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ABSTRACT

EGBON, O. A. Bayesian Spatial Process Models for Activation Patterns in Transcranial
Magnetic Stimulation Mapping. 2023. 160 p. Tese (Doutorado em Estatística – Programa Inte-
rinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Compu-
tação, Universidade de São Paulo, São Carlos – SP, 2023.

In recent years, Spatial statistical models have been gaining rapid attention for solving problems
in biological systems due to the improvement in spatial data collection. It has proven extremely
important in unveiling spatial patterns and predicting biological processes. This project developed
novel parametric and nonparametric Bayesian spatial statistical models to analyze data generated
by the muscular responses elicited by Transcranial magnetic stimulation (TMS) pulses induced
on the motor cortex of a patient. The goal is to unveil new insights into patients’ response
patterns important for achieving successful TMS therapy sessions. The first contribution of this
project is a systematic review and meta-analysis of the existing Bayesian spatial models that
could be considered for analyzing TMS datasets. The second contribution is the development of
a user-friendly interface for performing Bayesian spatial modeling for analyzing TMS datasets
based on state-of-the-art methods. The interface was documented in an R package, which is
publicly available. The third contribution proposed novel spatial statistical models for integrating
geostatistical datasets in the form of prior elicitation in a Bayesian analysis. The models were
validated using simulation studies, and findings show that naively integrating geostatistical TMS
datasets without ensuring the consistency of the data is detrimental to the desired inferences. The
final contribution proposed a Bayesian nonparametric spatial model that leads to a non-stationary
and non-Gaussian spatial process for the joint modeling of geostatistical TMS datasets. The
method used a mixture of Dependent Dirichlet processes to share information across sub-spatial
models. Two simulation studies were used to validate the model performance, and the result
showed superior performance compared with independent and exchangeable models. The main
finding of this work is that the primary motor cortex within the motor cortex region of the brain
is responsible for the largest activation in the movement of the right first dorsal interosseous
muscle. The finding also showed that the corticospinal excitability decreases with multiple TMS
pulses on the motor cortex; however, it begins to regain its excitability strength after several
stimulations. The findings from this project could guide TMS practitioners to improve patients’
treatment experiences.

Keywords: Brain mapping, Dirichlet process, Gaussian process, Motor cortex, Prior elicitation.





RESUMO

EGBON, O. A. Modelos de Processo Espacial Bayesiano para Padrões de Ativação em Ma-
peamento de Estimulação Magnética Transcraniana. 2023. 160 p. Tese (Doutorado em
Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ci-
ências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Nos últimos anos, os modelos estatísticos espaciais têm recebido rápida atenção para resolver
problemas em sistemas biológicos devido ao aprimoramento na coleta de dados espaciais. Eles
têm se mostrado extremamente importantes na revelação de padrões espaciais e na previsão de
processos biológicos. Este projeto desenvolveu novos modelos estatísticos espaciais paramé-
tricos e não paramétricos Bayesianos para analisar dados gerados pelas respostas musculares
desencadeadas por pulsos de estimulação magnética transcraniana (TMS) induzidos no córtex
motor de um paciente. O objetivo é descobrir novas perspectivas sobre os padrões de resposta
dos pacientes, um fator importante para o sucesso das sessões de terapia com TMS. A primeira
contribuição deste projeto é uma revisão sistemática e meta-análise dos modelos espaciais
Bayesianos existentes que podem ser considerados para analisar conjuntos de dados de TMS. A
segunda contribuição é o desenvolvimento de uma interface do usuário para realizar modelagem
espacial Bayesianas para análise de conjuntos de dados de TMS com base em métodos de última
geração. A interface foi documentada em um pacote R, que está disponível publicamente. A
terceira contribuição propôs novos modelos estatísticos espaciais para integrar conjuntos de
dados geoestatísticos na forma de elicitação de priori em uma análise Bayesiana. Os modelos
foram validados usando estudos de simulação, e os resultados mostram que a integração ingênua
de conjuntos de dados geoestatísticos de TMS sem garantir a consistência dos dados é prejudicial
para as inferências desejadas. A contribuição final propôs um modelo espacial não paramétrico
Bayesiano que leva a um processo espacial não estacionário e não gaussiano para a modelagem
conjunta de conjuntos de dados geoestatísticos de TMS. O método utilizou uma mistura de
processos de Dirichlet dependentes para compartilhar informações entre os submodelos espaciais.
Dois estudos de simulação foram usados para validar o desempenho do modelo, e o resultado
mostrou desempenho superior em comparação com modelos independentes e intercambiáveis.
O principal resultado deste trabalho é que o córtex motor primário, dentro da região do córtex
motor do cérebro, é responsável pela maior ativação no movimento do músculo interósseo dorsal
do primeiro dedo direito. Os resultados também mostraram que a excitabilidade corticospinal
diminui com múltiplos pulsos de TMS no córtex motor; no entanto, começa a recuperar sua
força de excitabilidade após várias estimulações. Tais resultados podem orientar os profissionais
de TMS a melhorar a experiência de tratamento dos pacientes.

Palavras-chave: Córtex motor, Elicitação a priori, Mapeamento Cerebral, Processo Gaussiano,



Processo de Dirichlet.
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CHAPTER

1
INTRODUCTION

1.1 Background

The improvement in data collection methods has increased the availability of spatial data,
and researchers are increasingly faced with the task to analyze them, which consequently makes
spatial statistical models becoming more popular. A spatial statistical model is a large class of
models widely applied to study spatial patterns of spatially correlated data and predictions on
unobserved locations. It has been considered for solving problems in epidemiology (AUCHIN-
CLOSS et al., 2012), agriculture (SERNEELS; LAMBIN, 2001), medicine (XIE et al., 2023;
SCHLUTH et al., 2023), and engineering (GARCIA et al., 2016). Spatial statistical models are
high-dimensional models, as a result, they are often considered within a Bayesian framework.
The main benefit of the Bayesian technique over the frequentist counterpart is the possibility
of estimating the complete distribution of the parameters that govern the model (BERGER;
GARCÍA, 2004).

A Bayesian spatial statistical model is a form of the generalized linear mixed model that
includes a spatial latent variable to account for spatial variation in spatially indexed data. The
latent variable is modeled through a spatial prior, usually, multivariates, which takes account
of spatial dependences across a domain under investigation. A common family of spatial prior
distributions is the Gaussian Markov Random Field (CRESSIE, 1993; RUE; HELD, 2005), due
to its friendly theoretical properties. However, the Student-t spatial process (ORDOÑEZ et al.,
2023), Poisson-Gaussian Mixture Process (GONÇALVES; AGUILAR; PRATES, 2022), and
Dirichlet processes (GELFAND; KOTTAS; MACEACHERN, 2005) are other possible choices.

Prior elicitation is a key element in Bayesian inference. It provides a framework to
combine beliefs in the form of prior probability distributions with experimental data. Prior
knowledge is elicited from experts, as in the work of Hoegh et al. (2017) or elicited from
historical data as in Feißt, Krisam and Kieser (2020). Due to the high dimensionality of spatial
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models, prior elicitation from experts becomes difficult, thus elicitation from data becomes
appealing. Prior distribution derived from historical data can provide increased precision of
parameter estimates. Power and commensurate prior distributions (HOBBS et al., 2011) are
existing methods for eliciting knowledge from historical non-geostatistical spatial data and have
been adopted in several fields. However, there is still a lack of existing methods for eliciting
knowledge from geostatistical data. Due to the possibility that historical geostatistical data may
have a different spatial window and exhibit some level of misalignment, it is not trivial to extend
these classical methods to geostatistical data. Thus, efforts are required for developing prior
elicitation frameworks for geostatistical data for solving practical problems.

In biological systems, there are often multiple observed spatial datasets available for a
phenomenon under investigation. This can happen for a couple of reasons. Firstly, there may
be a need to reobserve data after a significant event that could potentially alter the process
of the phenomenon has occurred. Secondly, researchers may be interested in observing the
phenomenon’s behavior under different conditions, which can provide valuable insights and lead
to a more comprehensive understanding of the underlying processes. However, the inconsistency
among the datasets may lead to an inadequate inference when jointly analyzed. In these cases, a
combination of sub-spatial models with the capability to filter and share consistent information
across sub-models becomes essential. Though there are existing methods for joint analysis of
non-geostatistical data (MÜLLER; QUINTANA; ROSNER, 2004; LOPES; MÜLLER; ROSNER,
2003), little or no attention has been given to geostatistical data. The existing methods lack
the framework for a trivial extension to geostatistical data, thus creating a significant gap that
requires adequate attention.

The most recent and popular R package for fitting a Bayesian spatial statistical model
is the INLA (RUE; MARTINO; CHOPIN, 2009). Though the package relies on the Gaussian
Markov Random Field priors, it allows the implementation of a wide range of spatial models for
area/lattice and geostatistical spatial data. A major advantage of the package is the possibility
of developing and documenting wrapper functions in R, that could be used to solve more spe-
cific problems. For example, Azevedo, Prates and Bandyopadhyay (2022) developed wrapper
functions documented as a package for solving spatial confounding issues and Palmí-Perales,
Gómez-Rubio and Martinez-Beneito (2021) developed a wrapper function for performing anal-
ysis with multivariate spatial prior for multiple spatial latent fields. Despite the importance
of Bayesian spatial modeling in solving practical problems, there has been a lack of effort in
developing and documenting wrapper functions that can generate a user-friendly interface. This
interface would allow individuals to perform full Bayesian spatial modeling without requiring
extensive coding expertise. This gap in development and documentation has hindered the ac-
cessibility and usability of Bayesian spatial modeling. As such, there is a need for increased
attention to creating more accessible and user-friendly interfaces for Bayesian spatial modeling.

The models and methods developed in this work were motivated by data derived from
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a medical experimental process on brain-spinal functionality that brought to light the existing
gaps identified above. The experiment aimed at understanding human responses to Transcranial
Magnetic Stimulation (TMS) pulses delivered to the motor cortex. TMS is an active neurophysi-
ological technique that causes electrical induction in the brain. TMS has a range of applications,
for example; studying brain functioning in healthy and unhealthy subjects (HALLETT, 2000),
as a tool to help predict recovery outcomes after stroke (STINEAR et al., 2017), and as an
intervention to modulate brain activity (LEFAUCHEUR et al., 2014). The TMS pulses delivered
from its coil form a magnetic field that painlessly passes through the scalp to reach and depolarise
neurons in the brain region under investigation (ROTENBERG; HORVATH; PASCUAL-LEONE,
2014). This stimulation causes the activation of some biological neurons, and action potentials
are released in the process. Specifically for this experiment, these action potentials flow through
the cortical-spinal tract to reach the right first dorsal interosseous (FDI) muscle. The stimulation
effect is then recorded through an electromyograph placed over the FDI muscle. The responses
are measured in microvolts and are referred to as motor-evoked potential (MEP).

1.2 Objectives

This project seeks to quantify and explain the spatial pattern of patients’ responses to
TMS pulses and to identify areas on the motor cortex that respond most to stimulation. Hence,
this work aims to develop spatial statistical models and methods that allow the estimation of
spatial patterns and quantify uncertainties in patients’ responses to TMS pulses, which could
give new insight into the biological process and be used to determine the accurate resting motor
threshold and treatment doses. This is crucial given that a TMS therapy session heavily relies on
accurately determining the true spatial response pattern of the patient undergoing treatment. This
factor directly impacts the effectiveness of the therapy. Therefore, it is imperative to prioritize the
precise identification of patients’ spatial response patterns to ensure optimal treatment outcomes.

To achieve the goal of this project,

1 A systematic review and meta-analysis of the existing Bayesian spatial statistical methods
were conducted. This helped to reveal the state-of-the-art methods in diverse fields and
identified gaps in the literature.

