• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Master's Dissertation
Full name
Juan Pablo Mamani Bustamante
Knowledge Area
Date of Defense
São Carlos, 2015
Aoki, Reiko (President)
Labra, Filidor Edilfonso Vilca
Lobos, Cristian Marcelo Villegas
Title in Portuguese
Influência local com procura "forward" em modelos de regressão linear
Keywords in Portuguese
Curvatura normal conformal
Influência local
Método de diagnóstico
Modelo de regressão
Procura "forward".
Abstract in Portuguese
A identificação de observações influentes e/ou aberrantes de um conjunto de dados é conhecida como uma parte das análises de diagnóstico. Esta técnica de diagnóstico têm como uma das finalidades verificar a robustez de um modelo estatístico, pois a não identificação dos dados influentes pode afetar a análise ou obter resultados incorretos. As metodologias comumente utilizadas para o diagnóstico de observações influentes em modelos de regressão são métodos de influência global (Belsey et al., 1980). Cook (1986) introduziu um método geral para avaliar a influência local de pequenas perturbações no modelo estatístico ou nos dados, usando diferentes tipos de perturbações. Como complemento às técnicas de detecção de observações discrepantes, é proposto o método procura \forward", por Atkinson e Riani (2000), que é uma metodologia para detectar observações atípicas mascaradas. Neste trabalho, propomos o uso da influência local com procura "forward" na obtenção de observações mascaradas influentes considerando modelos de regressão linear.
Title in English
Local influence with forward search in linear regression models
Keywords in English
Conformal normal curvature
Diagnostic method
Forward search
Local influence
Regression model
Abstract in English
The identification of influential and/or atypical observations in a data set is known as a part of the diagnostic analysis. One of the purposes of the diagnostic analysis is to verify the robustness of a statistical model, as the non-identification of influential observations can affect the analysis or may cause the obtainment of incorrect results. The most commonly used methodology for the diagnostic of influential observations in regression models are the global influence (Belsey et al., 1980). Cook (1986) introduced a general method to evaluate the local influence of small perturbations in the statistical model or in the data set using different perturbation schemes. As a complement to the techniques of detection atypical observations, it is proposed the forward search procedure by Atkinson e Riani (2000), which is a methodology to detect the masked atypical observations in a data set. In this work we propose the use of the local influence approach together with the forward search to obtain the masked influential observations in linear regression models.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.