wavelet bases, from now on, they will be employed for these purposes. In the next chapter, we
present the dynamic Gaussian mixture model and discuss how to use wavelet bases within the
estimation of this model following a Bayesian framework.
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(d) Empirical Bayes thesholding

Figure 10 – Original Sinusoidal function (full lines) and various reconstructions of the signal based on
different thresholding methods (dashed lines).
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(d) Empirical Bayes thesholding

Figure 11 – Original Heavisine function (full lines) and various reconstructions of the signal based on
different thresholding methods (dashed lines).
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(d) Empirical Bayes thesholding

Figure 12 – Original Blocks function (full lines) and various reconstructions of the signal based on
different thresholding methods (dashed lines).
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Figure 13 – Original Bumps function (full lines) and various reconstructions of the signal based on
different thresholding methods (dashed lines).
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CHAPTER

4
DYNAMIC GAUSSIAN MIXTURE MODEL

In Chapter 3, we presented some Bayesian wavelet shrinkage methods. In this chapter,
we discuss how wavelet bases can be employed to address the estimation problem of a dynamic
Gaussian mixture model. We begin introducing the model in section 4.1 and section 4.2. Then,
in section 4.3, we comment on the conditional posterior distributions of the mixture parameters
used within the MCMC sampling schemes. At last, in section 4.4, we present two estimation
approaches for the mixture weights based on Bayesian wavelet shrinkage methods.

4.1 Finite mixture models
In several statistical problems, we deal with data that cannot be suitably modeled by

a single unimodal distribution. Unlike simple parametric models that may fail to fit data with
multimodal behavior, finite mixture models can provide satisfactory approximations of data sets
with irregular patterns. They do this by clustering the data observations into subgroups, also
known as mixture components.

Usually, mixture models assume that a sample y1, . . . ,yn represent i.i.d. realizations from
a random variable Y that belongs to a population composed of K subpopulations. Within each
subpopulation g, the random variable Y is modeled by a distribution with probability density
function f (y|ρρρg). The definition of finite mixture models is given below.

Definition 7. A random variable Y with support in 𝒴 ∈ R follows a finite mixture distribution if
its probability density function is given by

f (y|ρρρ,ααα) =
K

∑
g=1

αg f (y|ρρρg), ∀y ∈ 𝒴, (4.1)

where ααα = (α1, . . . ,αK)
T is the vector of mixture weights, such that

K
∑

g=1
αg = 1 and 0≤ αg ≤ 1,

g = 1, . . . ,K, with ρρρ = (ρρρT
1 , . . . ,ρρρ

T
K)

T being the vector of component parameters.
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f(x) = 0.5 fN(x| − 5, 1) + 0.5 fN(x|3, 4)
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Figure 14 – Density of a mixture of two univariate normal distributions.

A mixture model often found in many context is the mixture model with two components,
i.e.,

f (y|ρρρ,ααα) = α f (y|ρρρ1)+(1−α) f (y|ρρρ2) ∀y ∈ R, (4.2)

where 0≤ α ≤ 1. In clinical and epidemiological settings, for example, a two-component mix-
ture model is frequently used to classify data between the groups “disease absent” and “disease
present” (HALL; ZHOU, 2003). For more details see, e.g., Rindskopf and Rindskopf (1986)
and Hui and Zhou (1998). Another example of an application based on (4.2) is contamination
problems, commonly found in astronomy studies (PATRA; SEN, 2016). In these scenarios, a
sample of objects of interest (known as members) from a distant galaxy (e.g., stars) is contami-
nated to some extent by foreground/background objects (known as contaminants). Therefore,
using a two-component mixture model allows separating the objects between groups: members
and contaminants (see Walker et al. (2009)). In genetics, these models are also used to detect
differentially expressed genes within microarray data (see Bordes, Delmas and Vandekerkhove
(2006)).

Most of the previous work on this problem frequently assumes that the component
densities arise from parametric families of distributions (PATRA; SEN, 2016). In fact, one of the
first mixture models fitted to a heterogenous data set was a mixture of two univariate Gaussian
densities (see Pearson (1894)). When the mixture components are normal distributions, the
mixture model is also called a Gaussian mixture model. Thus, (4.2) becomes

f (y|ρρρ,ααα) = α fN(y|µ1,σ
2
1 )+(1−α) fN(y|µ2,σ

2
2 ) ∀y ∈ R, (4.3)

where fN(x|a,b) corresponds to the probability density function of a normal random variable with
mean a and variance b, evaluated at x. In Figure 14, we present the density of a two-component
mixture of univariate normal distributions.
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Observe that in all mixture models discussed, (4.1), (4.2) and (4.3), their mixture compo-
nents are assigned to mixing probabilities with constant behavior. However, this setting can be
restrictive and unsuitable for some applications. For instance, in medical studies concerning the
longitudinal effects of treatments, we are interested in classifying the patients between "disease
present" and "disease absent" according to their response to medications across time. In this
context, the probability of a patient belonging to a certain group is not constant. In fact, it is a
function of time, and therefore, it is dynamic (see, e.g., Lu and Song (2012)).

For these scenarios, we can extend the finite mixture model in Definition 7, allowing the
mixture weights to vary according to some index, making the model more flexible and adaptive
to different data sets. Examples of this extension for a two-component mixture model are shown
in Figure 15. In these cases, the mixture weights vary continuously as functions of t. Notice
how the density behavior in the right column is dictated by the dynamic mixture weight in
the left column. From the examples depicted by Figure 15, we can have a general idea about
the challenge of estimating mixture weights that have a dynamic behavior. In the next section,
we formalize the two-component Gaussian mixture model with dynamic mixing probabilities
studied in this work.

4.2 The dynamic Gaussian mixture model
Suppose that y1, . . .yn represent a random sample from the dynamic Gaussian mixture

model

yt = (1− zt)x1t + ztx2t ,

xkt |µk,τ
2
k ∼ N(µk,τ

−2
k ), k = 1,2,

zt |αt ∼ Bern(αt), t = 1, . . . ,n,

(4.4)

where zt’s are non-observable allocation variables that indicate to which mixture component the
observations yt’s belong to. The zt have a Bernoulli distribution with parameter αt , the unknown
mixture weight, which has a dynamic behavior. In this sense, if zt = 1, the t-th observation
belongs to the normal population with mean µ2 and precision τ2

2 , otherwise yt is sampled from
the normal population with mean µ1 and precision τ2

1 .

In this context, besides the concern about estimating the component parameters µµµ =

(µ1,µ2)
T and τττ222 = (τ2

1 ,τ
2
2 )

T , we are also interested in estimating the dynamic behavior of the
mixing probability αt . Figure 16 shows the influence of αt on the shape of the mixture’s density
curve. Observe the modification of the density curve as αt varies.

In a frequentist framework, the estimation of the mixture parameters lies in implementing
an Expectation-Maximization (EM) algorithm over the mixture likelihood function. Nevertheless,
in many cases, the success of this approach depends on both the stopping criterion and the initial
values used. Another disadvantage of the EM algorithm is the slow convergence rate that it may
present (KARLIS; XEKALAKI, 2003).
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Figure 15 – Functions used to describe the mixture weight behavior are presented on the left-hand side.
In the right column, the densities of the mixtures of two univariate normal distributions,
whose mixture weight follows the dynamic behavior presented on the left. The mixtures are
generated according to f (y) = (1−αt) fN(x|−5,1)+αt fN(x|3,4).
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f(y) = αt fN(y| − 5, 1) + (1 − αt) fN(y|3, 4)

α1

α2

α3

α4

α5

−10 −5 0 5 10
y

αt

 α5 = 0.5

 α4 = 0.6

 α3 = 0.7

 α2 = 0.8

 α1 = 0.9

Figure 16 – Illustration of the influence of the dynamic mixture weight on the shape of the density. In this
work, we are concerned about estimating the values that αt assumes for each t.

From a Bayesian perspective, a practical estimation of µµµ and τττ222 lies in data augmentation
and MCMC algorithms (see, e.g., Lavine and West (1992)). Once assigned prior distributions to
the unknown parameters, one can use methods such as Monte Carlo Markov Chain to sample
from the joint posterior distribution and, therefore, make inferences (e.g., point and credible
estimates).

Well-known results from Markov chain theory guarantee that in the long run, under
reasonably general conditions, the distribution of the posterior draws of each parameter converges
to a stationary distribution, which could be shown to be equal to the posterior distribution of
interest (CASELLA; GEORGE, 1992). The Gibbs sampling algorithm is especially useful
when one can not analytically determine or directly sample from the complete joint posterior
(KRUSCHKE, 2014). Due to these properties, this algorithm is a beneficial approach to obtaining
Bayesian inference about unknown parameters.

To obtain the posterior draws from the MCMC sampling scheme, we specify conjugate
prior distributions to the component parameters and, through sampling from their posterior
distributions, we obtain the posterior draws. In the following section, we derive the conditional
posterior distributions of these parameters. Regarding the dynamics of the mixture weight, we
study two wavelet-based estimation approaches to this task (see section 4.4).

4.3 Full conditional posterior distributions

This section provides the full conditional posterior distributions of µµµ and τττ222 and zzz =

(z1, . . . ,zn)
T . Following the model (4.4), we consider that each observation of the sample yyy =



50 Chapter 4. Dynamic Gaussian Mixture Model

(y1, . . . ,yn)
T is drawn from one of two different normal subpopulations. Relevant group-specific

quantities are the number Tk of observations in group k and the group mean sk/Tk, where, for
k = 1,2,

Tk = #{t : zt = k−1, t = 1,2, ...,n},

sk = ∑
t:zt=k−1

yt .

In order to derive the full conditional posterior distribution of µk and τ2
k , we assume that

the data set available yyy is a time series whose dependence structure is determined by the dynamic
mixture weight behavior αt , i.e., p(yyy|µµµ,τττ222,zzz) = ∏

n
t=1 p(yt |zt ,µµµ,τττ

222) and p(zzz|α1, . . . ,αn) =

∏
n
t=1 p(zt |αt) (MONTORIL; CORREIA; MIGON, 2021). For the sake of simplicity, let us

denote by [. . . ] the set of all remaining variables to be considered for the posterior in use. Then,
the complete-data likelihood function is given by

p(yyy|[. . . ]) =
2

∏
k=1

(
τ2

k
2π

)Tk/2

exp

[
−

τ2
k
2 ∑

t:zt=k−1
(yt−µk)

2

]
.

Each factor of this multiplication carries all information about the parameters of a certain
group k, and each one, combined with a prior, gives us the posterior density of µk or τ2

k . Here,
we are considering independent priors for the component parameters µµµ and τττ222, which means
p(µµµ,τττ222

kkk) = p(µ1)p(τ2
1 )p(µ2)p(τ2

2 ).

