• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.104.2017.tde-13092017-083037
Document
Auteur
Nom complet
Natália Lombardi de Oliveira
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Campos, Adriano Polpo de (Président)
Lopez, Veronica Andrea Gonzalez
Takada, Hellinton Hatsuo
Titre en portugais
Distribuição preditiva do preço de um ativo financeiro: abordagens via modelo de série de tempo Bayesiano e densidade implícita de Black & Scholes
Mots-clés en portugais
Função densidade de probabilidade implícita
Função densidade de probabilidade preditiva
Modelo autorregressivo Bayesiano
Smile da volatilidade
Volatilidade implícita
Resumé en portugais
Apresentamos duas abordagens para obter uma densidade de probabilidades para o preço futuro de um ativo: uma densidade preditiva, baseada em um modelo Bayesiano para série de tempo e uma densidade implícita, baseada na fórmula de precificação de opções de Black & Scholes. Considerando o modelo de Black & Scholes, derivamos as condições necessárias para obter a densidade implícita do preço do ativo na data de vencimento. Baseando-­se nas densidades de previsão, comparamos o modelo implícito com a abordagem histórica do modelo Bayesiano. A partir destas densidades, calculamos probabilidades de ordem e tomamos decisões de vender/comprar um ativo. Como exemplo, apresentamos como utilizar estas distribuições para construir uma fórmula de precificação.
Titre en anglais
Predictive distribution of a stock price: Bayesian time series model and Black & Scholes implied density approaches
Mots-clés en anglais
Auto regressive Bayesian model
Implied probability density funcion
Implied volatility,Volatility smile
Predictive probability density function
Resumé en anglais
We present two different approaches to obtain a probability density function for the stocks future price: a predictive distribution, based on a Bayesian time series model, and the implied distribution, based on Black & Scholes option pricing formula. Considering the Black & Scholes model, we derive the necessary conditions to obtain the implied distribution of the stock price on the exercise date. Based on predictive densities, we compare the market implied model (Black & Scholes) with a historical based approach (Bayesian time series model). After obtaining the density functions, it is simple to evaluate probabilities of one being bigger than the other and to make a decision of selling/buying a stock. Also, as an example, we present how to use these distributions to build an option pricing formula.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-09-13
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.