• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.104.2020.tde-20032020-171207
Documento
Autor
Nombre completo
José Clelto Barros Gomes
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Novelli, Cibele Maria Russo (Presidente)
Guzmán, Jorge Luis Bazán
Lobos, Cristian Marcelo Villegas
Salgado, Felipe Alberto Osorio
Zeller, Camila Borelli
Título en inglés
Estimation methods in heavy-tailed nonlinear mixed effects models
Palabras clave en inglés
Correlated data
Estimation methods
Maximum likelihood
Mixed-effects models
Nonlinear models
Restricted maximum likelihood
Resumen en inglés
Parameter estimation in nonlinear mixed-effects models is often challenging. In this thesis, a comparison of estimation methods for these models is proposed under a frequentist approach. In the first study, a comparison of maximum likelihood estimates under an exact method via Monte Carlo expectation-maximization (MCEM) and an approximate method based on a Taylor expansion, frequently used in the literature, is provided. In a second study, a restricted maximum likelihood estimation method is proposed, aiming to decrease the bias for the variance components estimates, based on the integration of the likelihood function on the fixed-effects, also in an exact likelihood context. These estimates are compared to the maximum likelihood ones. For the latter comparison, stochastic approximation of expectation-maximization (SAEM) algorithms are considered. The random effects and errors are assumed to follow multivariate symmetric distributions, namely the scale mixture of normal distributions, which include the normal, t and slash distributions. Finally, a general nonlinear mixed-effects model is proposed, where no linear relation is assumed in the random effects structure. In all the proposals, real data sets and simulation studies are used to illustrate the estimates properties.
Título en portugués
Métodos de estimação em modelos de efeitos mistos não lineares de caudas pesadas
Palabras clave en portugués
Dados correlacionados
Máxima verossimilhança
Máxima verossimilhança restrita
Métodos de estimação
Modelos mistos
Modelos não-lineares
Resumen en portugués
A estimação de parâmetros em modelos não lineares com efeitos mistos é muitas vezes desafiadora. Neste trabalho, propomos a comparação de alguns de métodos de estimação nesses modelos sob o enfoque frequentista. Em um primeiro momento, propomos um estimador de máxima verossimilhança em um esquema de estimação exata contra o estimador de máxima versossimilhança em um modelo linearizado pela expansão de Taylor, o que é frequentemente utilizado na literatura. No primeiro cenário usamos o algoritmo MCEM. Em um segundo momento, visando diminuir o viés para estimativas das componentes de variância, propomos um estimador de máxima verossimilhança restrita também dentro de um esquema de estimação exata, baseada na integração da função de verossimilhança em relação aos efeitos fixos. Esse estimador é comparado com o de máxima verossimilhança. Neste caso, usamos o algoritmo SAEM, para os dois métodos de estimação. Assume-se para os erros e efeitos aleatórios algumas distribuições simétricas multivariadas de escala de misturas de distribuições normais, que compõem a classe de distribuições de caudas pesadas, a saber: normal, t e slash. Por último propomos um modelo não linear mais flexível, em que não é assumida uma forma linear para a inclusão dos efeitos aleatórios. Em todos os casos utilizamos dados reais e estudos de simulação para avaliar as propriedades dos estimadores.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-03-20
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.