Under the conjugate priors µk ∼ N(b0k,B0k) and τ2
k ∼ Γ(c0k,C0k), one obtains the condi-

tional posterior distributions for each µk and τ2
k , respectively,

µk|[. . . ]∼ N(bk,Bk), (4.5)

τ
2
k |[. . . ]∼ Γ(ck,Ck), (4.6)

where

Bk = (B−1
0k + τ

2
k Tk)

−1,

bk = Bk(τ
2
k sk +B−1

0k b0k),

Ck =C0k +

∑
t:zt=k−1

(yt−µk)
2

2
,

ck = c0k +
Tk

2
.

Given the observations yyy and the parameters µµµ , τττ222 and ααα = (α1, . . . ,αn)
T , the zt’s are

conditionally independent and p(zt = 1|yyy,µµµ,τττ222,ααα) ∝ αt fN(yt |µ2,τ
−2
2 ). It follows that, for each

t = 1, . . . ,n, the full conditional posterior of zt is given by

zt |[. . . ]∼ Bern(βt),

βt =
αt fN(yt |µ2,τ

−2
2 )

αt fN(yt |µ2,τ
−2
2 )+(1−αt) fN(yt |µ1,τ

−2
1 )

.
(4.7)
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4.3.1 The label switching problem

The term label switching was introduced by Redner and Walker (1984) to denote the
invariance of a mixture likelihood function under relabelling the mixture components. This
phenomenon is not an issue for maximum likelihood estimation. However, in a Bayesian context,
if not properly addressed, the label switching can lead to inadequate estimates of the component
parameters (STEPHENS, 2000).

A common strategy to address this problem is to impose an identifiability constraint on
the parameter space. Thus, whenever an MCMC draw does not fulfill the established constraint,
one permutes the labeling of the component parameters to satisfy the restriction. In our approach,
we adopt the simple constraint µ1 < µ2 and reorder the pairs (µk,τ

2
k ) accordingly.

4.4 Estimation of the dynamic mixture weights

In this section, we present two wavelet-based approaches to estimate the dynamic
mixture weights αt . The first consists of transforming the original data into a regression, whose
regression function is the mixture weight αt . This rescaling procedure is the same used by
Montoril, Pinheiro and Vidakovic (2019). Once rescaled the observations, we use Bayesian
wavelet shrinkage techniques to reduce the noise associated with αt .

The second approach adapts the data augmentation method proposed by Albert and Chib
(1993) to model the allocation data zt |αt ∼ Bern(αt) in (4.4). As in Albert and Chib (1993), we
also combine the probit binary regression model on the zt’s with a normal linear regression on
the introduced latent variables. The adaptation consists of using a matrix associated with an
orthonormal wavelet basis as the design matrix in the regression.

4.4.1 Wavelet regression approach

Let us define

mt =
yt−µ1

µ2−µ1
,

where yt , µ1 and µ2 are specified in (4.4). We can rewrite mt following a nonparametric regression

mt = αt +ut , t = 1, . . . ,n,

ut = zt
x2t− x1t

µ2−µ1
−αt +

x1t−µ1

µ2−µ1
,

(4.8)

with u1, . . . ,un being independent realizations of a random variable (error). By rewriting mt as in
(4.8), we are transforming the mixture problem into a denoising problem. In this case, the error
is the noise that must be reduced to estimate the signal of interest (the dynamic mixture weights
αt’s). Given the observed values y1, . . . ,yn, these errors are uncorrelated, have zero mean, and
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present finite variance,

E(ut) = 0,

Var(ut) =
τ
−2
1

(µ2−µ1)2 +
τ
−2
2 − τ

−2
1

(µ2−µ1)2 αt +αt(1−αt),

as shown by Montoril, Pinheiro and Vidakovic (2019). Although we do not detail here, the errors
do not follow any well-known probability distribution in the literature. In fact, the errors have a
complex and heteroscedastic distribution. Because of this, we approximate it by a homoscedastic
Gaussian distribution, as usually done in practical situations.

Following this scenario, the estimation of αt , t = 1, . . . ,n, can be done through some
regularization technique that reduces the noise u1, . . . ,un in (4.8). In this work, we use wavelet
shrinkage as the regularization technique to address the estimation. In particular, we apply the
BayesThresh method, as described in section 3.2, to the wavelet coefficients obtained by DWT
applied to mmm = (m1, . . . ,mn)

T . The resulting MCMC procedure is described in Algorithm 1.

Algorithm 1 – Gibbs sampling algorithm - Wavelet regression - Version 1
1: Choose number of iterations N.
2: Specify initial values for µµµ(0), τττ222(0), zzz(0) = (z(0)1 , . . . ,z(0)n )T and ααα(0).
3: for i← 1 to N do
4: Sample µ

(i)
1 ∼ p(µ1|[. . . ]). ▷ See (4.5)

5: Sample τ2
1
(i) ∼ p(τ2

1 |[. . . ]). ▷ See (4.6)
6: Sample µ

(i)
2 ∼ p(µ2|[. . . ]). ▷ See (4.5)

7: Sample τ2
2
(i) ∼ p(τ2

2 |[. . . ]). ▷ See (4.6)
8: if µ2 < µ1 then
9: Permute the labeling of pairs (µ(i)

k ,τ2
k
(i)
).

10: end if
11: Sample z(i)t ∼ p(zt |[. . . ]), for t = 1, . . . ,n. ▷ See (4.7)
12: Calculate mmm(i) = (yyy−µ

(i)
1 )/(µ

(i)
2 −µ

(i)
1 ).

13: Compute ddd(i) =WWWmmm(i). ▷ WWW is the matrix form of the DWT.
14: Apply BayesThresh to ddd(i).
15: Calculate ααα(i) =WWW T ddd(i).
16: end for

Since the Markov chains may not be in equilibrium at the beginning, we discard the first
B iterations as the burn-in period. For posterior inference, we consider draws lagged by each L

iterations, in order to reduce correlation. Thus the final size of our marginal posterior samples is
Nfinal =

N−B
L .

4.4.2 Data augmentation approach

Let z1, . . . ,zn be independent binary random variables. For each t = 1, . . . ,n, there is
a vector xxxt = (xt1, . . . ,xt p)

T of known covariates. The probit model consists of defining the
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regression p(zt = 1) = Φ(xxxT
t θθθ), where Φ is the standard Gaussian cumulative function and

θθθ = (θ1,θ2, . . . ,θp)
T is a vector of p unknown parameters. Following Albert and Chib (1993),

to introduce the data augmentation approach, one creates an auxiliary random variable lt , such
that lt = xxxT

t θθθ + et and et ∼ N(0,1). Moreover, lt is built in a such way that zt = 1, if lt > 0, or
zt = 0, otherwise.

The key idea of our approach is to use the transpose of a matrix constructed from
an orthonormal wavelet basis WWW T as the design matrix XXX in the probit regression of the data
augmentation method proposed by Albert and Chib (1993). Thus, we introduce a random sample
lll = (l1, . . . , ln)T of n independent latent variables into the model (4.4), and define the allocation
variable zt to be 1, if lt > 0, and 0, otherwise. Then, for every t = 1, . . . ,n, we have

lt = hhhT
t θθθ + et ,

et ∼ N(0,1),

where hhht corresponds to the t-th column of matrix WWW and θθθ = (c00,d00,dddT
1 , . . . ,ddd

T
J−1)

T is the
vector of wavelet coefficients, such that p = n = 2J . In this scenario, the dynamic mixture weight
αt is the probability of success of zt , which is equal to the binary regression model given by

αt = Φ(hhhT
t θθθ).

Notice that the latent variables lt’s are unknown. However, given the vector of parameters
θθθ and the binary data zzz = (z1, . . . ,zn)

T , the distribution of lt follows a truncated normal distribu-
tion. Thus, in this work, as in Albert and Chib (1993), we use the Gibbs sampling algorithm to
draw l1, . . . , ln from their posterior distribution, that is,

lt |[. . . ]∼ N(hhhT
t θθθ ,1) truncated at left by 0 if zt = 1,

lt |[. . . ]∼ N(hhhT
t θθθ ,1) truncated at right by 0 if zt = 0.

(4.9)

For the vector of parameters θθθ , Albert and Chib (1993) derived the posterior distribution
of θθθ given zzz and lll under a diffuse prior. They also suggested using a proper conjugate Gaussian
distribution for θθθ . In this work, besides considering these priors, we also use mixtures between
a point mass at zero and a unimodal probability density function (Gaussian and Laplace). It
is important to emphasize that for all priors, we assume that the entries of θθθ are mutually
independent. In what follows, we detail these possible choices and describe the necessary
adaptations for each one.

Diffuse and Gaussian priors

Assigning a diffuse prior and a Gaussian prior with mean µ and variance τ−2 to θt (the
t-th element of vector θθθ ), would yield the following Gaussian distributions as the posterior
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conditional distributions of θt

θt |[. . . ]∼ N(wwwT
t lll,1), (4.10)

θt |[. . . ]∼ N
(

1
τ2 +1

(τ2
µ +wwwT

t lll),
1

τ2 +1

)
, (4.11)

where wwwt is a column-vector corresponding to the t-th row of matrix WWW . However, when sampling
the wavelet coefficients in (4.10) or (4.11), the posterior draws are corrupted with the gaussian
noise et , compromising the final estimates of αt .

An alternative to deal with this issue is regularizing the coefficients through some
thresholding method, such as the BayesThresh procedure. In order to illustrate the benefits of
this modification, we present in Figure 17 and Figure 18 the estimates of the αt’s curve with
and without the “denosing” procedure. For these simulations, we use the same data sets used in
section 4.5, where the reader can find more details. Observe that, for every data set, we cannot
have proper estimates for the dynamic mixture weights without denoising the coefficients.

Spike and Slab priors

Given that θθθ is a vector of wavelet coefficients, another alternative is to use a mixture
between a point mass at zero and some unimodal probability density function as the prior for θt .
For t = 2 j + k+1, k = 0, . . . ,2 j−1 and j = 0, . . . ,J−1, this kind of prior can be specified as

θt ∼ (1−π j)δ0(θt)+π jγ(θt), (4.12)

where γ can be the Gaussian distribution or the Laplace distribution as presented in (3.4)
and in (3.6), respectively. Following Abramovich, Sapatinas and Silverman (1998), the prior
specification is completed by placing a diffuse prior on the scaling coefficient at the coarsest
level c00, in the first entry of vector θθθ . Thus, for the mixture priors, θ1 = wwwT

1 lll.

As discussed in section 3.2, using these mixtures as priors for the θt’s allows the posterior
medians to act like thresholding rules, equating to zero coefficients thought to be noise. In
this scenarios, the posterior distribution of θt , where t = 2 j + k + 1, k = 0, . . . ,2 j − 1 and
j = 0, . . . ,J−1, would be of the form

θt |[. . . ]∼ (1−πpost)δ0(θt)+πpost f1(θt |wwwT
t lll),

πpost =
π jg(wwwT

t lll)
π jg(wwwT

t lll)+(1−π j)φ(wwwT
t lll)

,
(4.13)

where f1(θt |wwwT
t lll) is the posterior non-null mixture component and g is the convolution between

γ and the standard normal distribution φ , g = γ ⋆φ .