2 Based on the state-of-the-art methods and models, a user-friendly interface formed from
a wrapper function for INLA was developed to analyze brain TMS data. A standard R
documentation procedure was adopted and was named TMSBrainApp package, which is
publicly available and installable from the GitHub repository.

3 Power and commensurate prior elicitation methods from historical point-referenced data
were developed for a Gaussian spatial process for modeling point-reference data to improve
the estimation of spatial patterns and uncertainty in TMS data.

https://github.com/eosafu/TMSBrainApp1.1.0
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4 Mixture of Dirichlet processes was proposed to jointly model multiple TMS data to profile
shared from subject-specific latent spatial processes. The resulting model is a non-Gaussian
and non-stationary spatial process.

The remaining chapters of this dissertation are structured as follows: Chapter 2 provides
an overview of the methods related to this work and presents the TMS data used in this project.
Chapter 3 presents the systematic review and meta-analysis results of Bayesian spatial models.
Chapter 4 introduces the developed TMSBrainApp package and user-friendly shiny interface,
while Chapter 5 presents the proposed prior elicitation methods for geostatistical data. Chapter 6
proposes a mixture of Dirichlet process prior distributions for the joint analysis of the TMS data,
and finally, Chapter 7 concludes the work and gave future considerations.

1.3 Scientific products
This dissertation has generated the following scientific articles that are either published

or under review:

1 Louzada, F., Nascimento, D. C., & Egbon, O. A. (2021). Spatial Statistical Models: An
Overview under the Bayesian Approach. Axioms.

2 Egbon O. A., Nascimento D. C. & Louzada F. (2023). Prior Elicitation for Gaussian Spatial
Process: an Application to TMS Mapping Data. Statistics in Medicine.

3 Egbon O. A., Heumann C., Nascimento D. C. & Louzada F. Mixtures of Dirichlet processes
for joint spatial modeling of TMS mapping data. Under review in The Journal of the Royal

Statistical Society, Series C (Applied Statistics).

4 Nascimento D. C., Egbon, O. A., Groen O., Gonzzato O., Louzada F., & Edwards D.
TMSBrainApp: A Shiny Interface for Bayesian Spatial Statistical Hotspot Finding Task in
a TMS Brain Mapping Data. Submitted to PLOS Computational Biology.
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CHAPTER

2
REVIEW OF METHODS AND DATA SOURCE

2.1 Generalized linear mixed model
Linear regression plays a fundamental role in statistical modeling (NETER et al., 1996).

It is the basis through which complex models are developed. It is an approach for explaining
the occurrence of a random vector Y = (Y1,Y2, ...,Ym)

T by some observed covariate set X =

(x1,x2, ...,xp), and xi = (xi1,xi2, ...,xim)
T . Its goal is to estimate the function that links both X

and Y. The linear regression model is given by

Y | βββ ,τ ∼ Normal(µµµ,τ−1Im),

µµµ = XT
βββ ,

(2.1)

where µµµ ∈ Rm, Im is an identity matrix of size m; parameter βββ = (β1,β2, ...,βp)
T and βi is the

regression effects of covariate xi, which gives insight on how the covariate contributes to the
behavior of Y. (2.1) assumes that conditioning on τ and βββ , the occurrence of Yi (i = 1,2, ...,m)

are independent and identical. In practical problems, this assumption is hardly true. Hence, (2.1)
can be extended to a linear mixed model (NELDER; WEDDERBURN, 1972), which includes a
latent variable that explains some unobserved variation in Y. The linear mixed model is given as

Y | βββ ,ψψψ,τ ∼ Normal(µµµ,τ−1Im),

µµµ = XT
βββ +ψψψ,

(2.2)

where ψψψ = (ψ1,ψ2, ...,ψm)
T , and ψi is a latent variable corresponding to Yi. Nelder and Wed-

derburn (1972) refer to (2.2) as a linear model for systematic effect. The marginal distribution
of Y | βββ ,τ again has a normal distribution with mean E(Y | βββ ,τ) = XT βββ and the marginal co-
variance is Cov(Y | βββ ,τ) = τIm +Qψ , where Qψ is the covariance matrix of the latent variable
ψψψ , known as the random effect. In many problems, the variable Yi is not normally distributed,
hence the generalized linear mixed model (GLMM) (BRESLOW; CLAYTON, 1993) is adopted.
(2.2) can be used to investigate subject variations in longitudinal data by taking ψi to be a source
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of variation particular to subject i. According to Nelder and Wedderburn (1972), the GLMM
comprises a dependent variable Y whose distribution belongs to the exponential family, and a
set of covariates X such that g(E(Y)) = XT βββ +ψψψ with a link function g−1 : R→ Y . Thus, the
GLMM follows as

Y | βββ ,ψψψ ∼ f (Y; µµµ),

µµµ = g−1(XT
βββ +ψψψ),

(2.3)

where E(Y | βββ ,ψψψ) = µµµ . The linear mixed model is a special case of the GLMM. That is f is
normal and g(µµµ) = µµµ . Different probability distributions assumed for f lead to a different type of
model. For example, Yau, Lee and Ng (2002), Fabio, Paula and Castro (2012), and Bonat, Jr and
Zeviani (2015) adopted gamma, poison, and beta distributions respectively. The GLMM model
has been adopted in several practical applications (BOLKER et al., 2009; STROUP, 2012).

2.2 Spatial statistical model

A spatial statistical model is an extension of the GLMM to accommodate geographically
referenced data. It is adopted to account for spatially structured sources of variation in observed
data. It has been applied in a wide range of fields (LOUZADA; NASCIMENTO; EGBON, 2021).
For example, in epidemiology, investigators might wish to analyze disease rates at a county or
area level; in Environmental science, investigators might wish to analyze CO2 emission at a
regional level, and in Biological science, investigators might wish to analyze neighboring cell
interactions in single-cell RNA sequencing data.

Suppose Yi is an observed random variable at a known location si, i = 1,2, ...,m. Then
a spatial statistical model can be expressed as (CRESSIE, 1993; BANERJEE; CARLIN;
GELFAND, 2014)

Y | βββ ,ψψψ,θθθ ∼ f (Y; µµµ),

µµµ = g−1(XT
βββ +ψψψ +θθθ),

(2.4)

where Y = (Y1,Y2, ...,Ym)
T ; θθθ = (θ1,θ2, ...,θm)

T is the spatial process and θi could account
for the source of variation in location si. In area spatial data, si could represent a county, sub-
nationals, or districts within the explorable spatial domain, and it could represent a geographical
coordinate in geostatistical or point-referenced data.

The model given in (2.4) is flexible and could incorporate several interactions. For a
special case, suppose f is normal, g(µµµ) = µµµ , and conditional variance of Y is τ−1Im, marginal
covariances of ψψψ and θθθ are Q−1

ψ and Q−1
θ

with zero mean. Thus, the marginal distribution of Y
follows as

Y | βββ ∼ Normal(XT
βββ ,ΣΣΣ), (2.5)
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Figure 1 – An example of Matérn covariance function and the associated random field.

where ΣΣΣ = (τ−1In+Q−1
ψ +Q−1

θ
), which introduces high-level interactions between observations

at different locations.

In geostatistical data modeling, Q−1
θ

can be determined through a covariance function
such as exponential, Gaussian, and Matérn covariance functions. The variogram of the Matérn
class is given as (BANERJEE; CARLIN; GELFAND, 2014)

γ(h) = λ
2 +σ

2
[
1− (2

√
νhφ)ν

2ν−1Γ(ν)
Kν(2

√
νhφ)

]
, h > 0. (2.6)

Consequently, the matérn covariance function C(h;φ ,ν) is given as

C(h;φ ,ν) = limu→∞γ(u)− γ(h)

=
σ2

2ν−1Γ(ν)
(2
√

νφh)νKν(2
√

νφh),
(2.7)

where h = d(si,si′) is an euclidean distance between two points, Kν is a Bessel function of the
second kind of order ν , ν is the smoothness parameter and φ is the range. Figure 1 illustrates
an example of a random field for model (2.5) govern by a matérn covariance function, (2.7).
The spatial process generated in the figure assumed X is an n×1 matrix; that is, X = [xi1], and
xi1 = 1,∀i, β = 2, σ2 = 1, and ΣΣΣ = 1

10Im +[C(d(si,si′);φ ,ν)]. The left panel of the figure shows
the covariance function for different choices of range and smoothness parameters, and the right
panel shows the corresponding sampled field for Y across one of the coordinates. The figure
shows how φ and ν control the smoothness of the random field. The slower the covariance
curve approaches zero with an increase in distance, the smoother the spatial process. This is also
evident in the 2-dimensional form of the field shown in Figure 2.
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Figure 2 – An example of Matérn covariance function and the associated random field in 2D.

2.3 Bayesian analysis
Bayesian analysis is a powerful statistical modeling technique that leverages the Bayes

theorem to update the probability of a hypothesis as new evidence is gathered through data
(BERGER et al., 1994). This approach allows for a more nuanced and accurate understanding of
complex systems, as it takes into account the uncertainty inherent in any real-world scenario.
It provides a flexible and adaptable framework for modeling complex systems. In Bayesian
modeling, all model parameters are considered random and are represented by a probability
distribution before data observation.

Consider model (2.4) for spatial modeling. Excluding the fixed and random effects
for simplicity, and assuming a Gaussian random field prior distribution for the process θθθ , the
hierarchical model follows as

θθθ ∼ Normal(0,Q−1
θ
),

Y | θθθ ∼ f (Y;θθθ).
(2.8)

Where Qθ is the precision matrix of the random field (eg. spatial effect). The first equation
in (2.8) is the process model and the second is the data generation model which induces mea-
surement errors around the process model. To make an inference about θθθ , the prior knowledge
is updated with the available data Y using Bayes theorem. If f is Gaussian and Qθ is known,
the conditional posterior distribution θθθ | y after some matrix algebras will again result in a
multivariate Gaussian distribution (BANERJEE; CARLIN; GELFAND, 2014). In practice, these
and similar assumptions may be too restrictive, and relaxing them will consequently lead to
an intractable posterior probability distribution. In this case, statistical inference will rely on
computational techniques.

The Markov Chain Monte Carlo (MCMC) algorithm (BROOKS et al., 2011) is one of
the most frequently used algorithms in the literature for estimating intractable and complex
posterior distributions. However, other methods such as Variational Bayes (VB) (ATTIAS, 1999),
Integrated Nexted Laplace Approximation (INLA) (RUE; MARTINO; CHOPIN, 2009), and
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Expectation Maximization (EM) (MOON, 1996) are other popular options. In this project, the
MCMC and INLA methods were adopted for posterior inferences.

2.4 Prior elicitation from historical data
Prior elicitation in Bayesian inference is essential for obtaining more precise estimates. It

allows prior knowledge learned from experts or historical data to be constructed into a probability
distribution for a Bayesian analysis. Arriving at such distribution is difficult in geostatistical
modeling due to the high dimensional parameters involved. Chapter 5 developed a Spatial power
and commensurate informative prior distributions to elicit knowledge from historical data. These
distributions were rooted in the power and commensurate prior distributions for non-geostatistical
data proposed in Ibrahim and Chen (2000) and Hobbs et al. (2011).

2.4.1 Power prior

In the simplest form, suppose the interest is to estimate θθθ in a current data D = {m,y}
with available historical data D0 = {m0,y0}, where m and y are the sample size and an m×1
vector of a response variable, and m0 and y0 correspond to the historical quantities. As discussed
in Ibrahim, Chen and Sinha (2001), the power prior for θθθ is given as

π(θθθ |ω0,D0) ∝ (L(θθθ |D0))
ω0 π(θθθ), (2.9)

where L(θθθ |D0) is the historical likelihood, π(θθθ) is the prior distribution assumed on θθθ before
the historical data were observed, and ω0 is the discounting parameter controlling the amount
of the historical information incorporated into the current study and also controls the heaviness
of the tail, which becomes heavier as ω0 becomes smaller. Ibrahim, Chen and Sinha (2001)
suggested restricting ω0 to range in the interval of [0,1]. The two extremes to the amount of
information incorporated into the current model are ω0 = 0, which indicates that no historical
information is incorporated, and ω0 = 1, which indicates that all the historical information is
incorporated into the current model. Care is taken in the choice of ω0, in that poor choice can
cause the historical data to dominate the current study, which is undesirable. The main benefit
of using the power prior in (2.9) is the few hyper-parameter required to be specified in model
selection problems, and in many instances, it is proper and can be used to compute the Bayes
factor.

