• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.104.2020.tde-21082020-094639
Documento
Autor
Nombre completo
Marco Henrique de Almeida Inácio
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2020
Director
Tribunal
Izbicki, Rafael (Presidente)
Gyires-tóth, Bálint
Rodrigues, Francisco Aparecido
Silva, Diego Furtado
Souza, Anderson Luiz Ara
Título en inglés
Conditional independence testing, two sample comparison and density estimation using neural networks
Palabras clave en inglés
Artificial neural networks
Conditional density estimation
Conditional independence testing
Machine learning
Two-sample comparison
Resumen en inglés
Given the vast amount of data available nowadays and the rapid increase of computational processing power, the field of machine learning and the so called algorithmic modeling have seen a recent surge in its popularity and applicability. One of the tools which has attracted great popularity is artificial neural networks due, to among other things, their versatility, ability to capture complex relations and computational scalability. In this work, we therefore apply such machine learning tools into three important problems of Statistics: two-sample comparison, conditional independence testing and conditional density estimation.
Título en portugués
Estimação de densidades e medidas de importância usando redes neurais
Palabras clave en portugués
Aprendizado de máquina
Comparação de populações
Estimação de densidade condicional
Redes neurais artificiais
Teste de independência condicional
Resumen en portugués
Dada a grande quantidade de dados disponíveis nos dias de hoje e o rápido aumento da capacidade de processamento computacional, o campo de aprendizado de máquina e a assim chamada modelagem algorítmica tem visto um grande surto de popularidade e aplicabilidade. Uma das ferramentas que atraíram grande popularidade são as redes neurais artificiais dada, entre outras coisas, sua versatilidade, habilidade de capturar relações complexas e sua escalabilidade computacional. Assim sendo, neste trabalho aplicamos estas ferramentas de aprendizado de máquina em três problemas importantes da Estatística: comparação de populações, teste de independência condicional e estimação de densidades condicionais.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-08-21
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.