If γ in (4.12) is a Gaussian distribution as in (3.4), besides estimating the sparsity
parameter π j, it is necessary to estimate the variance of the Gaussian component υ2

j . The same
happens if γ is a Laplace as in (3.6), but instead of estimating the variance, it is necessary to
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estimate the scale parameter a. As suggested by Johnstone and Silverman (2005a, 2005b), these
hyperparameters can be estimated jointly by maximizing the marginal log likelihood function,
which, for j = 0, . . . ,J−1, is given by

2 j+1

∑
i=1+2 j

log{(1−π j)φ(wwwT
i lll)+π jg(wwwT

i lll)}.

Once selected the hyperparameters, we can sample the vector θθθ from the posterior
distribution in (4.13). Then, we transform these coefficients back to the data domain through the
IDWT and calculate αt by Φ(hhhT

t θθθ). The resulting MCMC procedure is detailed in Algorithm 2.

Algorithm 2 – Gibbs sampling algorithm - Data augmentation - Version 1
1: Choose number of iterations N.
2: Specify initial values for µµµ(0), τττ222(0), zzz(0) = (z(0)1 , . . . ,z(0)n )T and ααα(0).
3: for i← 1 to N do
4: Sample µ

(i)
1 ∼ p(µ1|[. . . ]). ▷ See (4.5)

5: Sample τ2
1
(i) ∼ p(τ2

1 |[. . . ]). ▷ See (4.6)
6: Sample µ

(i)
2 ∼ p(µ2|[. . . ]). ▷ See (4.5)

7: Sample τ2
2
(i) ∼ p(τ2

2 |[. . . ]). ▷ See (4.6)
8: if µ2 < µ1 then
9: Permute the labeling of pairs (µ(i)

k ,τ2
k
(i)
).

10: end if
11: Sample z(i)t ∼ p(zt |[. . . ]), for t = 1, . . . ,n. ▷ See (4.7)
12: Sample l(i)t ∼ p(lt |[. . . ]), for t = 1, . . . ,n. ▷ See (4.9)
13: Select υ2

j /a and π j by marginal maximum likelihood.

14: Sample θ
(i)
t ∼ p(θt |[. . . ]), for t = 1, . . . ,n. ▷ See (4.10)/(4.11)/(4.13)

15: Calculate ααα(i) = Φ(WWW TTT
θθθ). ▷ WWW is the matrix form of the DWT.

16: end for

4.5 Why not sample the “hyperparameters”?

A valid question about the approaches in section 4.4 is why not use the structure of the
MCMC algorithms to sample the hyperparameters of the spike and slab priors instead of applying
the BayesThresh or the marginal maximum likelihood methods? To respond to this inquiry, in this
section, we present two alternative algorithms to perform the approaches discussed formerly and
compare their results with the ones obtained by Algorithm 1 and Algorithm 2 under simulated
studies.

For the wavelet regression approach, we propose assigning (4.12) as prior to the each
wavelet coefficient obtained by the DWT applied to mmm = (m1, . . . ,mn)

T and sampling the hyper-
parameters from their posterior distributions, based on specific priors. For instance, if the spike
and slab prior in (3.4) is used, j = 0, . . . ,J−1, we could attribute the following priors to υ

−2
j
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and π j:

υ
−2
j ∼ Γ(κ,ξ ),

π j ∼ Beta(ζ ,ρ).

Under these circumstances, we sample their values from the posteriors

υ
−2
j |[. . . ]∼ Γ

κ +
c j

2
,ξ +

∑
2 j−1
k=0 θ 2

jk

2

 , (4.14)

π j|[. . . ]∼ Beta(ζ +n j1,ρ +n j0), (4.15)

with c j being the number of coefficients at level j, j = 0, . . . ,J−1. Let us write c j = n j0 +n j1,
where n j0 and n j1 are null and non-null coefficients, respectively. See section C.3 for the complete
derivation of (4.14) and (4.15). Once υ

−2
j and π j are drawn, we use their values to sample the

denoised coefficients from (3.5). In this scenario, modifying Algorithm 1 to accommodate these
alterations results in the procedure described in Algorithm 3.

Algorithm 3 – Gibbs sampling algorithm - Wavelet regression - Version 2
1: Choose number of iterations N.
2: Specify initial values for µµµ(0), τττ222(0), zzz(0) = (z(0)1 , . . . ,z(0)n )T and ααα(0).
3: for i← 1 to N do
4: Sample µ

(i)
1 ∼ p(µ1|[. . . ]). ▷ See (4.5)

5: Sample τ2
1
(i) ∼ p(τ2

1 |[. . . ]). ▷ See (4.6)
6: Sample µ

(i)
2 ∼ p(µ2|[. . . ]). ▷ See (4.5)

7: Sample τ2
2
(i) ∼ p(τ2

2 |[. . . ]). ▷ See (4.6)
8: if µ2 < µ1 then
9: Permute the labeling of pairs (µ(i)

k ,τ2
k
(i)
).

10: end if
11: Sample z(i)t ∼ p(zt |[. . . ]), for t = 1, . . . ,n. ▷ See (4.7)
12: Calculate mmm(i) = (yyy−µ

(i)
1 )/(µ

(i)
2 −µ

(i)
1 ).

13: Compute ddd(i) =WWWmmm(i). ▷ WWW is the matrix form of the DWT.
14: Sample υ

−2
j

(i) ∼ p(υ−2
j |[. . . ]), for j = 0, . . . ,J−1. ▷ See (4.14)

15: Sample π j
(i) ∼ p(π j|[. . . ]), for j = 0, . . . ,J−1. ▷ See (4.15)

16: Sample θ
(i)
t ∼ p(θt |[. . . ]), for t = 1, . . . ,n. ▷ See (3.5)

17: Calculate ααα(i) =WWW T
θθθ
(i).

18: end for

Similar modifications are needed in Algorithm 2 to sample υ
−2
j and π j from (4.14) and

(4.15), instead of selecting their values by the marginal maximum likelihood method in the 13th
step. The resulting MCMC procedure is detailed in Algorithm 4.

Given these alternative algorithms, we simulate data sets and apply each algorithm
to them to elect the MCMC procedures that provide the best estimates for both component
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Algorithm 4 – Gibbs sampling algorithm - Data augmentation - Version 2
1: Choose number of iterations N.
2: Specify initial values for µµµ(0), τττ222(0), zzz(0) = (z(0)1 , . . . ,z(0)n )T and ααα(0).
3: for i← 1 to N do
4: Sample µ

(i)
1 ∼ p(µ1|[. . . ]). ▷ See (4.5)

5: Sample τ2
1
(i) ∼ p(τ2

1 |[. . . ]). ▷ See (4.6)
6: Sample µ

(i)
2 ∼ p(µ2|[. . . ]). ▷ See (4.5)

7: Sample τ2
2
(i) ∼ p(τ2

2 |[. . . ]). ▷ See (4.6)
8: if µ2 < µ1 then
9: Permute the labeling of pairs (µ(i)

k ,τ2
k
(i)
).

10: end if
11: Sample z(i)t ∼ p(zt |[. . . ]), for t = 1, . . . ,n. ▷ See (4.7)
12: Sample l(i)t ∼ p(lt |[. . . ]), for t = 1, . . . ,n. ▷ See (4.9)

13: Sample υ
−2
j

(i) ∼ p(υ−2
j |[. . . ]), for j = 0, . . . ,J−1. ▷ See (4.14)

14: Sample π j
(i) ∼ p(π j|[. . . ]), for j = 0, . . . ,J−1. ▷ See (4.15)

15: Sample θ
(i)
t ∼ p(θt |[. . . ]), for t = 1, . . . ,n. ▷ See (3.5)

16: Calculate ααα(i) = Φ(WWW TTT
θθθ). ▷ WWW is the matrix form of the DWT.

17: end for

parameters and dynamic mixture weights. We generate the synthetic data sets following the
model defined in (4.4), where µ1 = 0, µ2 = 2, τ2

1 = 4 and τ2
2 = 4. Concerning the dynamic

mixture weight αt , we attribute to it a homogeneous (constant) behavior, setting αt = 0.75, and
the dynamic behaviors previously introduced in section 3.3: Parabolic, Sinusoidal, Heavisine,
Blocks, and Bumps.

For all data sets, we consider the following independent priors for the component
parameters: µ1 ∼ N(q1,s2), τ2

1 ∼ Γ(0.01,0.01), µ2 ∼ N(q3,s2), and τ2
2 ∼ Γ(0.01,0.01), where

q1 and q3 are the first and third quartiles of the observed data and s2 is the sample variance.
The idea of using priors derived from the data is to reduce subjectivity, and, by employing
the quartiles, to segregate the data into two groups. With respect to the priors of υ

−2
j and π j

(Algorithm 3 and Algorithm 4), we set υ
−2
j ∼ Γ(0.01,0.01), π j ∼ Beta(1,1), j = 0, . . . ,J−1.

Furthermore, we implement all four algorithms running N = 6,000 iterations with burn-in
B = 1,000 and lags of L = 5, which will result in a sample of Nfinal = 1,000 observations for each
parameter. The point estimation is based on the absolute loss, so the estimates are the medians of
the MCMC chains. We present the estimates of the four algorithms for the component parameters
in Table 2 – Table 5. Notice that, for every behavior of αt , all four algorithms perform well when
estimating these parameters.

Regarding to the estimates of the αt’s, we can see in Figure 19 and Figure 20 that
Algorithm 1 and Algorithm 2 outperform Algorithm 3 and Algorithm 4, respectively. In every
data set, the pointwise estimates based on Algorithm 1 and Algorithm 2 are closer to the curves
than the point estimates provided by Algorithm 3 and Algorithm 4. Furthermore, it is worth noting



58 Chapter 4. Dynamic Gaussian Mixture Model

that the highest posterior density (HPD) intervals generated by Algorithm 1 and Algorithm 2,
although sometimes wider, encompass more satisfactory the real functions than Algorithm 3
and Algorithm 4. In reason of these simple simulation results, we prioritize the implementation
of Algorithm 1 and Algorithm 2 in the other studies carried out in this dissertation. In the next
chapter, we use more detailed numerical studies to evaluate their performances.

Table 2 – Estimates based on Algorithm 1 (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , using the MCMC samples from all data sets.