It is not trivial to determine the amount of the true discount that minimizes type 1 error
using the power prior given in (2.9). Thus, Ibrahim and Chen (2000) proposed a joint power
prior obtained by allowing ω0 to be random and assigned a prior distribution π(ω0) as

π(θθθ ,ω0|D0) ∝ (L(θθθ |D0))
ω0 π(θθθ)π(ω0). (2.10)

A natural choice of π(ω0) is the beta distribution; however, a truncated normal and a truncated
gamma distribution in the interval of [0,1] could be considered (DUAN, 2005; IBRAHIM;
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CHEN, 2000). The parameter ω0 can be interpreted as a measure of heterogeneity between
the historical and the current data. It can be considered as the probability that D0 and D came
from the same population. In this context, ω0 = 1 indicates that D0 and D came from the same
population, and all the information on D0 is desired in the current study. Contrarily, ω0 = 0
indicates that the D0 and D came from a completely different population and should not be
incorporated in the current study. As ω0 becomes smaller, the heterogeneity in the data increases.

Ibrahim, Chen and Sinha (2001) discussed the propriety of (2.10) and importantly stated
a sufficient, but not necessary, condition that the prior given in (2.10) is guaranteed to be proper
(i.e

∫
π(θθθ ,ω0|D0)dθθθdω0 < ∞) if π(θθθ) and π(ω0) are themselves proper. Specifically, (2.10)

exhibits the properties of a likelihood, and the propriety is useful in model selection problems.

Duan (2005) proposed a modification of the joint power prior, also known as the normal-
ized joint power prior which follows as

π(θθθ ,ω0|D0) ∝
(L(θθθ |D0))

ω0 π(θθθ)π(ω0)∫
Θ
(L(θθθ |D0))

ω0 π(θθθ)dθθθ
1Ω0(ω0), (2.11)

where Ω0 = {ω0 : 0 <
∫

Θ
(L(θθθ |D0))

ω0 π(θθθ)dθθθ < ∞}, and 1B(a) is an indicator function that
takes the value 1 if a ∈ B and 0 otherwise. The prior on (2.11) is always proper whenever π(ω0)

is a proper distribution but not necessarily π(θθθ). The power prior in (2.10) specifies a joint
prior distribution directly for (θθθ ,ω0), in which case its normalizing constant is independent of
ω0 and can be viewed as the normalized power prior (2.11), which first specifies a conditional
prior distribution for θθθ given ω0 and then a marginal distribution for ω0 (IBRAHIM et al.,
2015). As described in Duan (2005) and Ibrahim and Chen (2000) the joint prior distributions
in (2.10) and (2.11) can be extended to multiple historical datasets. Given a historical dataset
D0 = {D01,D02, ...,D0m} with associated weights ω0 = {ω01,ω02, ...,ω0m} of D0 adherence to
the current data, the joint prior is given as

π(θθθ ,ω0|D0) ∝
∏

m
i=1 (L(θθθ |D0i)

ω0iπ(ω0i))π(θθθ)∫
Θ ∏

m
i=1 L(θθθ |D0i)ω0iπ(θθθ)dθθθ

1Ω0(ω0), (2.12)

where Ω0 = {ω0 = (ω01,ω02, ...,ω0m) : 0 <
∫

Θ ∏
m
i=1 L(θθθ |D0i)

ω0iπ(θθθ)dθθθ < ∞}. The correspond-
ing joint posterior distribution is given as

π(θθθ ,ω0|D ,D0) ∝ L(θθθ |D)π(θθθ ,ω0|D0). (2.13)

The marginal posterior distribution of θθθ is obtained by integrating out ω0 in (2.13). The marginal
distribution of ω0 is obtained in the same manner by integrating out θθθ in the joint posterior
distribution.

2.4.2 Commensurate Prior

Hobbs et al. (2011) proposed several extensions of the power prior for location and
scale parameters, referred to as commensurate power prior distribution. Here, we focused on the
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commensurate prior relevant to this work. The prior assumes different location parameters for
the historical and current data, θθθ 0 and θθθ , respectively. The prior of θθθ depends on θθθ 0 through the
parameter λλλ , which accounts for the commensurability between θθθ 0 and θθθ . Assuming independent
uniform prior for θθθ 0, the multi-dimensional commensurate power prior θθθ follows as

π(θθθ ,θθθ 0,λλλ ,ω0 | D0) ∝
L(θθθ 0 | D0)

ω0∫
L(θθθ 0 | D0)ω0dθθθ 0

π(θθθ | θθθ 0,λλλ )π(ω0)π(λλλ ), (2.14)

where π(θθθ | θθθ 0,λλλ ) ∝ exp
(
−1

2(θθθ −θθθ 0)
T λλλ (θθθ −θθθ 0)

)
is the commensurate prior distribution and

π(ω0) ∝ ω
g(λλλ )−1
0 , g : Rq −→ R and g(λλλ )> 0.

Hobbs et al. (2011) proposed a commensurate prior distribution for a univariate location
parameter. A multi-dimensional equivalent commensurate prior is given as

π(θθθ ,λλλ | D0) ∝ π(θθθ)π(λλλ )
∫ [

L(θθθ 0 | D0)π(θθθ | θθθ 0,λλλ )
]
dθθθ 0. (2.15)

As λλλ approaches zero, the commensurate prior distribution approaches π(θθθ), and as the eigenval-
ues of λλλ approaches infinity, the commensurate prior distribution is a Bayes update of π(θθθ). In
the same work, Hobbs and colleagues proposed location-scale commensurate prior distributions,
which account for the commensurate between the location and scale parameters of the model
on the current data and historical data. That is, the extension of (2.15) is by conditioning the
scale parameter of the current model on the scale parameter of the historical model in a similar
way θθθ is conditioned on θθθ 0. Let γγγ be the scale parameter involved in the model on the current
data and γγγ0 be the corresponding parameter in the historical data model. Then the location-scale
commensurate prior distribution follows as

π(θθθ ,γγγ,λλλ 1,λλλ 2 | D0) ∝ π(θθθ)π(γγγ)π(λλλ 1,λλλ 2)
∫ [

L(θθθ 0,γγγ0 | D0)π(θθθ | θθθ 0,λλλ 1)π(γγγ | γγγ0,λλλ 2)
]
dγγγ0dθθθ 0,

(2.16)

with independent uniform prior distribution assumed for the historical parameters. (λλλ 1,λλλ 2) ac-
counts for the location and scale commensurate. Moreover, the authors proposed a commensurate
prior distribution formulated from a mixture of the prior distribution specified in (2.16).

2.5 Dirichlet process

Bayesian nonparametric (BNP) models are a class of probability models on infinite
dimensional probability spaces. It relaxes the assumption of using a finite number of parameters
to describe a random process in the parametric counterpart. It has been considered for density
and intensity estimation (KOTTAS, 2006; RABAOUI et al., 2011), model validation, clustering
(TEH et al., 2010), and anomaly detection (KALTSA et al., 2018). Suppose a spatial process
Y (s)∼ H with family {Hθθθ : θθθ ∈Rd}, in the Bayesian parametric framework, a fixed distribution
is assumed for H, a prior distribution is assigned to θθθ ∼ P(θθθ), and the posterior distribution
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Figure 3 – A distribution of H ∼ DP(α,N(0,21/2)) for different α simulated using the stick-breaking
technique .

is obtained using Bayes theorem. In BNP, the assumption of fixed H is relaxed, and a prior
distribution is assigned to H ∼ P(H) instead. A common choice of the prior on H is the Dirichlet
process (DP) (FERGUSON, 1973; TEH et al., 2010).

Suppose that H ∼ DP(α,G), where G is the base distribution of the process over space
ΩΩΩ, and α > 0 is the concentration parameter. For any partition B1,B2, ...,Br of ΩΩΩ, the vector
(H( B1),H(B2), ...,H(Br))∼ Dir(αG(B1),αG(B2), ...,αG(Br)), and Dir indicates a Dirichlet
distribution. This implies that H itself is random and for any partition such that ΩΩΩ = {B,Bc},
E(H(B)) = G(B) and Var(H(B)) = G(B)(1−G(B))/(α + 1), indicating that the mean and
variance are themselves random unlike in the parametric case, and thus, is able to better capture
the process subtle patterns. In addition, adopting the DP prior distributions for spatial modeling
can better capture nonstationary processes.

The distribution H ∼ DP(α,G) is not simple to draw samples from. However, a single
draw of H can be obtained through a stick-breaking process (SETHURAMAN, 1994). That
is the distribution DP(α,G) can be represented as ∑

∞
b=1 ωbδ

θ (b) . δa denotes a point mass at
a and θ (b) ∼ G. Let ω1 = a1 ∼ Beta(1,α) and ab ∼ Beta(1,α), b = 2,3, ... independently,
then, the stick-breaking representation follows as ωb = ab ∏

b−1
k=1(1−ak). For example, suppose

G = N(0,
√

2). Using the stick-breaking approach, Figure 3 shows the DP distribution for
α = 1,50,500, and 1000. The plot shows that the distribution approaches G as α increases,
however, it is a discrete distribution.
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The DP process can be used as prior distribution to estimate the probability distribution
H that generates independent and identical variables Y1, ...,Ym. That is Yi ∼ H and H ∼ DP(α,G).
The posterior distribution is again a DP process. That is H | y ∼ DP(α?,G?), where α? and G?

are obtained after some algebras. See Escobar and West (1995) for illustration. This idea was
utilized in Chapter 6 to arrive at a nonstationary spatial process.

DP has been considered for solving spatial problems. For example, Gelfand, Kottas and
MacEachern (2005) proposed a Dirichlet process mixture for spatial modeling and examined the
theoretical properties, and applied it to a single dataset of precipitation measurements over the
Languedoc-Roussillon region in France. Silva (2007) proposed a Dirichlet process mixture for the
segmentation of single magnetic resonance images of the human brain. Moreover, Kim, Smyth
and Stern (2010) proposed a hierarchical DP (hDP) for modeling multiple fMRI images to allow
sharing of components across multiple images. In a similar vein, Gupta, Phung and Venkatesh
(2012) proposed a hierarchical beta process for combining multiple data for transfer learning
in text and image retrieval, and Liu, Wade and Bochkina (2022) proposed a similar model for
clustering Single-cell RNA sequencing data. Specifically, suppose there are J related images or
data with corresponding probability distribution H j. Then, for replication t, the hierarchical DP
follows as

Yjt ∼ H j,

H j ∼ DP(α j,H0),

H0 ∼ DP(α0,G0), t = 1,2, ...,Tj, j = 1,2, ...,J,

(2.17)

where G0 is the base prior distribution incorporating the shared information across multiple
images. While the model is elegant and appealing for dealing with various shared effect problems,
it subjects all Yjt to the base prior distribution G0, which may be inappropriate for data generated
from different sources or exhibit more complex characteristics that have multiple latent sources
of heterogeneity across multiple datasets. An example of such a dataset is the TMS data. This
happens because the pattern of subjects’ responses to TMS stimulation possesses a complex
structure that has the tendency to be modulated at different unknown brain states as studies
have shown intra-individual variability in a time scale of minutes (BERGMANN, 2018). This
consequently leads to a higher variability across multiple subjects. In these cases, using the
model 2.17 implies that all response Yj, j = 1,2, ...,J originated from G0. Thus, this project
considered a more flexible model for the TMS dataset.

