• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.104.2020.tde-23032020-094942
Documento
Autor
Nome completo
Milene Alves Garcia
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2020
Orientador
Banca examinadora
Conceição, Katiane Silva (Presidente)
Azevedo, Caio Lucidius Naberezny
Souza, Anderson Luiz Ara
Título em português
Modelos de Regressão para Dados de Contagem k-Modificados
Palavras-chave em português
Dados de contagem
Dados kdeflacionados
Dados kinflacionados
Distribuição Hurdle
Distribuições discretas
Modelos de regressão
Resumo em português
A análise de dados de contagem ocupa um importante lugar dentro da estatística aplicada, uma vez que muitos problemas reais são expressos em termos de enumerações. Frequentemente, conjuntos de dados de contagem apresentam discrepâncias na frequência da observação zero, que pode ser alta ou baixa, e assim refere-se ao conjunto de dados como zero-inflacionado ou zero-deflacionado, respectivamente. Além disso, existem situações onde a observação zero não ocorre nos conjuntos de dados e, muitas vezes, modelos zero-truncados são inadequadamente considerados, visto que há uma probabilidade positiva (e não nula) para ocorrência de tal evento, embora este não tenha ocorrido. Esta dissertação tem como objetivo principal apresentar o procedimento de estimação dos parâmetros das distribuições zero-modificadas em situações em que a frequência da observação zero nos conjuntos de dados é nula e a probabilidade de ocorrência de tal valor é positiva (zero-deflacionada). A metodologia proposta considera a estimação de zeros faltantes no conjunto de dados formado apenas pelas observações positivas, tal que o conjunto de dados aumentados (adicionando-se os zeros estimados) pode ser explicado por uma distribuição tradicional. Métodos dos momentos e da máxima verossimilhança são considerados para o procedimento de estimação por meio do algoritmo de estimação-maximização. Estudos de simulação e com dados artificiais são utilizados para avaliação das propriedades dos estimadores e estimativas obtidas. Conjuntos de dados reais que apresentam diferentes casos de zeromodificação também são analisados.
Título em inglês
Regression Models to k-Modified Count Data
Palavras-chave em inglês
Count data
Discrete distributions
Hurdle distribution
k-deflatad data
K-inflated data
Regression models
Resumo em inglês
The analysis of count data takes an important place in applied statistics, since many real problems are expressed in terms of counts. Frequently, count data sets have discrepancies in the frequency of the zero observation, which may be high or low, and in these cases the set is referred as zeroinflated or zero-deflated, respectively. Besides, there are situations where the zero observation does not occur in the data set, and often zero-truncated models are inadequately considered, since there is a positive probability (and not a null one) for such event, although it has not occurred. The main aim of this dissertation is to present the procedure for parameter estimation of the zero-modified distributions in situations where the frequency of zero observation in the data set is zero and the occurrence probability of this same value is positive (zero-deflated). The proposed methodology considers the estimation of missing zeros in the data set consisting only of positive observations, such that the increased data set (with the estimated zeros included) can be explained by a traditional distribution. Moments and maximum likelihood methods are considered for the estimation procedure using the estimation-maximization algorithm. Simulation and artificial data studies are used to evaluate the properties of the estimators and estimates obtained. Real data sets with different cases of zero-modification are also analyzed.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2020-03-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.