αt µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
Homogeneous behavior 0.03 (-0.04; 0.12) 4.31 (3.33; 5.39) 1.99 (1.95; 2.03) 4.00 (3.58; 4.52)
Parabolic behavior -0.01 (-0.05; 0.04) 3.93 (3.44; 4.50) 1.97 (1.90; 2.02) 4.11 (3.37; 4.90)
Sinusoidal behavior 0.00 (-0.04; 0.06) 3.78 (3.25; 4.36) 2.04 (2.00; 2.09) 4.13 (3.55; 4.84)
Heavisine behavior 0.02 (-0.03; 0.07) 4.14 (3.52; 4.76) 1.98 (1.93; 2.03) 4.21 (3.60; 4.78)
Bumps behavior -0.02 (-0.05; 0.02) 4.06 (3.66; 4.52) 1.89 (1.27; 2.17) 3.20 (0.80; 5.86)
Blocks behavior -0.02 (-0.06; 0.03) 3.89 (3.37; 4.53) 2.01 (1.97; 2.06) 4.10 (3.52; 4.75)

Table 3 – Estimates based on Algorithm 2 (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , using the MCMC samples from all data sets.

αt µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
Homogeneous behavior 0.01 (-0.06; 0.08) 4.44 (3.45; 5.37) 1.99 (1.95; 2.03) 3.97 (3.45; 4.46)
Parabolic behavior -0.01 (-0.05; 0.04) 3.89 (3.39; 4.42) 1.97 (1.91; 2.03) 4.17 (3.35; 4.99)
Sinusoidal behavior 0.00 (-0.04; 0.06) 3.80 (3.28; 4.39) 2.04 (1.99; 2.09) 4.14 (3.51; 4.77)
Heavisine behavior -0.05 (-0.10; 0.00) 3.68 (3.14; 4.24) 2.01 (1.96; 2.06) 4.27 (3.72; 4.94)
Bumps behavior -0.01 (-0.04; 0.02) 4.02 (3.66; 4.38) 2.04 (1.85; 2.19) 4.79 (2.29; 7.66)
Blocks behavior -0.02 (-0.06; 0.03) 3.93 (3.40; 4.51) 2.01 (1.96; 2.05) 4.05 (3.54; 4.70)

Table 4 – Estimates based on Algorithm 3 (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , using the MCMC samples from all data sets.

αt µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
Homogeneous behavior 0.03 (-0.05; 0.12) 3.59 (2.70; 4.42) 2.04 (2.01; 2.09) 4.36 (3.84; 4.96)
Parabolic behavior -0.01 (-0.05; 0.04) 3.88 (3.34; 4.45) 1.97 (1.91; 2.03) 4.17 (3.42; 5.09)
Sinusoidal behavior 0.00 (-0.06; 0.05) 3.78 (3.17; 4.33) 2.04 (1.99; 2.09) 4.13 (3.57; 4.88)
Heavisine behavior 0.02 (-0.03; 0.07) 4.07 (3.50; 4.68) 1.99 (1.94; 2.03) 4.40 (3.78; 5.05)
Bumps behavior -0.01 (-0.04; 0.02) 3.96 (3.58; 4.33) 2.05 (1.87; 2.23) 5.23 (2.40; 8.35)
Blocks behavior -0.02 (-0.07; 0.03) 3.91 (3.31; 4.45) 2.01 (1.97; 2.06) 4.07 (3.49; 4.71)

Table 5 – Estimates based on Algorithm 4 (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , using the MCMC samples from all data sets.

αt µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
Homogeneous behavior 0.01 (-0.06; 0.08) 4.41 (3.53; 5.49) 1.99 (1.95; 2.03) 3.98 (3.51; 4.52)
Parabolic behavior 0.00 (-0.05; 0.04) 3.89 (3.42; 4.51) 1.98 (1.91; 2.04) 4.21 (3.49; 5.06)
Sinusoidal behavior 0.04 (-0.01; 0.08) 4.18 (3.54; 4.79) 2.05 (2.01; 2.11) 4.00 (3.44; 4.70)
Heavisine behavior -0.05 (-0.10; 0.00) 3.67 (3.12; 4.22) 2.01 (1.96; 2.06) 4.27 (3.72; 4.93)
Bumps behavior 0.01 (-0.02; 0.05) 4.16 (3.76; 4.61) 1.89 (1.58; 2.17) 3.00 (1.43; 5.30)
Blocks behavior -0.02 (-0.07; 0.03) 3.93 (3.30; 4.48) 2.01 (1.96; 2.06) 4.04 (3.48; 4.74)
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Figure 17 – Pointwise estimates (medians) of the αt’s generated by the data augmentation approach using
the diffuse prior to sample the wavelet coefficients. While the first column corresponds to
the estimates achieved without the denoising procedure, the second column consists of the
estimates provided using the noise reduction by the BayesThresh approach. The full lines
correspond to the assigned behavior to αt’s; the dashed lines correspond to the point estimates;
and the shaded areas correspond to the 95% HPD intervals.
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Figure 18 – Pointwise estimates (medians) of the αt’s generated by the data augmentation approach using
the Gaussian prior to sample the wavelet coefficients. While the first column corresponds to
the estimates achieved without the denoising procedure, the second column consists of the
estimates provided using the noise reduction by the BayesThresh approach. The full lines
correspond to the assigned behavior to αt’s; the dashed lines correspond to the point estimates;
and the shaded areas correspond to the 95% HPD intervals.
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Figure 19 – Pointwise estimates (medians) of the αt’s based on the mixture data sets. The first and second
columns represent estimates provided through Algorithm 1 and Algorithm 3, respectively.
The full lines correspond to the assigned behavior to αt’s; the dashed lines correspond to the
point estimates; and the shaded areas correspond to the 95% HPD intervals.
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Figure 20 – Pointwise estimates (medians) of the αt’s based on the mixture data sets. The first and second
columns represent estimates provided through Algorithm 2 and Algorithm 4, respectively.
The full lines correspond to the assigned behavior to αt’s; the dashed lines correspond to the
point estimates; and the shaded areas correspond to the 95% HPD intervals.
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CHAPTER

5
NUMERICAL STUDIES

In this chapter, we illustrate the performance of the proposed methods through simulated
and real data sets. In section 5.1, we conduct Monte Carlo simulations with synthetic data
generated by mixtures of two normally distributed groups as defined in (4.4). We use functions
with different degrees of smoothness to dictate the dynamic behavior of the mixture weight. In
section 5.2, we apply the methods to an array Comparative Genomic Hybridization (aCGH) data
set from Glioblastoma cancer studies. In this application, the dynamic mixture weight captures
the probability of chromosomal anomalies in genome regions.

5.1 Monte Carlo simulations

In our simulated analysis, the synthetic data sets are a mixture of two normally distributed
samples with size 1,024, defined as

yt = (1− zt)x1t + ztx2t ,

xkt |µk,τ
2
k ∼ N(µk,τ

−2
k ), k = 1,2,

zt |αt ∼ Bern(αt), t = 1, . . . ,1,024,

where µ1 = 0, µ2 = 2, τ2
1 = 4 and τ2

2 = 4. Concerning the dynamic mixture weights, we adopt
different curves for αt to see how the methods perform with smoother and rougher functions.
We consider the same behaviors used previously in section 4.5 (where the reader can find more
details): constant, parabolic, sinusoidal, heavisine, blocks, and bumps.

For all six behaviors of αt , we conduct Monte Carlo simulations with 1,000 replicates.
We consider the Wavelet regression discussed in subsection 4.4.1, hereafter denoted by WR,
and the data augmentation method explained in subsection 4.4.2, hereafter called DA. We run
Monte Carlo experiments to the DA approach considering all four priors for the distribution
of the wavelet coefficients discussed in subsection 4.4.2, namely: diffuse prior, Gaussian prior,



64 Chapter 5. Numerical studies

spike and slab prior with Gaussian slab (SSG), and spike and slab prior with Laplace slab (SSL).
From now on, we refer to the latter two priors with their respective acronyms: SSG and SSL.

We implement Algorithm 1 or Algorithm 2 for each replication of data running N =
6,000 iterations with burn-in B = 1,000 and lags of L = 5. We consider the following independent
priors for the component parameters: µ1 ∼ N(q1,s2), τ2

1 ∼ Γ(0.01,0.01), µ2 ∼ N(q3,s2), and
τ2

2 ∼ Γ(0.01,0.01), where q1 and q3 are the first and third quartiles, respectively, of the observed
data and s2 is the sample variance.

As in section 4.5, the point estimation is based on absolute loss, so the estimates of the
component parameters and mixture weights are the medians of the MCMC chains. To evaluate
the performance of these point estimates, we compute their averages and the 95% HPD intervals
based on the point estimates from the Monte Carlo replicates. The results for the six scenarios of
mixture weight are presented below.

1. Constant behavior: in Table 6, we present the estimates of the component parameters
considering simulations where the dynamic mixture weights are constant (homogeneous).
In general, every approach considered in this work provides good results in estimating
these parameters. Furthermore, all 95% HPD intervals encompass the true values of µ1, µ2,
τ2

1 and τ2
2 . Regarding the mixture weight estimates, Figure 21 exhibits the results reached

by the methods. Except for the DA with the Gaussian prior, which seems to provide
evidence of underestimation, all the other approaches provide estimates that match the real
curve.

2. Parabolic behavior: we present the estimates of component parameters for the simulations
with αt following the parabolic behavior in Table 7. Note that the methods provide good
estimates for the parameters, especially for µ1 and µ2. Moreover, all 95% HPD intervals
encompass the true values of µ1, µ2, τ2

1 and τ2
2 . Figure 22 shows the estimates for αt’s

considering these simulations. We emphasize that all methods’ pointwise estimates follow
the parabolic curve. Even though none of the approaches mimic the borders of the curve
flawlessly, all highest posterior density (HPD) intervals encompass these particular regions
of the function.

3. Sinusoidal behavior: for the data sets generated from the sinusoidal weight, we present
the estimates of the component parameters in Table 8. It is worth noting that the methods
provide good results in estimating these parameters, with the estimates for µ1 and µ2

even coinciding with the true parameter values. This also happens for τ2
1 and τ2

2 when
the prior assigned in the DA approach is the SSG prior. Concerning the estimates for the
dynamic mixture weight, in Figure 23, we can see that all the methods succeed in properly
mimicking the shapes of the sinusoidal curve.

4. Heavisine behavior: Table 9 exhibits the estimates of µ1, µ2, τ2
1 and τ2

2 obtained from
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the simulations with the heavisine behavior for the dynamic mixture weights. We see
that every approach provides estimates for the component parameters close to the true
parameter values. Regarding the dynamic behavior of αt in Figure 24, note that all irregular
patterns of the curve are encompassed by the HPD intervals of the WR approach and the
DA approach with both spike and slab priors.

5. Bumps behavior: the bumps is the rougher function among all the test functions considered
in this work. Therefore, it is responsible for pointing out the most capable methods to
provide the best estimates. From Table 10, we see that the DA with the Diffuse prior
and the DA with the spike and slab priors (SSG and SSL) are better at estimating the
component parameters than the other two approaches (WR and DA with Gaussian prior).
Furthermore, in light of Figure 25, the outperformance of the DA with both, SSG and SSL
priors, is even more evident. These methods not only estimate the locals where the bumps
occur but also their estimates follow the sharp shape of the curves and describe the null
values more satisfactorily.