2.6 Data source
TMS is an active neurophysiological technique that causes electrical induction in the

brain. The TMS pulses delivered from its coil form a magnetic field that painlessly passes through
the scalp to reach and depolarise neurons in the brain region under investigation (ROTENBERG;
HORVATH; PASCUAL-LEONE, 2014). This stimulation causes the activation of some biological
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Figure 4 – Illustration of a TMS brain mapping procedure (a), a gridded motor area of the scalp where
TMS pulses are delivered into the brain (b), and observed signal referred to as motor evoked
potential (c).

neurons, and action potentials are released in the process. Figure 4 gives an overview of the
data collection procedure used in this project. Figure 4a shows a subject being stimulated using
a figure-of-eight TMS coil. The coil is placed over the scalp and TMS pulses in the form of a
magnetic field are induced in the brain. In practice, a grid is formed over the subjects’ scalp on
the motor cortex (Figure 4b), and each grid cell is stimulated with the TMS pulse. The effect
of the stimuli is recorded as a signal at the muscle of interest using an electromyograph. The
recorded signal is known as motor-evoked potential (Figure 4c).

2.6.1 Experimental design and data acquisition

2.6.1.1 Subjects

The acquired data used in this study were approved by the ethics committee of St John
of God Healthcare Human Research Ethics Committee (HREC, 1474) and reciprocal ethics
approval has been provided by ECU HREC (2019-00023). Informed written consent was obtained
from three right-handed subjects (male, aged 58, 58, and 49). For one of the subjects, data were
acquired on two occasions.

2.6.1.2 Experimental setup

Each subject was seated comfortably in a chair, with the right hand pronated in a relaxed
position. Subjects were instructed to keep their eyes open and to look straight ahead during
stimulation. A Magstim 2002 magnetic pulse stimulator and a 70 mm figure-of-eight coil was
used. EMG was recorded with the BrainSight built-in EMG pod over the right first dorsal
interosseous (FDI) muscle. Two pre-gelled, disposable Ag/AgCl surface electrodes (Kendall
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Medi-Trace mini electrodes) were positioned over the FDI muscle according to a belly-tendon
montage, while a ground electrode was placed over the styloid process of the ulna bone. Before
placing the EMG electrodes, the skin was scrubbed with an alcohol wipe to reduce impedance and
improve signal quality. The data were sampled at 3 kHz and bandpass filtered with bandwidths
set between 16 and 470 Hz. Data were collected on a Macintosh iMac computer running
Brainsight R○TMS neuronavigation software version 2.2.11 (Rogue Research, Montreal, Quebec).

Prior to the TMS experiment, the subject received a magnetic resonance image (MRI)
scan (T1-weighted) anatomical image at 1 mm3 resolution to acquire cranial MRI data (1.5T,
Philips Ingenia, Philips Healthcare, Best, the Netherlands). From the MRI data, a model of the
head surface was created in the neuronavigation software by co-registering the participant with
their MRI scan.

2.6.2 TMS data collection

The position of the participant’s head and TMS coil was constantly monitored in real-time
with the Polaris Vicra Optical Tracking System (Northern Digital Inc.). This ensured that the
center of the coil was kept within 2 mm of the target and that the coil orientation was consistent
throughout the experiment. A grid (1cm spacing; 11x11) was centered over the hand’s primary
motor cortex (M1). This cortex was visually identified as it is predominantly located in the
middle knee of the central sulcus (CS), formed by the posterior curvature of the precentral gyrus
(PreCG) around the handknob (SILVA et al., 2020). The TMS stimulator was set to 65 percent
maximal stimulator output (MSO). This intensity was used to search for a motor response in
the neighboring locations. If no motor response was elicited within 2 centimeters of the grid
center, then the stimulator was turned up with 5 percent MSO. This procedure was repeated until
a response was elicited. The MTAT 2.0 tool (AWISZUS, 2003) was used to determine the resting
motor threshold (RMT) at the stimulation target. The stimulation intensity for the subsequent
mapping was set to 110 percent of the RMT. The starting point for the mapping was the center
of the grid (0,0). The figure-of-eight coil was held tangentially to the scalp and rotated away
from the midline by 45 degrees, in order to activate the corticospinal system preferentially trans
synaptically. The coil was moved forward and backward to collect 10 pulses at each location.
Movement direction was changed when no motor-evoked potential (MEP) could be collected
anymore, that is no responses ≥ 0.05mV. Online visual feedback of the coil placement, by the
neuronavigation system, with its relation to the brain-enabled real-time coil adjustment.

2.6.3 Descriptive statistics

Figure 5a & b show the MEP signal recorded by EMG at different locations over the
motor cortex for subject 1 at the first and second TMS sessions respectively. Figure 5c &d are
the MEP signals for subjects 2 and 3. For all the subjects, the signal is flat for a period of time
until it attains its lowest and highest peaks in a short time interval and levels off thereafter.
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Figure 5 – Observed motor-evoked potential signal for subjects (a) 1R1, (b) 1R2, (c) 2, and (4) 3. Each
curve represents a motor-evoked potential at a given spatial location within the motor cortex.

Table 1 shows the mean, median, 10th percentile, and 70th percentile of the peak-to-peak
of the MEP signal shown in Figure 5. Technically, suppose the upper peak (maximum value) of
a signal in question is denoted by a and the lower peak (minimum value) is denoted by b. The
peak-to-peak of the signal equals the difference between a and b. Here, 1R1 and 1R2 denote
subject 1 at TMS sessions 1 and 2 respectively. From the table, the acquired data show that
subject 1R1 had the largest variation in the peak-to-peak MEP across different locations on the
motor cortex since the mean, median, and percentiles are farthest apart.

Table 1 – Descriptive quantities of peak-to-peak MEP (µV ).

Subject Mean Median 10% 70%
1R1 100.95 37.37 6.79 133.38
1R2 36.39 28.31 6.79 47.56

2 71.58 15.85 6.79 64.54
3 38.59 26.04 12.46 47.78

Figure 6 shows the spatial distribution of the peak-to-peak MEP for all the subjects. The
figure shows how locations with high and low peak-to-peak are clustered over the motor cortex.
It also shows that the coordinates where data were obtained for all the subjects are different,
which could pose data integration challenges. Figure 7 shows the box plot of the log peak-to-peak
MEP grouped over cells referred to as Associate targets. The box plot shows the median, 25th,
and 75th percentiles of the log peak-to-peak MEP. Similarly, the plot revealed some variations
across subjects and Associate targets.
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Figure 6 – The spatial distribution of the peak-to-peak motor evoked potential for subjects (a) 1R1, (b)
1R2, (c) 2, and (d) 3.
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Figure 7 – The boxplot of the log peak-to-peak motor evoked potential grouped by the associate targets
for subjects (a) 1R1, (b) 1R2, (c) 2, and (d) 3. Note that each point in the figure denotes an
average peak-to-peak MEP for a given spatial location.



42 Chapter 2. Review of methods and Data source

0

100

200

300

400

2.5 5.0 7.5 10.0
(a)  

pe
ak

−
to

−
pe

ak
 M

E
P

200

300

400

3 6 9
(b)  

0

200

400

600

2.5 5.0 7.5 10.0
(c)  Replication

pe
ak

−
to

−
pe

ak
 M

E
P

40

80

120

0 10 20 30
(d)  Replication

Figure 8 – The peak-to-peak motor evoked potential against the consecutive TMS pulses replication for
subjects (a) 1R1, (b) 1R2, (c) 2, and (d) 3.

Figure 8 shows the peak-to-peak MEP with respect to the consecutive TMS pulses
delivered over the motor cortex. The consecutive TMS pulses delivered were referred to as
replication. For example, the peak-to-peak MEP at replication 3 at a given coordinate of the
motor cortex is the response recorded by the EMG at the third consecutive TMS pulse induced
in the brain. The figure shows variations across replications.
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CHAPTER

3
BAYESIAN SPATIAL STATISTICS: A
SYSTEMATIC REVIEW AND META

ANALYSIS

This chapter presents the method, results, and findings of a systematic review and meta-
analysis of the literature on Bayesian spatial modeling. This analysis aimed to assess the current
state of development of these spatial models, identify trends, and highlight their contributions
to the Bayesian spatial modeling literature. Furthermore, this chapter aims to determine the
variation in the application of Bayesian spatial statistics across different fields and identify the
state-of-the-art spatial models that could be useful for developing web applications for Bayesian
spatial analysis of the TMS data.

3.1 Methodology

The collection and reporting methods were based on the guidelines of the Preferred
Reporting Item for Systematic Review and Meta-Analysis (PRISMA) (HUTTON et al., 2015;
MOHER et al., 2009). This procedure includes an electronic search strategy, a clear objective to
define the inclusion and exclusion criterion, and an appropriate method for reporting the findings.

An online electronic search was conducted on June 10, 2020, in the following four
databases: Elsevier’s Scopus, Science Direct, Thompsom Reuters Web of Science, and the
American Mathematical Society’s MathSciNet database. Queries of the word “Bayesian Spatial”
and “Bayesian spatial”, using the Boolean operator “OR”, throughout 2001-2020. Title, abstract,
and Keywords were used in Scopus and Science Direct, the topic (which entails title, abstract,
and keywords) in Web of Science, and “Anywhere” in MathSciNet.

The Mendeley Windows application was used to remove duplicated articles. The resulting
set was further examined manually looking for more duplicates not identified by Mendeley’s
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Figure 9 – Flow chart of systematic review search procedure in the Scopus, Science Direct, Web of Science,
and MathSciNet databases. From 1,280 articles, based on the query words, 728 articles were
removed (duplicated papers, non-English written, not peer-reviewed, nor Bayesian spatial
modeling), and 552 remained to be analyzed. Then, information such as authors’ names,
journal titles, publication years, and the conceptual classification scheme was explored.

application. The titles and abstracts of the articles included (after removing duplicates) were first
screened for Bayesian spatial methodology before applying the following inclusion criteria.

i. Search results that are written in English, and articles published in peer-reviewed journals
available online. Books, dissertations/thesis, conference proceedings, and reviews (or any
other form that was not an article) were excluded.

ii. Articles that specifically implement Bayesian spatial models excluding the ones that only
mentioned Bayesian spatial models.

Articles that did not meet the two inclusion criteria were excluded from the review. The
search flow chart is presented in Figure 9. Using the search keywords mentioned earlier, 586
articles were retrieved from Scopus, 129 from Science Direct, 492 from Web of Science, and 73
from MathSciNet. After excluding duplicated ones, 590 articles were assessed for eligibility, and
38 were further excluded based on the two exclusion criteria, leaving 552 articles selected for
conceptual classification. These articles were classified into the following categories: Names
of all authors, Publication year, Journal title, and response to the ten items of the conceptual
classification scheme on Bayesian spatial models shown in Appendix 7.3.
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3.2 Conceptual Scheme for Spatial Models

A conventional approach to content analysis (HSIEH; SHANNON, 2005) was adopted
by scrutinizing samples of the articles to clearly define the characteristics that better explain
the scope and richness of the literature and identify the key concepts and patterns. The first
step was to determine these characteristics. New characteristics were added whenever new data
that did not fit in already defined characteristics were found. This approach makes room for the
literature to be classified without a priori presumption. The following subsections describe the
major characteristics considered.

3.2.1 Spatial Statistics Fields of Application

Bayesian spatial statistics is a useful tool to incorporate the dependence structure and
hidden patterns over space, through prior knowledge and data likelihood. In some cases, the
hypotheses of interest in a random phenomenon do not directly relate to the effect of spatial
dependencies. However, it is crucial to adjust for spatial variation to reduce bias (RILEY et

al., 2015). Adjustment for spatial patterns in modeling random occurrence has been practiced
across various fields such as Agriculture, Medicine, Biology, Epidemiology, Geography, Geology,
Economics, Climatology, and Ecology, among others (KARIMI; MOHAMMADZADEH et al.,
2012). Moreover, spatial dependence in the Agriculture experiment has long received considera-
tion. Ronald A. Fisher identified spatial variations and used them to establish (random) blocks
in the experiments to mitigate the effect of spatial dependencies in a randomized experimental
design (FISHER, 1936).

