• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.104.2021.tde-21072021-163951
Document
Author
Full name
Rafael Soares Paixão
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2021
Supervisor
Committee
Ehlers, Ricardo Sandes (President)
Abanto-valle, Carlos Antonio
González-lópez, Verónica Andrea
Hotta, Luiz Koodi
Laurini, Marcio Poletti
Title in Portuguese
Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
Keywords in Portuguese
GARCH
Inferência Bayesiana
Monte Carlo Hamiltoniano
Zero-variance
Abstract in Portuguese
Este trabalho de doutorado desenvolve, compara e aplica métodos Monte Carlo via Cadeias de Markov (MCMC) para estimação de parâmetros em modelos GJR-GARCH univariados e multivariados. Especificamente, os seguintes problemas são abordados: (i) concepção de uma abordagem de estimação puramente bayesiana; (ii) desenvolvimento de um método bayesiano para maior eficiência computacional na estimação de parâmetros; e (iii) escolha flexível de distribuições de probabilidade de resíduos para modelos GJR-GARCH. Como resultado das investigações dos problemas mencionados, este trabalho apresenta quatro contribuições. A primeira diz respeito a uma abordagem de inferência bayesiana para modelos GJR-GARCH univariados e multivariados. A segunda consiste no estudo de três distribuições de probabilidade de resíduos, uma delas tendo sido utilizada de forma inovadora para casos multivariados. A terceira combina duas técnicas, o algoritmo Hamiltoniano Monte Carlo (HMC) e o método Zero-Variance, para possibilitar a estimação de parâmetros em modelos GJR-GARCH com maior eficácia dos estimadores, bem como com maior eficiência computacional. Por fim, a quarta apresenta resultados de estudos de simulação e de uma aplicação em dados reais, no contexto de índices de bolsas de valores mundiais, mostram que as contribuições propostas solucionam os problemas abordados eficaz e eficientemente, avançando o estado da arte de modelos GARCH univariados e multivariados.
Title in English
Zero-Variance method for Hamiltonian Monte Carlo applied to univariate and multivariate GARCH models
Keywords in English
Bayesian inference
GARCH
Hamiltonian Monte Carlo
Zero-variance
Abstract in English
This PhD work develops, compares and applies Monte Carlo Markov Chains (MCMC) methods for parameter estimation in univariate and multivariate GJR-GARCH models. Specifically, the following problems are addressed: (i) conception of a purely bayesian estimation approach; (ii) development of a bayesian method for higher computational efficiency in parameter estimation; and (iii) flexible selection of residual probability distributions for GJR-GARCH models. As a result from the investigations of the aforementioned problems, this work presents four contributions. The first corresponds to a bayesian inference approach for univariate and multivariate GJR-GARCH models. The second consists of studying three residual probability distributions, one of which having been inovatively employed for multivariate cases. The third combines two techniques, namely the Hamiltonian Monte Carlo (HMC) algorithm and the Zero-Variance method, to allow parameter estimation in GJR-GARCH models with higher estimator efficiency, as well as higher computational performance. Finally, the fourth presents results from simulation studies and an application over real-world data, in the context of worldwide stock market indexes, show that the proposed contributions solve the addressed problems effective and efficiently, advancing the state of the art of univariate and multivariate GARCH models.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.