6. Blocks behavior: In Table 11, we present the estimates of the component parameters
considering simulations where the blocks function is used to determine the behavior of
the dynamic mixture weights. We can see that all approaches provide good estimates for
the parameters, with HPD intervals encompassing the true values of µ1, µ2,τ2

1 , and τ2
2 .

However, when we analyze the estimates provided for the mixture weights, presented in
Figure 26, we see a clear outperformance of the DA approach with both, SSG and SSL
priors. Their pointwise estimates mimic the shapes of the blocks curve, properly following
it in the discontinuity regions. Furthermore, their HPD intervals succeed at encompassing
the entire curve.

In general, the Monte Carlo simulations illustrate that all approaches described in Chap-
ter 4 can provide good estimates for the component parameters. However, when it comes to the
performance of the approaches at estimating the dynamic weights, it varies according to the
smoothness of the mixture weight.

It is evident that the DA approach with the spike and slab priors, i.e., the SSG and the SSL
priors, are more successful than the other approaches at estimating the dynamic weights when
the functions are "rougher" (bumps and blocks). When the function is smooth, all approaches
provide estimates close to the real curve.

Nonetheless, these simulations are conducted under a controlled setting, where the
function and the parameters are explicitly established. Therefore, for a deeper evaluation of
the approaches, it is also necessary to apply them to real data sets, where the parameters are
unknown and the observations are not generated according to the model under analysis. We do
this in the next section.
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Table 6 – Averages of the point estimates (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , based on 1,000 replications of data sets whose mixture weights follow the
constant behavior.

Method µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
WR 0.00 (-0.08;0.09) 3.83 (3.21;4.74) 2.00 (1.96;2.03) 4.04 (3.49;4.48)
DA (Diffuse prior) 0.01 (-0.04;0.04) 3.97 (3.10;4.44) 2.00 (1.98;2.02) 4.00 (3.65;4.33)
DA (Gaussian prior) 0.01 (-0.08;0.10) 3.92 (3.04;4.29) 2.00 (1.97;2.02) 4.04 (3.72;4.47)
DA (SSG prior) 0.00 (-0.08;0.09) 3.96 (3.09;4.84) 2.00 (1.97;2.04) 4.06 (3.52;4.51)
DA (SSL prior) 0.00 (-0.09;0.09) 4.02 (3.03;4.99) 2.00 (1.96;2.05) 4.01 (3.56;4.55)
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Figure 21 – Estimates of the αt’s provided by the WR approach (top left); the DA approach: with Diffuse
prior (top right); Gaussian prior (middle left); SSG prior (middle right); and SSL prior (bot-
tom). The full lines correspond to the constant behavior of αt’s, the dashed lines correspond
to the average of the pointwise estimates and the shaded areas correspond to the 95% HPD
intervals.
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Table 7 – Averages of the point estimates (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , based on 1,000 replications of data sets whose mixture weights follow the
parabolic behavior.

Method µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
WR 0.00 (-0.04;0.04) 3.99 (3.44;4.54) 2.00 (1.94;2.06) 4.02 (3.23;4.69)
DA (Diffuse prior) 0.00 (-0.04;0.04) 4.02 (3.47;4.56) 2.00 (1.94;2.05) 4.00 (3.33;4.76)
DA (Gaussian prior) 0.00 (-0.05;0.04) 4.03 (3.45;4.52) 2.00 (1.94;2.06) 3.97 (3.31;4.70)
DA (SSG prior) 0.00 (-0.03;0.04) 3.98 (3.30;4.40) 2.00 (1.94;2.07) 4.03 (3.40;4.86)
DA (SSL prior) 0.00 (-0.05;0.05) 4.06 (3.55;4.61) 2.00 (1.94;2.07) 3.97 (2.92;4.89)
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Figure 22 – Estimates of the αt’s provided by the WR approach (top left); the DA approach: with Diffuse
prior (top right); Gaussian prior (middle left); SSG prior (middle right); and SSL prior (bot-
tom). The full lines correspond to the parabolic behavior of αt’s, the dashed lines correspond
to the average of the pointwise estimates and the shaded areas correspond to the 95% HPD
intervals.
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Table 8 – Averages of the point estimates (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , based on 1,000 replications of data sets whose mixture weights follow the
sinusoidal behavior.

Method µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
WR 0.00 (-0.05;0.04) 3.94 (3.48;4.70) 2.00 (1.94;2.06) 3.95 (3.48;4.61)
DA (Diffuse prior) 0.00 (-0.04;0.04) 3.98 (3.50;4.61) 2.00 (1.94;2.04) 4.00 (3.50;4.68)
DA (Gaussian prior) 0.00 (-0.05;0.05) 4.01 (3.37;4.65) 2.00 (1.96;2.04) 3.98 (3.40;4.46)
DA (SSG prior) 0.00 (-0.04;0.06) 4.00 (3.58;4.65) 2.00 (1.95;2.04) 4.00 (3.40;4.59)
DA (SSL prior) 0.00 (-0.05;0.05) 4.05 (3.50;4.62) 2.00 (1.95;2.04) 3.99 (3.49;4.50)
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Figure 23 – Estimates of the αt’s provided by the WR approach (top left); the DA approach: with Diffuse
prior (top right); Gaussian prior (middle left); SSG prior (middle right); and SSL prior
(bottom). The full lines correspond to the sinusoidal behavior of αt’s, the dashed lines
correspond to the average of the pointwise estimates and the shaded areas correspond to the
95% HPD intervals.
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Table 9 – Averages of the point estimates (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , based on 1,000 replications of data sets whose mixture weights follow the
heavisine behavior.

Method µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
WR 0.00 (-0.05;0.05) 3.99 (3.36;4.59) 2.00 (1.95;2.05) 3.97 (3.40;4.62)
DA (Diffuse prior) 0.00 (-0.04;0.05) 4.02 (3.40;4.56) 2.00 (1.95;2.05) 4.00 (3.39;4.61)
DA (Gaussian prior) 0.00 (-0.04;0.05) 4.02 (3.34;4.65) 2.00 (1.95;2.05) 4.00 (3.35;4.49)
DA (SSG prior) 0.00 (-0.04;0.06) 4.03 (3.49;4.63) 2.00 (1.95;2.05) 4.03 (3.50;4.67)
DA (SSL prior) 0.00 (-0.05;0.04) 4.02 (3.36;4.59) 2.00 (1.94;2.04) 4.00 (3.48;4.59)
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Figure 24 – Estimates of the αt’s provided by the WR approach (top left); the DA approach: with Diffuse
prior (top right); Gaussian prior (middle left); SSG prior (middle right); and SSL prior (bot-
tom). The full lines correspond to the heavisine behavior of αt’s, the dashed lines correspond
to the average of the pointwise estimates and the shaded areas correspond to the 95% HPD
intervals.
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Table 10 – Averages of the point estimates (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , based on 1,000 replications of data sets whose mixture weights follow the
bumps behavior.

Method µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
WR -0.02 (-0.06;0.03) 4.22 (3.70;4.80) 1.27 (0.71;2.07) 1.19 (0.95;4.52)
DA (Diffuse prior) 0.00 (-0.04;0.02) 4.00 (3.60;4.37) 1.92 (1.69;2.23) 3.69 (1.54;6.24)
DA (Gaussian prior) -0.02 (-0.06;0.01) 4.34 (3.75;4.79) 1.34 (0.76;2.05) 1.81 (0.78;4.59)
DA (SSG prior) 0.00 (-0.04;0.02) 4.01 (3.59;4.38) 1.90 (1.60;2.15) 3.62 (1.06;6.45)
DA (SSL prior) 0.00 (-0.04;0.03) 3.96 (3.34;4.53) 1.89 (1.43;2.22) 3.66 (0.71;6.56)
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Figure 25 – Estimates of the αt’s provided by the WR approach (top left); the DA approach: with Diffuse
prior (top right); Gaussian prior (middle left); SSG prior (middle right); and SSL prior
(bottom). The full lines correspond to the bumps behavior of αt’s, the dashed lines correspond
to the average of the pointwise estimates and the shaded areas correspond to the 95% HPD
intervals.
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Table 11 – Averages of the point estimates (95% HPD credible intervals) for the component parameters
µ1,τ

2
1 ,µ2 and τ2

2 , based on 1,000 replications of data sets whose mixture weights follow the
blocks behavior.

Method µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
WR 0.00 (-0.05;0.05) 4.00 (3.44;4.71) 2.00 (1.95;2.05) 4.03 (3.49;4.69)
DA (Diffuse prior) 0.00 (-0.05;0.05) 3.94 (3.30;4.39) 2.00 (1.95;2.05) 4.06 (3.43;4.56)
DA (Gaussian prior) 0.00 (-0.05;0.05) 3.97 (3.36;4.48) 2.00 (1.95;2.04) 4.00 (3.52;4.64)
DA (SSG prior) 0.00 (-0.04;0.06) 4.06 (3.41;4.71) 2.00 (1.95;2.06) 4.00 (3.50;4.63)
DA (SSL prior) 0.02 (-0.15;0.05) 3.91 (3.40;5.60) 1.95 (1.28;2.07) 3.85 (0.82;4.76)
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Figure 26 – Estimates of the αt’s provided by the WR approach (top left); the DA approach: with Diffuse
prior (top right); Gaussian prior (middle left); SSG prior (middle right); and SSL prior
(bottom). The full lines correspond to the blocks behavior of αt’s, the dashed lines correspond
to the average of the pointwise estimates and the shaded areas correspond to the 95% HPD
intervals.
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5.2 Application to an array Comparative Genomic Hy-
bridization data set

In general, tumors develop under genomic imbalances, such as deletions, amplifications,
and other structural rearrangements of chromosomes and chromosomal segments. Therefore,
detecting those imbalances, which are related to alterations in the DNA copy number, is funda-
mental for cancer diagnosis (PINKEL; ALBERTSON, 2005).

Array comparative genomic hybridization (aCGH) is a technique that, under certain
conditions, provides intense fluorescence signals which are used for detecting aberrations in
DNA copy number. In aCGH, test and reference genomic DNA samples (the latter being isolated
from normal cells) are labeled differently using fluorescent dyes. These samples are then mixed
and co-hybridized onto an array CGH platform. Each array spot represents a unique chromosome
locus. If the amount of DNA copy number in the test sample is the same as the reference sample,
a certain fluorescent signal intensity is measured. Thus, decreases or increases in this intensity
ratio can indicate copy number losses or gains in the genome of the test cells (HSU et al., 2005;
JANKOVIC et al., 2022). This process is depicted in Figure 27.