In many Biological and Medical experiments, such as gene classification and brain
mapping, the randomized blocking technique may not be a viable alternative. Moreover, in
demography, disease mapping, image analysis, remote sensing, manufacturing engineering, and
species detection, the variation due to spatial proximity cannot be neglected. It may result in bias
and inconsistent estimates. Responses at close range tend to have similar behavior and variation.
The homogeneity of the variation depreciates with the increased distance apart. An efficient
procedure to tackle the effect of spatial proximity is to consider random field Statistical models.
Random field Statistical models, known as spatial models, describe the distribution of a random
phenomenon over a spatial domain.

Spatial models have long been applied in various fields. In 1949, Isard described the
general theory of the spatial formation of economic activities focusing on the geographic
distribution of costs, prices, and location of industries (ISARD, 1949). Spatial statistics applied
to economics, often referred to as spatial econometrics, have gained more attention in recent
years to analyze economic data over a wide range of spatial domains (SPARKS; SPARKS;
CAMPBELL, 2013). Similarly, in 1950, DA. Krige took advantage of nearby variations to pursue
the spatial prediction of gold distribution in South Africa, basing predictions practically on
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lognormal-de Wijsian spatial models (KRIGE; KRIGE, 1981). In Epidemiology and Public
Health, spatial statistics have gained increasing importance in predicting disease outbreaks
(GRACIA et al., 2015; LUAN; LAW; LYSY, 2018; MORRIS, 2015; MÜLLER; BETUELA;
HIDE, 2002; SHORT; CARLIN; BUSHHOUSE, 2002). The problems that arose in these fields
usually motivated the improvement of existing spatial models in the literature. Examples are
models to alleviate spatial confounding and misalignment in spatial data, determine spatial risk
factors, and disease surveillance (WARD, 2008; BANERJEE; CARLIN; GELFAND, 2014;
AZEVEDO; PRATES; BANDYOPADHYAY, 2022; GONÇALVES; AGUILAR; PRATES,
2022).

In this review, the application fields were classified into five major groups. 1. Biological
and Medicine: these include research on Biology, Medicine, Epidemiology, and Public Health, 2.
Economics and Humanity: these include Economics, Demography, Criminology, and Accident
Analysis. 3. Physical Science and Engineering, 4. Agricultural and Environmental Science, and
5. Sport.

Spatial statistical models play a key role in determining the spatial pattern or quantifying
the relative positions of biological components, such as DNA, involved in some biological
functions. Some examples include the study of the relative positioning of primordial and growing
follicles in mice to identify the likely source of some regulatory muscles (SILVA-BUTTKUS et

al., 2009); determine the spatial patterns, relative position, and interaction of Arabidopsis thaliana
heterochromatin (ARPÒN et al., 2021); molecular profiling using Bayesian hierarchical Negative
Binomial distribution for diagnoses and treatment procedures (LI et al., 2021). Moreover, it is
useful for disease mapping to determine the onset of an epidemic disease. A recent application
includes the analysis of the mortality rate of COVID-19 in Spain and Italy using a Gaussian
process to explain the spatial pattern (ADEGBOYE et al., 2021; SAAVEDRA et al., 2021);
the spatial mapping of schistosomiasis in Tanzania to determine the prevalence and spatial
pattern (CLEMENTS et al., 2006). It is also considered to be a powerful tool for image analysis
in the Medical field. An example includes the multivariate spatial model for characterizing
neuroimaging data with a linear combination of multiscale basis functions to explore traits or
symptoms in brain disorder (HUERTAS et al., 2017).

Bayesian spatial statistics has been embraced in Economics to identify the spatial pattern
of a household’s share of economic distress, to understand the formation of new business, and in
studies of consumer and producer behavior. It has been used to identify the impact of economic,
social, and demographic factors on spatial variability of household share of economic distress
(BENASSI; NACCARATO, 2017); identify the spatial structure of the calls to Portuguese health
line, accounting for demographic, socio-economic information, and characteristics of the health
systems (SIMÕES et al., 2017); identify clustering in severe mobility crash risk, diagnosing of
active transportation safety issues (OSAMA; SAYED, 2019). Moreover, it has been employed in
the analysis of spatial patterns and hotspot detection of violent and property crimes at a small
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spatial scale in Toronto, Canada (LAW; QUICK; JADAVJI, 2020); map main features of fertility,
such as timing, pace, and scale, and to detect spatial disparity in fertility transition in Brazil
(POTTER et al., 2010).

Moreover, Spatial Statistics has been increasingly applied in Agricultural, Physical,
and Environmental Sciences. It has been used to provide estimates for the curvature of a
railway sleeper supported on compacted ballast, through the multi-output Gaussian process to
guide inference in unobserved regions (GREGORY et al., 2019); to quantify the uncertainty,
in spatially varying material parameters, such as polycrystalline, through a Gaussian random
field (RAPPEL et al., 2019; KOUTSOURELAKIS, 2009), and to study material properties and
spatial variability in elastostatics (KOUTSOURELAKIS, 2012). It has been used in extreme
value analysis to quantify the uncertainty associated with an increased risk of flooding in Great
Britain (SHARKEY; WINTER, 2019); to determine the spatial pattern of the association of
socioeconomic factors to Japanese Encephalitis; to understand the seasonal effect and spatial
variability in yield maps in farm precision in South-Eastern Australia (ROBINSON et al., 2009);
and in sport, it has been used to determine the expected number of scores in a Golf game
(YOUSEFI; SWARTZ, 2013).

Spatial models have a long history in image analysis (WOODS, 1972; BESAG, 1974).
Recently, it has been gaining attention in the machine learning community for image processing
(EL-BAZ; FARAG, 2003; SIDÉN; LINDSTEN, 2020). For instance, Per Siden and Fredrik Lind-
sten established a connection between Convolutional Neural Networks (CNN) and a Gaussian
Markov Random Field, which the authors applied to temperature data (SIDÉN; LINDSTEN,
2020). Vemulapalli et al. (VEMULAPALLI; TUZEL; LIU, 2016) proposed a deep network
architecture based on a Gaussian conditional random field for image denoising. Moreover, Lee
et al. (LEE et al., 2017) developed an exact equivalence of infinitely wide neural networks and
Gaussian processes and further linked the performance of these Gaussian processes to the theory
of signal propagation in random neural networks.

3.2.2 Spatial data

Geographically reference data, also known as spatial data, is a collection of a realization
of a stochastic process indexed by space. In other words, suppose y(s) is a random process
observed at location s, the set Y (s)≡ {y(s),s ∈ D} is a spatial data, in which D , a subset of Rd ,
is usually ( but not necessarily ) fixed and represents a spatial domain. According to Blangiardo
and Cameletti (2015), the spatial data are distinguished as follows:

1 Area or Lattice data: it is a simple way to represent spatial data in the domain D . In this
type of spatial domain, y(s) is a random aggregated realization across an area s of distinct
boundaries. For area data, the boundaries are irregular, such as administrative divisions,
whereas, for lattice, the boundaries are a regular division of D . For simplicity purposes, it
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may be necessary to aggregate other types of Spatial domain realizations to form area or
lattice data. This process may sometimes be referred to as a discretization of D .

2 Geostatistical or Point-reference data: y(s) is a realization at a specific location s in a
continuous spatial domain D . Location s is considered to be a coordinate made up of
longitudes and latitudes, and sometimes includes altitudes. Location s could also be
represented in Cartesian coordinates.

3 Spatial point pattern: Realization y(s) represents the occurrence or non-occurrence of
an event at location s. In this case, the location itself is considered to be random. The
realization is a location indicator of the presence or absence of a phenomenon of interest
in the domain D . In Agriculture, for example, the interest may be the distribution of a
specific tree species, in which each realization is the presence or absence of the tree species
in domain D . In epidemiology, the realization may be the house address of a patient that
has a particular disease (BANERJEE; CARLIN; GELFAND, 2014; CRESSIE, 2015).

For instance, Sharkey and Winter (2019) adopted a Bayesian spatial model on lattice data to
identify patterns for the risk of flooding in Britain; Munoz et al. (2013) adopted stochastic
partial differential equation model on a geostatistical data to predict the spatial occurrence of fish
species, and Leininger and Gelfand (2017) proposed a Bayesian technique to estimate a spatial
point pattern of American sweetgum trees and Swedish pines.

3.2.3 Spatial Models

Several spatial models for spatially indexed response variable modeling or prior modeling
of spatial effects were found in the literature, and most were categorized in the class of the
Gaussian Markov Random Field (GMRF), defined as a Gaussian random field with Markov
property (CRESSIE, 2015; RUE; TJELMELAND, 2002). The choice of spatial model is strongly
informed by the study objective and available information. For modeling area spatial data, for
example, the Conditional Autoregressive class of spatial model is a popular choice to account
for spatially indexed county heterogeneity, whereas the Stochastic partial differential equation is
popular for geostatistical data.

The classification of the spatial prior models was according to the popularity in the
literature. These prior models were classified as Conditional Autoregressive (CAR) family,

Stochastic Partial Differential Equation (SPDE), GMRF (none of the above), Non-GMRF, Non-

parametric, Article-specific methodology (none of the above), and Not stated. The CAR family
includes the Beseg York Mollie (BYM), Leroux’s, Dean’s, and Simpson’s CAR models, including
the multivariate versions. The GMRF class consists of GMRF priors models except for the CAR
family and the SPDE. Table 2 shows a summary of the models found in the literature.
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Table 2 – Summary of some Spatial Models and their variations.

Spatial Smoothing Gaussian Process Non-Gaussian Process
Spatial Model ARTICLE Global Local GMRF Non-GMRF Parametric Semi-Parametric Non-Parametric

Proper CAR Besag (BESAG, 1974) 3 3

Intrinsic CAR/BYM Besag et al.(BESAG; YORK; MOLLIÉ, 1991) 3 3

Spatial Partition Model Leonhard & Raßer (KNORR-HELD; RASSER, 2000) 3 3

Asymmetric Laplace Kuzobowski & Pogorski (KOZUBOWSKI; PODGÓRSKI, 2000) 3 3

Leroux CAR Leroux et al. (LEROUX; LEI; BRESLOW, 2000) 3 3

Dean’s CAR Dean et al (DEAN; UGARTE; MILITINO, 2001) 3 3

Hidden Markov Model Green & Richardson (GREEN; RICHARDSON, 2002) 3

Dirichlet Process Gelfand et al. (GELFAND; KOTTAS; MACEACHERN, 2005) 3 3

Skewed normal Arellano et al. (ARELLANO-VALLE; AZZALINI, 2006) 3 3

Globalspline Lee & Durbán (LEE; DURBÁN, 2009) 3 3

SPDE Lindgren et al. (LINDGREN; RUE; LINDSTRÖM, 2011) 3 3

CAR dissimilarity Lee & Mitchell, (LEE; MITCHELL, 2012) 3 3

Copula-based Pilz et al. (PILZ; KAZIANKA; SPÖCK, 2012) 3 3

TGMRF Prates et al. (PRATES et al., 2015) 3 3

Simpson CAR Simpson et al (SIMPSON et al., 2017) 3 3

Log-Gamma Bradley et al. (BRADLEY; HOLAN; WIKLE, 2018) 3 3

Hedonic spatial field Oliveira & Ecker (OLIVEIRA; ECKER, 2022) 3 3

POGAMP Gonçalves et al. (GONÇALVES; AGUILAR; PRATES, 2022) 3 3

Student-t Ordonez et al. (ORDOÑEZ et al., 2023) 3 3

The non-GMRF is a large class that consists of non-trivial prior models that provides
some special spatial correlation function to determine the dependency of a spatial process in a
continuous space, including the Asymmetric Laplace, Log-Gamma, skewed normal, Student-
t process, and Dirichlet process, and Poisson-Gaussian Mixture Process (POGAM). A class
Others was created to accommodate unspecified models and those that do not belong to the
aforementioned classes. For instance, Obaromi (2019) and Egbon, Somo-Aina and Gayawan
(2021) adopted ICAR and BYM models to map the spatial pattern of tuberculosis in South Africa
and malnutrition in Nigeria; Fontanella et al. (2015) adopted a Bayesian hierarchical spatial
quantile regression model with asymmetric Laplace spatial component to determine the risk
factors of Radon-222 noble gas, which arises naturally from uranium decays, and Munoz et al.

