• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.104.2018.tde-13112018-160231
Document
Auteur
Nom complet
Ian Meneghel Danilevicz
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2018
Directeur
Jury
Ehlers, Ricardo Sandes (Président)
Leandro, Roseli Aparecida
Prates, Marcos Oliveira
Titre en anglais
Detecting Influential observations in spatial models using Bregman divergence
Mots-clés en anglais
Bayesian inference
Bregman divergence
Hamiltonian Monte Carlo
Heteroscedasticity
Influential points
spatial models
Resumé en anglais
How to evaluate if a spatial model is well ajusted to a problem? How to know if it is the best model between the class of conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models, including homoscedasticity and heteroscedasticity cases? To answer these questions inside Bayesian framework, we propose new ways to apply Bregman divergence, as well as recent information criteria as widely applicable information criterion (WAIC) and leave-one-out cross-validation (LOO). The functional Bregman divergence is a generalized form of the well known Kullback-Leiber (KL) divergence. There is many special cases of it which might be used to identify influential points. All the posterior distributions displayed in this text were estimate by Hamiltonian Monte Carlo (HMC), a optimized version of Metropolis-Hasting algorithm. All ideas showed here were evaluate by both: simulation and real data.
Titre en portugais
Detecção de observações influentes em modelos espaciais usando divergência de Bregman
Mots-clés en portugais
Divergência de Bregman
Heteroscedasticidade
Inferência Bayesiana
Modelos espaciais
Monte Carlo Hamiltoniano
Pontos influentes
Resumé en portugais
Como avaliar se um modelo espacial está bem ajustado? Como escolher o melhor modelo entre muitos da classe autorregressivo condicional (CAR) e autorregressivo simultâneo (SAR), homoscedásticos e heteroscedásticos? Para responder essas perguntas dentro do paradigma bayesiano, propomos novas formas de aplicar a divergência de Bregman, assim como critérios de informação bastante recentes na literatura, são eles o widely applicable information criterion (WAIC) e validação cruzada leave-one-out (LOO). O funcional de Bregman é uma generalização da famosa divergência de Kullback-Leiber (KL). Há diversos casos particulares dela que podem ser usados para identificar pontos influentes. Todas as distribuições a posteriori apresentadas nesta dissertação foram estimadas usando Monte Carlo Hamiltoniano (HMC), uma versão otimizada do algoritmo Metropolis-Hastings. Todas as ideias apresentadas neste texto foram submetidas a simulações e aplicadas em dados reais.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Libération
2019-12-12
Date de Publication
2018-11-13
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.