Test
Sample

Reference
Sample

Without alteration

Amplification

Deletion

Figure 27 – A diagrammatic depiction of array CGH. Two genomic libraries are differentially labeled
and hybridized into a microarray. The fluorescent ratios on each spot are calculated and
typically normalized so that the median ratio for the genome is set to some standard value
(1.0 on a linear scale or 0.0 on a logarithmic scale). If, to a given spot, both samples hybridize
equally, no copy number variation is being detected in the DNA region that matches this spot.
However, if the test sample hybridizes more or less intensely than the reference sample, there
is some copy number variation in that region (PINKEL; ALBERTSON, 2005; JANKOVIC et
al., 2022).

There are several approaches for analyzing array CGH data sets. Lai et al. (2005)
compared 11 methods found in the literature for data analysis. The authors use simulated and real
data from cancer studies to evaluate the performances of these methods in identifying regions of
the genome where copy number alterations occurred.

In this work, we use an aCGH data set used in Lai et al. (2005) to illustrate how the
methods discussed in Chapter 4 can be effective in this kind of application. Figure 28 presents
this data set of size n = 193. The data consists of an array comparative genomic hybridization
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obtained from Glioblastoma Multiforme (GBM) tumor cell samples. GBM is an aggressive
malignant brain tumor with a median survival time (MST) of one year (LAI et al., 2005). We
aim to detect large signal values that may indicate chromosomal anomalies, as the identification
of regions where these proportions are high is important to understanding the pathogenesis.

−2
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4

6

0.00 0.25 0.50 0.75 1.00
Index

Figure 28 – Observed aCGH values. This data consists of the log-ratios of normalized intensities from
disease versus control samples, indexed by the physical position of the probes on the genome
(LAI et al., 2005).

Algorithm 1 and Algorithm 2 are implemented running N = 6,000 iterations with burn-in
B = 1,000 and lags of L = 5. As in section 5.1, we also consider the following independent
priors for the component parameters: µ1 ∼ N(q1,s2), τ2

1 ∼ Γ(0.01,0.01), µ2 ∼ N(q3,s2), and
τ2

2 ∼ Γ(0.01,0.01), where q1 and q3 are the first and third quartiles of the observed data and s2

is the sample variance.

When examining the convergence diagnostic plots for the mixture parameters (see
Appendix D) the chains appear to be well mixed and representative of the posterior distribution.
We present the estimates of these parameters in Table 12. The estimates of µ1 and µ2 are
consistent with Killick and Eckley (2014), which estimates the change points in this aCGH data
set using a pruned exact linear time (PELT) algorithm.

Table 12 – Medians (95% HPD credible intervals) for the component parameters µ1,τ
2
1 ,µ2 and τ2

2 of the
aCGH data set, based on the MCMC samples.

Method µ1 τ2
1 µ2 τ2

2
WR 0.25 (0.17; 0.32) 3.51 (2.76; 4.39) 4.56 (4.28; 4.83) 3.08 (1.12; 5.59)
DA (Diffuse prior) 0.25 (0.17; 0.33) 3.49 (2.83; 4.25) 4.59 (4.33; 4.86) 3.29 (1.17; 5.57)
DA (Gaussian prior) 0.25 (0.17; 0.33) 3.49 (2.83; 4.29) 4.59 (4.34; 4.89) 3.24 (1.39; 5.48)
DA (SSG prior) 0.25 (0.18; 0.34) 3.50 (2.80; 4.30) 4.57 (4.32; 4.81) 3.28 (1.35; 5.46)
DA (SSL prior) 0.23 (0.16; 0.30) 5.18 (3.97; 6.51) 3.61 (2.74; 4.55) 0.26 (0.13; 0.44)

Figure 29 exhibits the estimates of the dynamic weights provided by all of the approaches
analyzed in this work. The peaks of the curves indicate a higher probability that there are
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amplifications in the DNA copy number at that chromosomal position. Note that the WR approach
and the DA with SSG and SSL priors detect at least three high-amplitude amplifications, whereas
the DA with the diffuse and Gaussian priors combine the first two amplifications detected
by the other methods in a single one. According to Lai et al. (2005), mapping the indices of
these amplifications to their chromosomal positions suggests that there are likely two separate
aberrations, not just one.
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Figure 29 – Estimates of the αt’s of the aCGH data provided by the WR approach (top left); the DA
approach: with Diffuse prior (top right); Gaussian prior (middle left); SSG prior (middle
right); and SSL prior (bottom). The full lines correspond to the point estimates (medians) and
the shaded areas correspond to the 95% HPD intervals.
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CHAPTER

6
CONCLUSIONS

The main goal of this work was to study a two-component Gaussian mixture model
whose mixture weight is allowed to be dynamic, varying along some index such as time of space.
Unlike other frequentist approaches that assume known component parameters (MONTORIL;
PINHEIRO; VIDAKOVIC, 2019), here we consider a Bayesian framework and employ efficient
Gibbs sampling algorithms to estimate the dynamic weights and the component parameters
jointly. To estimate the mixture weights, we use wavelet bases.

In this work, we propose two approaches where Bayesian wavelet regularization tech-
niques are employed to estimate the dynamic mixture weights of the Gaussian mixture model:
the Wavelet regression (WR) and the Data augmentation (DA) approaches. The former consists
of transforming the original data into a regression, whose regression function is the dynamic
mixture weight. Then, once rescaled the observations, we employ regularization techniques
to reduce the noise and estimate the dynamic mixture weights. The DA approach consists of
adapting the data augmentation method proposed by Albert and Chib (1993), where we use
the discrete wavelet transform matrix as the design matrix in the probit binary regression. To
evaluate both methods, we use artificial and real data sets.

In the simulated studies, we conduct Monte Carlo simulations using functions with
different degrees of smoothness to describe the mixture weight. When the function is very
smooth, all approaches provide estimates similar to the real curve. All of them estimate the
component parameters satisfactorily. However, when the methods have to estimate rougher
functions, the DA approach with spike and slab priors overcome other methods.

In addition, the method is illustrated with a real data set application. This data set consists
of an aCGH obtained from Glioblastoma Multiforme (GBM) tumor cell samples. In this scenario,
we aim to detect signal values related to chromosomal anomalies in order to identify DNA regions
where these aberrations occurred. For this data set, the WR approach and the DA approach
with spike and slab priors are the ones to provide the most consistent results. The interested
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reader can replicate the real data application by using the computational routines available in
<https://github.com/flaviamotta/aCGH_application_wavelets>.

In general, both approaches, WR and DA, deliver satisfactory performances and are
implemented with efficient MCMC algorithms. However, regarding the DA approach, it is shown
that the spike and slab prior is the best choice for the distribution of wavelet coefficients, given
the sparseness associated with them.

6.1 Further research
As a future work, one relevant research topic would be developing wavelet-based ap-

proaches to estimate the dynamic mixture weights of models with more than two mixture
components. This extension would make the dynamic mixture model even more flexible and
adaptive to broad clustering and classification problems. In this scenario, besides estimating the
component parameters and the dynamic mixture weights, it is necessary to estimate the number
of mixture components as well.

Furthermore, a study comparing the performances of both wavelet-based approaches of
this work with other nonparametric alternatives to signal denoising, such as splines, Gaussian
processes or empirical mode decomposition, would certainly be interesting.

https://github.com/flaviamotta/aCGH_application_wavelets
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APPENDIX

A
PROOFS

A.1 Sparsity and vanishing moments

In the following, we approach the proof of Proposition 1, where we state that using
wavelet bases with high-order vanishing moments to decompose polynomials can provide sparse
decompositions. Let ψ(x) be a mother wavelet with m+ 1 vanishing moments and p(x) be
a polynomial of degree m or less. As shown by (2.6), to decompose p(x) into detail wavelet
coefficients using ψ(x), we need to take the inner product between p(x) and ψ jk(x). Thus, we
can calculate d jk as

d jk = ⟨p,ψ jk⟩

=
∫

∞

−∞

p(x)ψ jk(x)dx

=
∫

∞

−∞

(αmxm +αm−1xm−1 + · · ·+α0x0)2 j/2
ψ(2 jx− k)dx

=
2 j/2

2 j

∫
∞

−∞

[
αm

(
u+ k

2 j

)m

+αm−1

(
u+ k

2 j

)m−1

+ · · ·+α0

(
u+ k

2 j

)0]
ψ(u)du,

using the binomial theorem, (x+ y)n =
n
∑

k=0

(n
k

)
xn−kyk, we have

=
2 j/2

2 j

∫
∞

−∞

[
αm

2 jm

( m

∑
i=0

(
m
i

)
um−iki

)
+

αm−1

2 j(m−1)

(m−1

∑
i=0

(
m−1

i

)
um−1−iki

)
+ . . .

+α0

]
ψ(u)du

=
2 j/2

2 j

∫
∞

−∞

[ m

∑
r=0

r

∑
i=0

αr

2 jr

(
r
i

)
ur−iki

]
ψ(u)du

=
2 j/2

2 j

∫
∞

−∞

[ m

∑
l=0

βlul
]

ψ(u)du
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=
2 j/2

2 j

m

∑
l=0

βl

∫
∞

−∞

ul
ψ(u)du

= 0.

Therefore, all detail coefficients d jk of the transformed polynomial, of degree m or less, are null.
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APPENDIX

B
POSTERIOR DISTRIBUTION OF THE

WAVELET COEFFICIENTS

In this chapter, we derive the posterior distributions of the wavelet coefficients under the
spike and slab priors discussed in section 3.2: the mixture between a point mass at zero and the
Gaussian density and the mixture between a point mass at zero and the Laplace density. In the
following section, we begin by introducing generic calculations applicable to both scenarios.
Then, we detail the calculus referring to each type of prior.

B.1 Generic calculations
We normalize the wavelet coefficients by dividing them by σ j, the noise standard de-

viation of each resolution level. Thus, at level j, define the sequence X jk = d jk/σ j, such that
X jk|θ jk ∼ N(θ jk,1). For simplicity, in the next set of expressions, we drop the j,k subscripts, as
they add nothing to the current exposition.

Let the prior for the wavelet coefficients distribution be

(1−π)δ0(θ)+πγ(θ), (B.1)

where the non-null mixture component γ is a symmetric unimodal density. Then, the marginal
density can be calculates as

f (x) =
∫ +∞

−∞

f (x|θ) fprior(θ)dθ

=
∫ +∞

−∞

φ(x−θ)[(1−π)δ0(θ)+πγ(θ)]dθ

= (1−π)
∫ +∞

−∞

φ(x−θ)δ0(θ)dθ +π

∫ +∞

−∞

φ(x−θ)γ(θ)dθ

= (1−π)φ(x)+πg(x),
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with g being the convolution between the γ density and the standard normal distribution φ

(g = γ ⋆φ ).