(2013) adopted SPDE model to predict the spatial occurrence of fish species.

The hyperparameters of the prior distribution for stochastic processes are either elicited
(WALKER; CURTIS, 2014; MOALA; O’HAGAN, 2010), drawn from the previous study,
assigned weakly-informative or objective prior distribution (ORDOÑEZ et al., 2023). Moreover,
Simpson et al. (2017) developed a framework to construct informative priors called penalized
complexity (PC) prior. The PC prior has parameters that are subjectively set to control the amount
of flexibility allowed in the model. The construction of PC prior for the BYM spatial model and
Student-t process is described in Simpson et al. (2017). The PC prior for hyperparameters of
some GMRF models is implemented in INLA R package (RUE; MARTINO; CHOPIN, 2009).

3.2.4 Data model and methods of prior specification

A response variable is a quantity used to describe a random process to mathematically
relate it to a deterministic process. In statistical modeling, the most frequently used response
variables are the discrete (categorical), ordinal, and continuous variables. The type of variables
used in modeling a random phenomenon is intuitive from the process under study. The statistical
models used to describe a random phenomenon vary depending on the quantity and parameters
of interest.
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The Bernoulli distribution is often used for modeling the random phenomenon of two
possible outcomes. The Binomial, Negative Binomial, Hypergeometric, and Poisson distributions
are frequently used for modeling count cases such as disease occurrence, wildlife, signal, and
more (LI et al., 2021; STAUBACH et al., 2002). The Poisson distribution has been used to
approximate Binomial distribution for a large sample size (TEERAPABOLARN; JAIOUN, 2014;
BURR, 1973). The equality of mean to variance restriction imposed by the Poisson distribution
considers the Negative Binomial a better choice to model a random variable that exhibits over-
dispersion (ALEXANDER; MOYEED; STANDER, 2000). The Multinomial distribution is
often used to model a phenomenon naturally occurring in more than two categories usually
encountered in Biological experiments (KRISZTIN; PIRIBAUER; WÖGERER, 2021).

In the continuous case, a large class of distribution of the exponential family is used,
such as Gaussian, Exponential, Student t, Weibull, Gamma, and more. However, according to
the Central limit theorem, the Gaussian distribution could be used to approximate continuous
distributions for large sample sizes (KWAK; KIM, 2017).

In practice, analysts seek to quantify the association of a random phenomenon and a set
of explanatory variables, in combination with spatial processes. In the literature, the statistical
models encountered are the Generalized Linear Mixed Model (GLMM), Non-parametric, Survival

model, and Spatial Econometrics models. Additionally, the classes Proposed, Unspecified and
Others were created to accommodate non-standard proposed and validated models, as well as
unspecified models. The class of Others accommodates statistical models outside the above-listed
classes. For instance, Fontanella et al. (2015) adopted a generalized hierarchical mixed model
to determine the risk factors of Radon-222 noble gas; Egbon, Somo-Aina and Gayawan (2021)
used a generalized hierarchical mixed model to determine the impact of Caborn (IV) oxide on
the prevalence of malnutrition; Aswi et al. (2020) adopted survival statistical model to map the
prevalence of Hospitalisation due to Dengue in Wahidin Hospital in Makassar, Indonesia and
Simões et al. (2017) adopted spatial econometrics model (lag-model) to estimate the global
spatial correlation of the calls to Portuguese national health line.

An appropriate prior distribution specification in a Bayesian inference continues to be a
challenge in various fields of application. A prior distribution is associated with the representation
of uncertainty of the interest parameters before data are observed. The elicitation of an appropriate
prior distribution is a non-trivial task (PALACIOS; STEEL, 2006), and such challenges are
accumulated in spatial models due to a large number of associated parameters. In this review,
four main approaches were encountered. One of these approaches is the assumption of a flat,

vague, or noninformative priors, which allows the data model to carry all the information.
Such an approach is not always advantageous because inference on the parameters can be
improved by performing prior elicitation based on identified characteristics or expert opinion.
The elicitation procedure is termed elicited prior, which leads to another method, known as prior

elicitation. Convenient prior distributions are sometimes a choice and have spread across the
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literature and have been set as default priors in most simulation packages. As a result, subsequent
authors use such prior distribution verbatim. However, several authors did not explicitly state
the type of prior used and were classified as not available. For instance, Kang et al. (2011)
elicitated prior information from expert opinion, from a meta-analysis of neuroimaging data, and
parapsychologist to perform a Bayesian spatial point process to provide an interpretable model
for brain imagining studies and Kibria et al. (2002) elicited prior knowledge from experience for
predicting a particular matter.

3.2.5 Computational Techniques

Assessing the posterior distribution in Bayesian analysis to make inferences is not a
trivial task, because it usually contains compound integrands with complicated and analytically
intractable distributions and supports (FRAGOSO; BERTOLI; LOUZADA, 2018). Thus, the
authors explore different computational approaches to make inferences. In the literature, sev-
eral computation techniques were found and classified into the Markov Chain Monte Carlo

(MCMC), Integrated Nested Laplace Approximation (INLA), Expectation-Maximization (EM)

and Maximum (Penalized quasi) Likelihood Method classes. The MCMC class comprises all
numerical approximation that uses the Monte Carlo method. Moreover, the unspecified class was
added to accommodate articles that neither discuss nor state the approach used in the estimation
procedure. The Others class comprises computation techniques that do not fit into the defined
classes. For instance, Egbon, Somo-Aina and Gayawan (2021) utilized the INLA interface for
estimating the parameters of a Gaussian latent field model; Fontanella et al. (2015) utilized the
MCMC approach to estimate quantile regression parameters; Sun et al. (1998) utilized the EM
algorithm to perform a Bayesian interpolation of Nitrogen dioxide, ozone, sulfur dioxide, and
surface iron in public health units in Ontario, and Neill, Moore and Cooper (2005) compared
the performance of maximum likelihood estimation with different computation techniques for
spatial scan statistic.

3.2.6 Simulation Study and Validation

A simulation study is a systematic and scientific computer procedure that involves
fixing model parameters to generate data by pseudo-random sampling (MORRIS; WHITE;
CROWTHER, 2019). It comprises two main steps: data generation and estimation. In the first
step, a set of parameters is fixed and used to generate pseudo-random data. In the second step,
the generated data are fed back to the model to estimate the "unknown" parameters and check
for adequacy. A simulation study is usually carried out for proposed models and methods. The
papers reviewed were classified into two: “Yes” if the paper contains statistical simulation studies,
and “No” if it does not.

In addition to the simulation studies, this review also investigated how Bayesian spatial
models were validated using real data. It is a procedure to check overfitting or underfitting. A
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model overfits if it performs well in the training set and badly in the test set, whereas it under
fits if it performs poorly in the training set. A classical approach to cross-validation is to form a
disjoint subset of whole data into training and testing sets. The model is fitted into the former and
tested on the later set. Doing this process k times until all observations in the dataset participate
in training and testing once is called K-fold cross-validation. The whole data of size n is split into
k disjoint subsets, in which the combined k−1 sets serve as the training set, and the remaining
set of size n/k serves as the test set. A particular case to the k-fold is the Leave-One-Out cross-
validation, in which one observation serves as the test set, and the remainder n−1 serves as the
training set. After going through all subsets, the validation measures are statistically combined
to make a valid conclusion.

Since the spatial models are frequently modeled in a Bayesian framework, the class of
Posterior predictive check (GELMAN; MENG; STERN, 1996) was included. In a predictive
posterior check, a statistical test is chosen and computed for the observed data process. The same
statistic is computed for replicated posterior predictions of the process. The model is said to
present a good fit if the posterior prediction average is close to the statistic test for the observed
data (FRAGOSO; BERTOLI; LOUZADA, 2018). A None or not applicable class was included to
accommodate papers that did not conduct cross-validation and Others to accommodate validation
methods not mentioned above. For instance, Sun et al. (1998) adopted leave-one-out spatial
location to validate the performance of the proposed model for multivariate interpolation of air
pollutant gases in the health unit of Ontario and Akseer et al. (2018) utilized the k-fold cross-
validation method to examine the robustness of the adopted model to determine geographical
inequalities and nutritional status of women and children in Afghanistan.

3.3 Result

As described in the search procedure section, a total of 552 articles were selected after
applying the exclusion criteria (duplication and context). After careful analysis, the papers were
categorized into applied papers, theoretical, or both, in which 4 (1%) of the papers showed no
application (only theoretical with synthetic data), 188 (34%) showed an improvement in the field
with real-world application and 360 (65%) only applied the existing methodologies.

The result further showed that only 28.1% of the articles validated adopted models
through a simulation study. In addition, 4.5%, 3.0%, and 11.9% of the articles used the K-fold,
LOOCV, and Posterior predictive check real data-driven validation methods respectively. The
result shows overall low model validation rates. This is consistent since a large percentage of the
reviewed articles applied existing methods that are probably already validated.

The articles were subdivided into five classes of application fields: Agricultural and

Environmental Science, Economics and Humanities, Medical Science, Physical Science and

Engineering, and Other. Three fields hold the majority of the publications, which are Agricultural
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and Environmental Science (30.1%), Economics and Humanities (30.6%), and Medical Science,
which includes epidemiology, (33.7%). Moreover, the spatial domain used was also taken into
account. The Area/lattice, Geostatistical, and Spatial Point Patterns. The Area/lattice occurred at
65.6% and Geostatistical at 31.2% of the reviewed papers, and in combination, they hold 95.8%
of the publications. It is important to note that more than one spatial domain could be used in an
article, such as the 1% observed in this review. This procedure is common when a continuous
spatial domain is discretized to lower the computational burden.

Table 3 presents the frequency distribution of the Spatial Models adopted in the literature
versus the Statistical modeling, showing that the statistical model most often adopted is the
Generalized Linear Mixed Model (GLMM), which appears in 75.7% of the total articles reviewed.
For the spatial models, the CARs variation was utilized in 44.4% of the total articles reviewed
and it is generally used for spatial area/network data. From this family, the percentage of CAR
and the BYM spatial model appeared at 96.3%. Examples of these papers are Sharkey and
Winter (2019) and Fairley et al. (2008). Among the other categories, SPDE (3.6%), commonly
used for smooth projection of geostatistical data with INLA; GMRF except CAR family and
SPDE (4.0%), commonly developed for more specific problems; non-parametric models (1.3%)
often used for nonstationary stochastic processes, especially for expensive medical spatial data;
Article-specific models (7.2%) include those with author-defined covariance structure, which is
common in solving problems in econometrics. Unspecified models and those that did not fit into
any of these groups appeared in 8.2%. The result shows that the combination of CAR models and
GLMM accounts for nearly half of the articles reviewed. The CAR models have been validated
in numerous simulation experiments and hence it is suitable for modeling area/lattice spatial data
in GLMM.

Table 3 – Crosstab spatial priors used versus statistical model adopted. The GLMM with a CAR spatial
prior family for the spatial component is the most frequently used modeling structure in the
literature. Though some alternatives have been growing in the past decade such as the GLMM
framework combined with non-GMRF, GLMM with SPDE, and spatial autoregressive model
define dependence matrices.

