• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.104.2020.tde-23072020-155937
Document
Auteur
Nom complet
Diego Carvalho do Nascimento
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2020
Directeur
Jury
Louzada Neto, Francisco (Président)
Costa, Lilia Carolina Carneiro da
Izbicki, Rafael
Santos, Taiza Elaine Grespan dos
Silva, Paulo Henrique Ferreira da
Titre en anglais
Modeling high-dimensional time series from large scale brain networks
Mots-clés en anglais
Dynamic Models
Graphical models
High-dimensional data analysis
Multivariate Time Series
Resumé en anglais
Neuroscientists have an urge to understand the effective brain connectivity, through the direction/ correlation of the brain areas, using biosignals, although this task demands to consider the spatiotemporal dependence and some computational constraints. Naturally, the use of large Vector Autoregression (VARs) would be appropriated if did not present a high-dimensionality curse, where the number of parameters is vastly representative. Additionally, shrinkage either in the data or parameter spaces is not trivial towards maintaining its interpretation. Therefore, some modifications were discussed, towards the graph-based model and entropy analysis, adopting the Bayesian approach, addressed by the estimate of the human brain connectivity using electroencephalogram (EEG) signals. As a motivation, we used a study case of neurorehabilitation, regarding the manipulation of human verticality, we are using high-definition transcranial direct current stimulation (HD-tDCS) as a non-invasive modulation
Titre en portugais
Modelagem de séries temporais de alta dimensão a partir de redes cerebrais de larga escala
Mots-clés en portugais
Dados de alta-dimensionalidade
Modelos de grafos
Modelos dinâmicos
Séries Temporais Multivariadas
Resumé en portugais
Neste projeto focamos na necessidade de compreender sobre a conectividade cerebral, através da direção/correlação entre as áreas cerebrais, por meio de biossinais, embora essa tarefa apresente dificuldades como dependência espaço-temporal e algumas restrições computacionais. Naturalmente, o uso de large vector autoregression (VAR) seria apropriado se não apresentassem problema de alta dimensionalidade, onde o espaço paramétrico é largamente representativo. Além disso, o encolhimento nos espaços de dados/parâmetros não é uma tarefa trivial, essencialmente demandando mantendo interpretabilidade nos resultados. Portanto, algumas modificações foram discutidas, em relação ao modelo via gráfos e análise de entropia, adotando uma abordagem Bayesiana, motivada por estimatar a conectividade do cérebro humano usando sinais de eletroencefalograma (EEG). Assim, a motivação que este utilizou foi proveniente de um estudo de caso de neuro-reabilitação, no que se refere à manipulação da verticalidade humana, nele utilizamos a estimulação transcraniana de corrente direta de alta definição (HD-tDCS) como modulação não invasiva visando a recuperação de pacientes pós-AVC.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-07-23
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.