Therefore, one can easily show that the posterior distribution f (θ |x) is given by

f (θ |x) =
f (x|θ) fprior(θ)

f (x)

=
φ(x−θ)[(1−π)δ0(θ)+πγ(θ)]

(1−π)φ(x)+πg(x)

=
φ(x−θ)(1−π)δ0(θ)+πγ(θ)φ(x−θ)

(1−π)φ(x)+πg(x)

=
(1−π)φ(x)δ0(θ)

(1−π)φ(x)+πg(x)
+

πg(x) f1(θ |x)
(1−π)φ(x)+πg(x)

= (1−πpost)δ0(θ)+πpost f1(θ |x),

with f1(θ |x) being the non-null mixture component

f1(θ |X = x,θ ̸= 0) =
f (θ ,X = x)I{θ ̸=0}∫

R* fprior(θ) f (x|θ)dθ

=
fprior(θ) f (x|θ)I{θ ̸=0}∫
R*πγ(θ)φ(x−θ)dθ

=
πγ(θ)φ(x−θ)

π
∫
R* γ(θ)φ(x−θ)dθ

=
γ(θ)φ(x−θ)

g(x)
,

and πpost being the posterior sparsity parameter given by

πpost =
πg(x)

πg(x)+(1−π)φ(x)
.

B.1.1 Spike and slab prior - Gaussian component

Let γ in (B.1) be N(0,υ2
j ), as in (3.4). Then, g(x) can be calculated as

g(x) =
∫ +∞

−∞

φ(x−θ)γ(θ)dθ

=
∫ +∞

−∞

1√
2π

exp
[
−1

2
(x−θ)2

]
1√
2πυ

exp
[
−1

2
θ 2

υ2

]
dθ

=
1√
2π

∫ +∞

−∞

1√
2πυ

exp
{
−1

2

[
θ 2

υ2 +θ
2−2θx+ x2

]}
dθ

=
1√
2π

∫ +∞

−∞

1√
2πυ

exp
{
−1

2

[(
1

υ2 +1
)

θ
2−2θx+ x2

]}
dθ

=
1√
2π

∫ +∞

−∞

1√
2πυ

exp
{
−1

2

[(
1+υ2

υ2

)(
θ

2− 2θxυ2

1+υ2

)
+ x2

]}
dθ
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=
1√
2π

∫ +∞

−∞

1√
2πυ

exp
{
−1

2

[(
1+υ2

υ2

)(
θ

2−2
θxυ2

1+υ2 +
x2υ4

(1+υ2)2

)
− x2υ2

1+υ2 + x2
]}

dθ

=
1√
2π

∫ +∞

−∞

1√
2πυ

exp

{
−1

2

[(
1+υ2

υ2

)(
θ − θxυ2

1+υ2

)2

+
x2

1+υ2

]}
dθ

=
1√
2π

exp
[
−1

2

(
x2

1+υ2

)]∫ +∞

−∞

1√
2πυ

exp
{
−1

2
v2
}

υ√
1+υ2

dv

=
1√

2π(1+υ2)
exp
[
−1

2

(
x2

1+υ2

)]∫ +∞

−∞

1√
2π

exp
{
−1

2
v2
}

dv

=
1√

2π(1+υ2)
exp
[
− 1

2(1+υ2)
x2
]
.

Thus, the non-null mixture component f1(θ |x) is given by

f1(θ |x) =
φ(x−θ)γ(θ)

g(x)

=

1√
2π

exp
[
−1

2(x−θ)2] 1√
2πυ2 exp

[
−1

2
θ 2

υ2

]
1√

2π(υ2+1)
exp
[
−1

2

(
x2

υ2+1

)]
=

√
2π(υ2 +1)
√

2π
√

2πυ2
exp
{
−1

2

[
(x−θ)2 +

θ 2

υ2 −
x2

υ2 +1

]}
=

1√
2πλ

exp
{
−1

2

[
x2υ2−2xθυ2 +θ 2υ2 +θ 2− x2λ

υ2

]}
=

1√
2πλ

exp
{
− 1

2λ

[
x2υ2−2xθυ2 +θ 2υ2 +θ 2− x2λ

1+υ2

]}
=

1√
2πλ

exp
{
− 1

2λ

[
x2υ2(1+υ2)−2xθυ2(1+υ2)+θ 2υ2(1+υ2)

(1+υ2)2

+
θ 2(1+υ2)− x2υ2

(1+υ2)2

]}
=

1√
2πλ

exp
{
− 1

2λ

[
x2υ4−2xθυ2−2xθυ4 +θ 2υ2 +θ 2υ4 +θ 2 +θ 2υ2

(1+υ2)2

]}
=

1√
2πλ

exp
{
− 1

2λ

[
υ4(x2−2xθ +θ 2)−2θυ2(x−θ)+θ 2

(1+υ2)2

]}
=

1√
2πλ

exp
{
− 1

2λ

[
υ4(x−θ)2−2θυ2(x−θ)+θ 2

(1+υ2)2

]}
=

1√
2πλ

exp
{
− 1

2λ

[
(θ −υ2(x−θ))2

(1+υ2)2

]}
=

1√
2πλ

exp

{
− 1

2λ

[
θ −υ2x+υ2θ

1+υ2

]2
}

=
1√
2πλ

exp

{
− 1

2λ

[
θ − υ2x

1+υ2

]2
}

=
1√
2πλ

exp
{
− 1

2λ
[θ −λx]2

}
,
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where λ = υ2/(1+υ2). Therefore, the posterior distribution is a mixture of a point mass at zero
and N

(
υ2

1+υ2 x, υ2

1+υ2

)
, as stated in (3.5).

B.1.2 Spike and slab prior - Laplace component

Let γ in (B.1) be the Laplace density given in (3.7). Then, the convolution g is

g(x) =
∫ +∞

−∞

φ(x−θ)γa(θ)dθ

=
∫ +∞

−∞

1√
2π

exp
[
−1

2
(x−θ)2

]
aexp(−a|θ |)

2
dθ

=
1√
2π

a
2

∫ +∞

−∞

exp
[
−1

2
(x−θ)2−a|θ |

]
dθ

=
1√
2π

a
2

{∫ 0

−∞

exp
[
−1

2
(x−θ)2 +aθ

]
dθ +

∫
∞

0
exp
[
−1

2
(x−θ)2−aθ

]
dθ

}
=

1√
2π

a
2

{∫ 0

−∞

exp
[
−(x−θ)2−2aθ

2

]
dθ +

∫
∞

0
exp
[
−(x−θ)2 +2aθ

2

]
dθ

}
=

1√
2π

a
2

{∫ 0

−∞

exp
[
−x2−2xθ +θ 2−2aθ

2

]
dθ +

∫
∞

0
exp
[
−x2−2xθ +θ 2 +2aθ

2

]
dθ

}
=

1√
2π

a
2

exp
(

a2

2

){
eax
∫ 0

−∞

exp
[
− [θ − (x+a)]2

2

]
dθ + e−ax

∫
∞

0
exp
[
− [θ − (x−a)]2

2

]
dθ

}
=

a
2

exp
(

a2

2

){
exp(ax)

∫ −x−a

−∞

1√
2π

exp
[
−u2

2

]
du+ exp(−ax)

∫
∞

−x+a

1√
2π

exp
[
−v2

2

]
dv
}

=
a
2

exp
(

a2

2

)
{exp(ax)Φ(−x−a)+ exp(−ax)[1−Φ(−x+a)]}

=
a
2

exp
(

a2

2

)
{exp(ax)[1−Φ(x+a)]+ exp(−ax)Φ(x−a)}

=
a
2

exp
(

a2

2

){
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

}
,

with Φ denoting the standard normal cumulative function, and Φ̃ = 1−Φ. Then, we can calculate
the non-null mixture component f1(θ |x) as

f1(θ |x) =
φ(x−θ) · γa(θ)

g(x)

=

1√
2π

exp
[
−1

2(x−θ)2]aexp(−a|θ |)
2

a
2 exp

(
a2

2

){
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

}
=

1√
2π

exp
[
−1

2(x−θ)2−a|θ |− a2

2

]
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

=

1√
2π

exp
[
−1

2(x−θ)2−aθ − a2

2

]
I{θ>0}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)
+

1√
2π

exp
[
−1

2(x−θ)2 +aθ − a2

2

]
I{θ<0}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)
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=

1√
2π

exp
[
−1

2(x
2−2xθ +θ 2 +2aθ +a2)

]
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

I{θ>0}

+

1√
2π

exp
[
−1

2(x
2−2xθ +θ 2−2aθ +a2)

]
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

I{θ<0}

=

1√
2π

exp
[
−1

2(θ
2−2(x−a)θ + x2−2ax+a2)

]
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

exp(−ax)I{θ>0}

+

1√
2π

exp
[
−1

2(θ
2−2(x+a)θ + x2 +2ax+a2)

]
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

exp(ax)I{θ<0}

=

1√
2π

exp
{
−1

2 [θ − (x−a)]2
}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)
exp(−ax)I{θ>0}

+

1√
2π

exp
{
−1

2 [θ − (x+a)]2
}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)
exp(ax)I{θ<0}

=
exp(−ax)φ [θ − (x−a)]I{θ>0}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)
+

exp(ax)φ [θ − (x+a)]I{θ<0}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)
,

which is a mixture of two truncated normal distributions, as stated in (3.9),

f1(θ |x) =
exp(−ax)φ [θ − (x−a)]I{θ>0}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

[
Φ(x−a)

1−Φ(−x+a)

]
+

exp(ax)φ [θ − (x+a)]I{θ<0}

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

[
1−Φ(x+a)
Φ(−x−a)

]
=

exp(−ax)Φ(x−a)
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

{
φ [θ − (x−a)]I{θ>0}

1−Φ(−x+a)

}
+

exp(ax)Φ̃(x+a)
exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)

{
φ [θ − (x+a)]I{θ<0}

Φ(−x−a)

}
= η fT N(θ |x−a,1,0,+∞)+(1−η) fT N(θ |x+a,1,−∞,0),

where

η =
exp(−ax)Φ(x−a)

exp(ax)Φ̃(x+a)+ exp(−ax)Φ(x−a)
.





91

APPENDIX

C
CONDITIONAL POSTERIOR DISTRIBUTIONS

In this chapter, we derive the full conditional posterior distributions for the component
parameters, µk in (4.5) and τ2

k in (4.6), and for parameters of the spike and slab prior υ
−2
j and

π j, discussed in section 4.5.

C.1 Full conditional posterior of µk

Assuming that µk ∼ N(b0k,B0k), we have

µk|τ2
k ,yyy,zzz ∝ p(yyy|µk,τ

2
k ,zzz)p(µk)

∝

(
τ2

k
2π

) Tk
2

exp

[
−

τ2
k
2 ∑

t:zt=k−1
(yt−µk)

2

]
1√

2πB0k
exp
[
−(µk−b0k)

2

2B0k

]

∝ exp

{
−1

2

[
τ

2
k ∑

t:zt=k−1
y2

t −2τ
2
k skµk + τ

2
k Tkµ

2
K +

µ2
k −2b0kµk +b2

0k
B0k

]}

∝ exp
{
− 1

2B0k

[
τ

2
k TkB0kµ

2
K−2τ

2
k skB0kµk +µ

2
k −2b0kµk

]}
∝ exp

{
− 1

2B0k

[
(τ2

k TkB0k +1)µ2
K−2(τ2

k skB0k +b0k)µk
]}

.