GLMM Non-parametric Spatial Econ. Survival models Proposed Unspecified Other TOTAL
CAR Family 227 1 1 9 - 4 3 245 (44.4%)
SPDE 20 - - - - - - 20 (3.6%)
GMRF (excluding above) 19 - - - - - 3 22 (4.0%)
non-GMRF 101 - 49 1 5 1 16 173 (31.3%)
Non-Parametric 4 - - - - 1 2 7 (1.3%)
Article-specific method (none of the above) 17 - - - - - 23 40 (7.2%)
Unspecified 30 - 2 - - 9 4 45 (8.2%)

TOTAL 418 (75.7%) 1 (0.2%) 52 (9.4%) 10 (1.8%) 5 (0.9%) 15 (2.7%) 51 (9.2%) 552

The nature of the target variable dictates the adopted class of statistical model. In
the search, 14.1% of the articles modeled a dichotomous target variable, 38.6% modeled a
continuous variable, 43.1% modeled a discrete count variable, 1.8% modeled combined discrete
and continuous variables, and 1.8% modeled an ordinal variable. Due to the integrated complexity
of the posterior marginal distribution, the MCMC estimation method is the most frequently
adopted numerical integration, as depicted in Figure 10. However, the use of the INLA technique
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Figure 10 – A pie chart illustrating the percentage of (a) the spatial models and (b) computational tech-
niques found in the literature. (c) The interaction of the type of spatial models and compu-
tational method. The result indicates that the CAR family with the MCMC technique is the
most frequent combination in the literature.

is fast growing as studies have shown that INLA is significantly more robust and faster than the
MCMC technique (TAYLOR; DIGGLE, 2014). The CAR family in combination with MCMC is
the most popular combination relative to the others (Figure 10c).

The results obtained in this systematic review show that the expert’s knowledge was used
in conjunction with the data information (30.43%), as shown in Table 4, although this can be
better explored.

The top 5 journals that published the most reviewed papers related to the subject under
study (combining theoretical methodology with publications of real-world applications) were:
Spatial and Spatio-temporal Epidemiology (# 15), Accident Analysis and Prevention (# 14),
PLoS ONE (# 14), Spatial Statistics (# 11), and Environmentrics (# 10).
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Figure 11 – Top ten authors with the highest number of published articles based on the query keywords
and inclusion/exclusion criteria.

Table 4 – Model Prior specified.

Prior specified Percentage(%)
Elicited from experts or the problem 30.3
No explicit use or reference/not applicable 18.2
Used verbatim from the literature 30.0
Vague prior (Non-informative) 21.5
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Figure 12 – Growth in scientific publications related to topics in Bayesian Spatial Models from 2001 to
June 2020. There was a positive growth over the 20 years considered. The growth could be
associated with improvement in computational tools and data collection.

The most frequently appeared authors are Jane Law (University of Waterloo, Canada),
Archie C. A. Clements (University of Queensland, Australia), and Helai Huang (Central South
University, China) as shown in figure 11. These authors are followed, orderly, by Wenbiao Hu
(University of Queensland, Australia), Maria Grazia Pennino (Universitat de València, Spain),
Brian J. Reich (North Carolina State University, USA), Andrew B. Lawson (Medical University
of South Carolina, USA), Antonio López-Quílez (Universitat de València, Spain), Montserrat
Fuentes (North Carolina State University, USA), and Kerrie Mengersen (Queensland University
of Technology, Australia). Across time, the spatial modeling publication rate using the Bayesian
approach proliferated, as shown in Figure 12. The year 2020 covers only the first half of the year.
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3.4 Concluding remarks

Spatial statistics has gained tremendous attention in recent years due to the efficiency
in collecting spatial dependence data. Neglecting such dependencies may result in bias and,
consequently, lead to inadequate inferences. The Bayesian approach for analyzing spatial data
often outperforms the frequentist approach, given that the prior information is taken into account,
and it is able to estimate the distribution of the latent variables. In a Bayesian framework, spatial
priors play a significant role in accounting for space dependencies. With the consistency in the
improvement of data collection and computational tools in analyzing large spatial data, Bayesian
spatial statistics will further penetrate numerous fields and become one of the leading tools for
analyzing data.

Many authors account for spatial dependencies by assuming a Gaussian random field.
In many real data applications, the Gaussian random field may be inappropriate, especially
in extreme data, skewed data, and data with spikes and heavy tails. Examining a different
random field such as the Laplace, Student-t, and more, may improve inference. A significant
issue in assuming these distributions is the computational cost and difficulty in the choice of
the prior model for the hyper-parameters. For instance, setting the prior distribution for the
degrees of freedom of the student-t distribution. Beyond the Gaussian assumption, several
articles reviewed also assumed the Markov theorem (conditional independence), which may
be too restrictive as several phenomena exhibit a wide range of spatial autocorrelation. The
Markov property is commonly assumed to lower the computational cost in Bayesian inferential
statistics. For instance; immediate neighbor spatial dependence. However, the occurrence of some
random phenomenon exhibits strong spatial dependencies beyond the immediate neighbors, and
truncating such dependencies structure would result in bias and incorrect inferences. Moreover,
there is an insufficient standard approach to determine the covariance matrix structure of spatial
dependence with Markov property. Thus, it is difficult to compare different models.

The Bayesian spatial literature lacks sufficient information on objective priors, such
as Jeffery’s prior, reference priors, matching priors, and more. These priors stand out to elicit
ideas from data that could improve inference. To derive an objective prior distribution for a
spatial random field’s model parameters is currently an unaddressed problem that needs attention.
Though the objective prior and the penalized complexity (PC) prior have been developed in
Ordoñez et al. (2023) and Simpson et al. (2016) for student t process and log-Gaussian cox
processes respectively, their performances have not been adequately explored. Regardless of the
prior distribution, eliciting priors for the parameters is critical, and when wrongly assumed, it
could lead to misleading results and inference. To circumvent them, which is also not trivial, it is
essential to consider objective priors for the random field model parameters and hyper-parameters
to improve inference.

Many spatial phenomena are influenced by covariates that vary across space. While
Bayesian spatial models can incorporate covariates, there is a need for more advanced techniques
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that allow for spatially varying covariates, capturing their heterogeneity and interactions with the
underlying spatial processes more accurately. Bayesian spatial statistics inherently provides a
framework for uncertainty quantification, but more attention is required in the development of
robust techniques for assessing and communicating uncertainty in spatial models.

In Neuroscience and Bioinformatics, the application of Bayesian spatial statistics to
brains and single-cell spatial transcriptomic experiments, though limited, has been gaining
interest (DERADO et al., 2013; SONG; NATHOO; BABUL, 2019; ALLEN et al., 2022). The
complexity of the cell structure, biological interaction, and misalignment induced by the data
acquisition procedure have prevented the application of classical spatial models to address
intrinsic problems in the field. In other words, the primary assumption of spatial contiguity may
be inappropriate. That is, a response received at one location may be due to an activity in the
opposite distant location. Hence, models capable of estimating these types of interactions and
correcting for data misalignment would be highly relevant and informative.

Therefore, it is imperative to give sufficient attention to the field of spatial statistics since
researchers are constantly confronted with the task of analyzing spatial data, which is becoming
increasingly complex as data collection methods improve.
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CHAPTER

4
TMSBRAINAPP: A SHINY INTERFACE FOR

TMS MAPPING DATA

This chapter presents the TMSBrainApp R package that contains a user-friendly Shiny
interface for analyzing Transcranial Magnetic Stimulation (TMS) mapping data. This interface
allows users access to an application that utilizes a Bayesian spatial statistical modeling technique,
making the interface a powerful tool for performing Bayesian spatial analysis in R without the
need for coding expertise. The interface was documented using standard R documentation. It is
publicly available and can be downloaded or installed directly from a GitHub repository through
https://github.com/eosafu/TMSBrainApp1.1.0. A demonstration of the interface is available here.
The user interface was used to analyze the TMS datasets in this project, and the findings are
presented in this chapter.

4.1 TMSBrainApp R package

The TMSBrainApp is an R-package that features a shiny application designed for de-
scriptive visualization, Bayesian analysis, and inference-making regarding the spatial patterns
of a subject’s response to TMS pulses. With this tool, users can perform full Bayesian spatial
statistical modeling without the need for programming skills. Though the TMSBrainApp was
specifically developed to uncover new insights into the spatial patterns of patient responses to
TMS pulses, it can also be used to perform Bayesian modeling of any dataset. It is an ideal tool
for practitioners and researchers who are interested in estimating spatial patterns and quantifying
the effect of explanatory variables on the phenomenon under study.

TMSBrainApp is designed to allow users to fit Bayesian spatial statistical models and
determine their uncertainty about the hotspot location and make predictions on unsampled
locations based on the posterior distribution. To carry out an analysis, users only need to click
buttons and the application processes the inputs and generates tables and figures. The output

https://github.com/eosafu/TMSBrainApp1.1.0
https://youtu.be/HaIw7L0VEc0
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Table 5 – The R functions of the TMSBrainApp package that are available to users.

Function call Parameters Description
ExceedanceProb INLAoutput, dist, quantile Computes exceedance probability at the hotspot location.
GetAdjMatrixTMS ID Computes neighborhood matrix
QuantResidexp INLAoutput, y Quantile residual for exponential data model fitted with inla().
QuantResidGamma INLAoutput, y Computes quantile residuals for gamma data model fitted with inla().
QuantResidGauss INLAoutput, y Computes quantile residuals for Gaussian data model fitted with inla().
QuantResidLNorm INLAoutput, y Computes quantile residuals for Log normal data model fitted with inla().
QuantResidWeibull INLAoutput, y Computes quantile residual for Weibull data model fitted with inla().
QuantResidTMS INLAoutput, y,dist Computes the quantile residual of fitted model.
TMSapp.check TMSdata Determines whether a user dataset is suitable for the application.
TMSapp.run - Launches the shiny Web interface for hotspot finding.
TMSdata - TMS sample data.
INLAoutput is an INLA object obtained using inla(), dist is the chosen likelihood in inla(), y is the response variable, quantile
is the quantile to which exceedance probability is to be calculated, ID is a coordinate-like indicator to form counties from geostatistical
data. TMSdata is the inbuilt sample data.

comprises both one and two dimension graphs for clearer visualization and interpretation. The
processing time is fast as it only takes a few minutes to complete a single analysis, and almost
immediately to perform a post-modeling analysis. It allows users to generate an HTML report of
the analysis executed. The application performs posterior integration and obtains the posterior
densities using the INLA package (RUE; MARTINO; CHOPIN, 2009) in R.

4.2 TMSBrainApp Package Installation

The TMSBrainApp R source package is available on the GitHub repository and users can
install directly using utilities available in devtools R package. An alternative is to install from
a local drive, which holds the source package. The installation process of TMSBrainApp is easy
and requires only internet access. The following R codes can be used to install a working version
of the TMSBrainApp from the GitHub repository:

1 R> if (! require ( devtools )) {

2 install . packages (" devtools ",dependencies =TRUE)

3 }

4 R> devtools :: install _ github (" eosafu / TMSBrainApp1 .1.0")

Additional details on how to install directly from GitHub are available in this link. After
successful installation, executing the function TMSBrainApp::TMSapp.run() in the R console
launches the application and a screenshot of the interface is shown in Figure 13. Table 5 shows
the descriptions of the functions available in the package.

TMSBrainApp depends on and suggests other R packages, which are available on different
repositories. All dependence packages, except INLA, are available on the CRAN repository. Those
available on CRAN are automatically installed along with the TMSBrainApp installation process.
Moreover, users are expected to independently install INLA from its repository, available on INLA
web page.

https://github.com/eosafu/TMSBrainApp1.1.0
https://www.r-inla.org/download-install
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4.3 TMSBrainApp interface

TMSBrainApp interface consists of two panels: the sidebar panel and the main panel.
The sidebar panel contains the instruction tabs and the main panel contains the output tabs. A
screenshot of the interface is shown in Figure 13.

