• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.104.2020.tde-23072020-155937
Documento
Autor
Nombre completo
Diego Carvalho do Nascimento
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2020
Director
Tribunal
Louzada Neto, Francisco (Presidente)
Costa, Lilia Carolina Carneiro da
Izbicki, Rafael
Santos, Taiza Elaine Grespan dos
Silva, Paulo Henrique Ferreira da
Título en inglés
Modeling high-dimensional time series from large scale brain networks
Palabras clave en inglés
Dynamic Models
Graphical models
High-dimensional data analysis
Multivariate Time Series
Resumen en inglés
Neuroscientists have an urge to understand the effective brain connectivity, through the direction/ correlation of the brain areas, using biosignals, although this task demands to consider the spatiotemporal dependence and some computational constraints. Naturally, the use of large Vector Autoregression (VARs) would be appropriated if did not present a high-dimensionality curse, where the number of parameters is vastly representative. Additionally, shrinkage either in the data or parameter spaces is not trivial towards maintaining its interpretation. Therefore, some modifications were discussed, towards the graph-based model and entropy analysis, adopting the Bayesian approach, addressed by the estimate of the human brain connectivity using electroencephalogram (EEG) signals. As a motivation, we used a study case of neurorehabilitation, regarding the manipulation of human verticality, we are using high-definition transcranial direct current stimulation (HD-tDCS) as a non-invasive modulation
Título en portugués
Modelagem de séries temporais de alta dimensão a partir de redes cerebrais de larga escala
Palabras clave en portugués
Dados de alta-dimensionalidade
Modelos de grafos
Modelos dinâmicos
Séries Temporais Multivariadas
Resumen en portugués
Neste projeto focamos na necessidade de compreender sobre a conectividade cerebral, através da direção/correlação entre as áreas cerebrais, por meio de biossinais, embora essa tarefa apresente dificuldades como dependência espaço-temporal e algumas restrições computacionais. Naturalmente, o uso de large vector autoregression (VAR) seria apropriado se não apresentassem problema de alta dimensionalidade, onde o espaço paramétrico é largamente representativo. Além disso, o encolhimento nos espaços de dados/parâmetros não é uma tarefa trivial, essencialmente demandando mantendo interpretabilidade nos resultados. Portanto, algumas modificações foram discutidas, em relação ao modelo via gráfos e análise de entropia, adotando uma abordagem Bayesiana, motivada por estimatar a conectividade do cérebro humano usando sinais de eletroencefalograma (EEG). Assim, a motivação que este utilizou foi proveniente de um estudo de caso de neuro-reabilitação, no que se refere à manipulação da verticalidade humana, nele utilizamos a estimulação transcraniana de corrente direta de alta definição (HD-tDCS) como modulação não invasiva visando a recuperação de pacientes pós-AVC.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-07-23
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.