To complete the square, let p and 2pq be

p2 = (τ2
k TkB0k +1);

2pq = 2(τ2
k skB0k +b0k).
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∝ exp
{
− 1

2B0k

[
p2

µ
2
K−2pqµk

]}
exp
(
− q2

2B0k

)
∝ exp

{
− 1

2B0k
[pµK−q]2

}

∝ exp

− 1
2B0k

√τ2
k TkB0k +1µK−

τ2
k skB0k +b0k√
τ2

k TkB0k +1

2


∝ exp

{
− 1

2B0k
(τ2

k TkB0k +1)
[

µK−
τ2

k skB0k +b0k

τ2
k TkB0k +1

]2}

∝ exp

{
− 1

2(B−1
0k + τ2

k Tk)−1

[
µK− (B−1

0k + τ
2
k Tk)

−1(τ2
k sk +B−1

0k b0k)
]2}

,

which ensures that

µk|τ2
k ,yyy,zzz∼ N(bk,Bk),

where

Bk = (B−1
0k + τ

2
k Tk)

−1,

bk = Bk(τ
2
k sk +B−1

0k b0k).

C.2 Full conditional posterior of τ2
k

Assuming that τ2
k ∼ Γ(c0k,C0k), we have

p(τ2
k |µk,yyy,zzz) ∝ p(yyy|µk,τ

2
k ,zzz)p(τ2

k )

∝

(
τ2

k
2π

) Tk
2

exp

[
−

τ2
k
2 ∑

t:zt=k−1
(yt−µk)

2

]
(τ2

k )
c0k−1 exp(−C0kτ

2
k )

∝ (τ2
k )

c0k+
Tk
2 −1 exp

−
C0k +

∑
t:zt=k−1

(yt−µk)
2

2

τ
2
k

.

Thus, as stated in (4.6),

τ
2
k |µk,yyy,zzz∼ Γ(ck,Ck),

where

Ck =C0k +

∑
t:zt=k−1

(yt−µk)
2

2
,

ck = c0k +
Tk

2
.
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C.3 Hyperparameters of spike and slab prior
In section 4.5, we discuss sampling π j and υ

−2
j from their conditional posterior distri-

butions instead of applying the marginal maximum likelihood. In this section, we derive (4.14)
and (4.15). For simplicity, in the next set of expressions, we drop the j,k subscripts, as they add
nothing to the current exposition.

Consider the following

υ
−2 ∼ Γ(κ,ξ )

π ∼ Beta(ζ ,ρ)

rt |π ∼ Bern(π)

θt |υ2,rt = 1∼ N(0,υ2
j )

θt |υ2,rt = 0∼ δ0(θt).

In addition, assume that θ1, . . . ,θn are i.i.d. We can calculate the posterior distribution of υ−2 as

p(υ−2|[. . . ]) ∝ (υ−2)κ−1 exp(−ξ υ
−2)

n

∏
t=1

υ
−1 exp

(
−θ 2

t υ−2

2

)
∝ (υ−2)κ+ n

2−1 exp(−ξ υ
−2)exp

(
−∑

n
t=1 θ 2

t υ−2

2

)
∝ (υ−2)κ+ n

2−1 exp
[
−
(

∑
n
t=1 θ 2

t
2

+ξ

)
υ
−2
]
.

Therefore, as stated in (4.14),

υ
−2|[. . . ]∼ Γ

(
κ +

n
2
,
∑

n
t=1 θ 2

t
2

+ξ

)
.

Likewise, the sparsity parameter is given by

p(π|[. . . ]) ∝ p(π)
n

∏
t=1

p(rt |π)

∝ π
ζ−1(1−π)ρ−1

π
n1(1−π)n0

∝ π
ζ+n1−1(1−π)ρ+n0−1,

with n0 = #{t : rt = 0, t = 1,2, ...,n} and n1 = n−n0. Thus, as stated in (4.15),

π|[. . . ]∼ Beta(ζ +n1,ρ +n0).
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APPENDIX

D
MCMC CONVERGENCE DIAGNOSTIC PLOTS

This chapter presents the convergence diagnostic plots for the MCMC chains of simulated
and real data sets.

D.1 MCMC diagnostics

When implementing MCMC methods, one must look for convergence of Markov chains
to the stationarity and check if the Monte Carlo estimators appear to be appropriately representa-
tive of the population quantities (ROY, 2020). In this work, we choose graphical methods for
MCMC convergence diagnosis: the trace plot, the autocorrelation plot and the density plot.

The trace plot is a graph of the sampled parameter value in each chain step. This time
series plot presents a visual examination of the parameters’ trajectory and allows one to determine
how well the chain is mixing. Therefore, if the samples are settled into some part of the parameter
space, compromising the convergence, we would see flat bits in the trace plot. In general, we
expect no particular trends on the chain trajectory since they can indicate that one has not reached
stationarity yet (KRUSCHKE, 2014; ROY, 2020). Figure 30 presents two trace diagrams. While
the left plot does not exhibit any particular trend that could indicate a lack of convergence, the
right plot is an example of a chain whose sampled values are stuck into parts of the parameter
space.

The autocorrelation plot shows the correlation between the chain values k iterations
apart. The vertical axis plots the lag-k autocorrelation function (ACF) and the horizontal axis
plots the increasing k values, which represent the number of steps between the MCMC samples,
called lag. In this graphical method, if the Markov chain was run for a sufficient amount of time,
we expect the lag-k autocorrelation values to drop down towards zero quickly as k increases.
High lag-k autocorrelation values for higher k may be a sign that each step in the chain is
not providing uncorrelated information about the posterior distribution (KRUSCHKE, 2014).
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Figure 30 – Illustration of MCMC diagnostics: trace plots. The left plot shows similar pattern throughout
the iterations while the right one shows visible trends that indicate slow convergence.

Figure 31 – Illustration of MCMC diagnostics: autocorrelation plots. The left plot suggests that the
parameter values at successive steps in the chain provide uncorrelated information about the
posterior distribution. In opposition, the right one is an example of a highly autocorrelated
chain.

Figure 32 – Illustration of MCMC diagnostics: density plots. The left plot mimics a bell shape as we
would expect, while the right plot exhibit multimodality.
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Figure 31 presents examples of autocorrelation plots.

Another interesting visual method of diagnosis is the density plot of the MCMC draws,
as shown in Figure 32. Since we are dealing with Gaussian mixture models, density plots
that exhibit multimodality may indicate that the label switching problem has not been suitably
addressed. We expect the density curves to mimic a bell shape. It is important to emphasize that
these visual checks of convergence can only probabilistically suggest whether or not the chains
are representative of the posterior, they can not guarantee representativeness (KRUSCHKE,
2014).

D.2 Convergence diagnostic plots for artificial data sets

In this section, we present the trace diagrams, the kernel density estimates, and the
autocorrelation plots of the marginal posterior distributions of the component parameters for the
synthetic data sets presented in section 4.5. The straight lines, the dashed (black) lines, and dotted
(red) lines on trace and density plots represent the true parameter values, the median and the
mean of the MCMC draws, respectively. The shaded areas correspond to 95% highest posterior
density (HPD) intervals. We present the diagrams separately for each data set considered.

D.2.1 Homogeneous behavior

Figure 33 – Algorithm 1 (data set with αt’s following the homogeneous behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 34 – Algorithm 2 (data set with αt’s following the homogeneous behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

Figure 35 – Algorithm 3 (data set with αt’s following the homogeneous behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).



D.2. Convergence diagnostic plots for artificial data sets 99

Figure 36 – Algorithm 4 (data set with αt’s following the homogeneous behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

D.2.2 Parabolic behavior

Figure 37 – Algorithm 1 (data set with αt’s following the parabolic behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 38 – Algorithm 2 (data set with αt’s following the parabolic behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

Figure 39 – Algorithm 3 (data set with αt’s following the parabolic behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 40 – Algorithm 4 (data set with αt’s following the parabolic behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

D.2.3 Sinusoidal behavior

Figure 41 – Algorithm 1 (data set with αt’s following the sinusoidal behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 42 – Algorithm 2 (data set with αt’s following the sinusoidal behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

Figure 43 – Algorithm 3 (data set with αt’s following the sinusoidal behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 44 – Algorithm 4 (data set with αt’s following the sinusoidal behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

D.2.4 Heavisine behavior

Figure 45 – Algorithm 1 (data set with αt’s following the heavisine behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 46 – Algorithm 2 (data set with αt’s following the heavisine behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

Figure 47 – Algorithm 3 (data set with αt’s following the heavisine behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 48 – Algorithm 4 (data set with αt’s following the heavisine behavior) - convergence diagnostic
plots for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

D.2.5 Bumps behavior

Figure 49 – Algorithm 1 (data set with αt’s following the bumps behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 50 – Algorithm 2 (data set with αt’s following the bumps behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

Figure 51 – Algorithm 3 (data set with αt’s following the bumps behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 52 – Algorithm 4 (data set with αt’s following the bumps behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

D.2.6 Blocks behavior

Figure 53 – Algorithm 1 (data set with αt’s following the blocks behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 54 – Algorithm 2 (data set with αt’s following the blocks behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

Figure 55 – Algorithm 3 (data set with αt’s following the blocks behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).
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Figure 56 – Algorithm 4 (data set with αt’s following the blocks behavior) - convergence diagnostic plots
for µ1 (first row), τ2

1 (second row), µ2 (third row), and τ2
2 (fourth row).

D.3 Convergence diagnostic plots for aCGH data set

In this section, we present the trace diagrams, the kernel density estimates, and the
autocorrelation plots of the marginal posterior distributions of the component parameters for
the aCGH data set. Thus we do not know the true parameter values. The dashed (black) lines
and dotted (red) lines on trace and density plots represent the median and the mean of the
MCMC draws, respectively. The shaded areas correspond to 95% highest posterior density
(HPD) intervals. We present the diagrams separately for each approach considered.
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Figure 57 – WR approach - convergence diagnostic plots for µ1 (first row), τ2
1 (second row), µ2 (third

row), and τ2
2 (fourth row).

Figure 58 – DA approach: Diffuse prior (aCGH data set) - convergence diagnostic plots for µ1, τ2
1 , µ2,

and τ2
2 .
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Figure 59 – DA approach: Gaussian prior (aCGH data set) - convergence diagnostic plots for µ1, τ2
1 , µ2,

and τ2
2 .

Figure 60 – DA approach: SSG prior (aCGH data set) - convergence diagnostic plots for µ1, τ2
1 , µ2, and

τ2
2 .
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Figure 61 – DA approach: SSL prior (aCGH data set) - convergence diagnostic plots for µ1, τ2
1 , µ2, and

τ2
2 .
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