• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.104.2021.tde-21072021-163951
Documento
Autor
Nombre completo
Rafael Soares Paixão
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2021
Director
Tribunal
Ehlers, Ricardo Sandes (Presidente)
Abanto-valle, Carlos Antonio
González-lópez, Verónica Andrea
Hotta, Luiz Koodi
Laurini, Marcio Poletti
Título en portugués
Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
Palabras clave en portugués
GARCH
Inferência Bayesiana
Monte Carlo Hamiltoniano
Zero-variance
Resumen en portugués
Este trabalho de doutorado desenvolve, compara e aplica métodos Monte Carlo via Cadeias de Markov (MCMC) para estimação de parâmetros em modelos GJR-GARCH univariados e multivariados. Especificamente, os seguintes problemas são abordados: (i) concepção de uma abordagem de estimação puramente bayesiana; (ii) desenvolvimento de um método bayesiano para maior eficiência computacional na estimação de parâmetros; e (iii) escolha flexível de distribuições de probabilidade de resíduos para modelos GJR-GARCH. Como resultado das investigações dos problemas mencionados, este trabalho apresenta quatro contribuições. A primeira diz respeito a uma abordagem de inferência bayesiana para modelos GJR-GARCH univariados e multivariados. A segunda consiste no estudo de três distribuições de probabilidade de resíduos, uma delas tendo sido utilizada de forma inovadora para casos multivariados. A terceira combina duas técnicas, o algoritmo Hamiltoniano Monte Carlo (HMC) e o método Zero-Variance, para possibilitar a estimação de parâmetros em modelos GJR-GARCH com maior eficácia dos estimadores, bem como com maior eficiência computacional. Por fim, a quarta apresenta resultados de estudos de simulação e de uma aplicação em dados reais, no contexto de índices de bolsas de valores mundiais, mostram que as contribuições propostas solucionam os problemas abordados eficaz e eficientemente, avançando o estado da arte de modelos GARCH univariados e multivariados.
Título en inglés
Zero-Variance method for Hamiltonian Monte Carlo applied to univariate and multivariate GARCH models
Palabras clave en inglés
Bayesian inference
GARCH
Hamiltonian Monte Carlo
Zero-variance
Resumen en inglés
This PhD work develops, compares and applies Monte Carlo Markov Chains (MCMC) methods for parameter estimation in univariate and multivariate GJR-GARCH models. Specifically, the following problems are addressed: (i) conception of a purely bayesian estimation approach; (ii) development of a bayesian method for higher computational efficiency in parameter estimation; and (iii) flexible selection of residual probability distributions for GJR-GARCH models. As a result from the investigations of the aforementioned problems, this work presents four contributions. The first corresponds to a bayesian inference approach for univariate and multivariate GJR-GARCH models. The second consists of studying three residual probability distributions, one of which having been inovatively employed for multivariate cases. The third combines two techniques, namely the Hamiltonian Monte Carlo (HMC) algorithm and the Zero-Variance method, to allow parameter estimation in GJR-GARCH models with higher estimator efficiency, as well as higher computational performance. Finally, the fourth presents results from simulation studies and an application over real-world data, in the context of worldwide stock market indexes, show that the proposed contributions solve the addressed problems effective and efficiently, advancing the state of the art of univariate and multivariate GARCH models.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-21
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.