Sidebar Panel

The sidebar panel is the panel that appears on the left side of the application window
when TMSBrainApp is launched. It can be sectioned into top and bottom, where the top contains
the pre-modeling menu and the bottom contains the post-modeling menu. The top of the panel
holds two action button widgets. The first button, Browse, is to upload user data into memory for
analysis. The second button, Sample Data, makes available an inbuilt dataset for users to practice
and accustom to navigating through the application window. Right below the Browse button
is the Summary for Signal dropdown menu. The dropdown menu includes Range, Standard

deviation, Median, and Mean, which determines the type of summary statistics to adopt for the
motor-evoked potential (MEP) signal data. The default value is set to the Range which measures
the peak-to-peak MEP signals. Right below is the Replication slider which allows users to select
the position of the MEP replication to display on a descriptive plot. Below the Replication are
the Response Model and Spatial Model dropdown menus. The Response Model menu includes
five likelihood models: gaussian, exponential, gamma, lognormal, and weibull models. The
Spatial model menu includes four types of spatial models: SPDE, ICAR, BYM, and Leroux

CAR. The default values are set to gaussian and SPDE. These spatial models are described in
Section 4.5. Based on the choice of the spatial model selected, additional numerical inputs appear
and allow the users to set hyperparameter values for the chosen model. However, a user can
continue with the analysis using the default values. Right below these menus are Fixed Effect
and Random Effect menus whose menus are updated based on the data in the memory. The
menus are dropdown, and allow users to select explanatory variables to be included in the model.
Right below is the action button, Fit Model. It allows the user to execute all the inputs to perform
statistical analysis. Turning attention to the post-analysis menus, the MEP numerical box and
Exceedance Probability action button allow users to calculate the probability of a random draw
from the posterior predictive distribution of the summary MEP at the hotspot exceeds the user
entered MEP value. See Section 4.6.2 for details. Finally, the Generate Report action button
allows a user to generate a report of the analysis executed.

Main panel

The main panel holds the result of the analysis, plots, and maps. It contains three tabs:
ADJUST, MODEL SUMMARY, and VIEW DATA. The ADJUST tab has seven display
windows: the Model Diagnostic, Hotspot Coordinate, Data Location, Hotspot Map, Hotspot
Credible Interval, Testing Orders, and Replication Effect. The Model Diagnostic displays a
quantiles residual of the fitted model. The more the residuals overlap the straight line the better
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the model. The Hotspot Coordinate displays the X-Y coordinate with the highest posterior
mean. The Hotspot Map displays a 2D map of the posterior predictive mean of the spatial
effect of the whole stimulated region if SPDE is selected, and displays the posterior predictive
mean of the MEP if other spatial models are selected. The Hotspot Credible Interval displays
the highest posterior density credible interval, which is also suitable for testing a hypothesis
about the hotspot region (see Section 4.6.2). The Data Location and Testing Orders display a
descriptive plot of the observed MEP. This allows the user to understand the distribution of the
current data on memory. Lastly, the Replication Effect displays the line plot of the posterior
mean of the nonlinear effect (random effect) variable included in the analysis. The MODEL
SUMMARY tab shows the model results, which include fixed effects, hyper-parameters, and
marginal likelihood estimates. The VIEW DATA tab shows the current data frame in memory.

4.4 Data preparation

The TMSBrainApp R package contains several functions, and one of them is the TMSapp.check().
The function checks the suitability of user data for the shiny application. If the data check is
passed, the function returns a data frame with renamed variables suitable for TMSapp.run() and
also creates an additional variable "Rep" which indicates the number of replication pulses of
TMS that gave rise to the MEP signals. It is recommended that users check and extract data using
TMSapp.check(user-data)$data prior to loading it into the interface for analysis. Additional
details about the function are available in the function’s documentation in R.

TMSBrainApp interface allows users to upload personal data and also has an example
dataset for users to practice with. It gives users an opportunity to learn how to interpret results
before performing real analysis. TMSBrainApp only accepts TMS datasets in xls and xlsx file
extensions. Users are expected to prepare data of interest in xls or xlsx format prior to uploading
it into memory.

A dataset with a structure different from the one generated by a TMS-EMG device should
contain at least fives columns, where the first three are the x, y, and z numerical grid coordinate
variables indicating the location where MEP was observed. Column z can be set as missing
values if unavailable. The fourth column should be the Associate target as ID that would be used
to aggregate the point reference data, which is required in the CAR, BY M, Leroux CAR models
(see Section 4.5.1) and the descriptive plots. The aggregation indicator should be a centroid
coordinate, necessary to determine spatial contingency. The last column should be EMG_Data

variable; an example could be a summarized MEP signal data. Moreover, explanatory variables
can be placed in between these columns. In a case where users wish to include EMG signals
in the dataset, these signals should be placed on columns on the right side of the EMG_Data

column already mentioned. It is recommended that users check for minimum data requirements
before uploading into memory. Users can view the sample data for a guide.
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4.5 Adopted statistical Models
Let the spatial domain G represent a TMS explorable brain region. By construction, each

stimulation location is referred to by its Cartesian coordinate. The spatial domain G is a 2D
representation of the subject explorable motor cortex. That is, G ⊂ R2. Let Y ∈ R be a random
variable representing the summarised value of the MEP signal, x be a 1× p design vector of
fixed effects of covariates detailing the biological and socio-economical characteristics of the
included subject or TMS technical noise control variables, and w be a metrical covariate, and s

be a spatial covariate. Then, the hierarchical model is given as

Yi ∼ f (µi),

µi = xT
i βββ +g(wi)+h(si),

βββ ∼ Normal(0,ΣΣΣ),

(g,h)∼ π(g,h)

ΛΛΛ ∼ π(ΛΛΛ), i = 1, ...,m,

(4.1)

where m is the number of locations where data were observed, βββ represents a p×1 vector of
unknown linear effect, π(g,h) is a joint probability distribution of the latent smooth nonlinear
function g and spatial function h. π(ΛΛΛ) is an arbitrary joint prior probability distribution of
the hyperparameter vector ΛΛΛ. f is the probability distribution of Yi (i = 1,2, ...,m) such that
E(Yi) = µi. The variable x allows the inclusion of explanatory variables and w allows the
inclusion of metrical covariates to be modeled non-linearly. f allows the user to specify their own
probability distribution. These response distributions include Exponential, Gamma, Gaussian,
Lognormal, and Weibull density functions.

The mean of the process is described by the linear predictor (µi). The model assumed that
conditioning on the latent parameters, the process Yi is independent and identically distributed.
In this application, w was modeled using an order two random walk model. That is g(w) = zψψψ

where ψψψ = (ψ1,ψ2, ...,ψr)
T and z is a binary row vector that is only one at the entry which

corresponds to the metrical value of w. Thus, the latent parameter ψψψ is modeled as

ei = ψi −2ψi+1 +ψi+2,

ei ∼ Normal(0,τ−1
ψ ).

(4.2)

Its probability density function is derived from its n−2 second-order increment as

π(ψψψ) ∝ τ
r−2
ψ exp

{
− 1

2
ψψψ

T
τψQψψψψ

}
(4.3)

where Qψ is a structured precision matrix reflecting the neighborhood of the random walk model
(see Section 5.2).

Four spatial models were adopted for the spatial function h. These spatial models include
the Intrinsic conditional autoregressive model (ICAR), Besag, York, and Mollié (BYM), Leroux



64 Chapter 4. TMSBrainApp: A Shiny interface for TMS mapping data

conditional autoregressive mode (Leroux CAR), and the Stochastic Partial Differential Equation
(SPDE). Let a be a row vector such that h(si) = aiθθθ and θθθ = (θ1,θ2, ...,θq)

T . Thus, the latent
spatial field θθθ is modeled using the earlier mentioned spatial models. These models are described
in the following subsections.

4.5.1 Intrinsic conditional autoregressive model (ICAR)

The ICAR (BESAG, 1974) model is one of the most popular GMRF models to account
for spatial dependence in spatially aggregated data mainly due to the availability of computational
tools such as the WinBUGS.

Assuming the spatial domain G can be partitioned into q disjoint subsets, G1,G2, ...,Gq,
called the "Associate Targets", such that si ∈ Gl and si is at a closer distance from the centroid of
Gl than the centroid of Gl′, l′ ̸= l. That is the spatial effect corresponding to the spatial partition
Gl is θl . Then the conditional distribution of the fields is given as

θl|θθθ−l,τθ ∼ Normal

(
1
cl

∑
k∈δl

θk,
τ
−1
θ

cl

)
, l = 1, , ...,q, (4.4)

where θθθ−l = (θ1,θ2, ...,θl−1,θl+1, ...,θq)
T , cl is the number of partitions that share a border

with Dl and δl is an index set of those partitions having a border with partition Dl . In this model,
ai is a 1×q binary vector that has a single non-zero entry in index l. This entry corresponds to
the partition Dl where Yi belongs.

4.5.2 Besag, York, and Mollié (BYM) -

BYM model (BESAG; YORK; MOLLIÉ, 1991) is an extension of the ICAR model to
include an unstructured component that accounts for over-dispersion exhibited in spatial data.
Suppose that the effect θl is partitioned such that θl = θul + θvl , where θui is the structured
component of the spatial effect and the θvl is the unstructured component. Thus, θvl is modeled
as

θvl | σ
2
v ∼ Normal(0,σ2

v ) ∀l, (4.5)

and the structured component is modeled as θui ∼ ICAR. Thus,

E(θl|θθθ−l,τθ ,σ
2
v ) =

1
cl

∑
k∈δl

θk,

Var(θl|θθθ−l,τθ ,σ
2
v ) = σ

2
v +

τ
−1
θ

cl
.

(4.6)

Similarly, vector ai is defined in the same way as for the ICAR model. A drawback of the BYM
model is the identifiability problem in which each observation is linked to θui and θvi. However,
this is overcome by adding a sum-to-zero constraint on θθθ (LEE, 2011).
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4.5.3 Leroux conditional autoregressive model (Leroux CAR)

Leroux CAR is an alternative way to circumvent the identifiability problem incurred in
the BYM model. Leroux, Lei and Breslow (2000) proposed a variant of the CAR model with
full conditional distribution given as

θl|θθθ−l,τθ ∼ Normal

(
ρ ∑

q
j=1 ml jθ j

ρ ∑
q
j=1 ml j +(1−ρ)

,
τ
−1
θ

ρ ∑
q
j=1 ml j +(1−ρ)

)
, (4.7)

where ml j is the l, j th entry of a proximity matrix and ρ ∈ (0,1) is a correlation parameter to be
estimated. The vector ai is defined in the same way as for the ICAR model.

4.5.4 Stochastic Partial Differential Equation (SPDE)

Lindgren, Rue and Lindström (2011) proposed an SPDE model whose solution is a
Gaussian random field with a Matérn covariance function. Further, they proposed a different
representation of the solution to the SPDE with a GMRF through a finite element method
mesh triangulation, therefore providing a possible sparse precision matrix representation for
the Gaussian random field θθθ . The sparse representation of the precision matrix is to enable fast
numeric computation, as in the case of the lattice models described in previous subsections.
Moreover, the SPDE model is given as

(κ2 −∆)α/2h(s) = W(s), α = v+d/2, φ > 0,v > 0, (4.8)

where W(s) is a Gaussian white noise stochastic process with unit variance, v is the smoothing
parameter of the Matern covariance function, d is the dimension of G , and ∆ is a Laplace operator.
The Matern covariance function to the solution of the SPDE in 4.8 is then given by

Cov(si,s j;v,φ) =
σ2

Γ(v)2v−1

(
φd(si,s j)

)v
Kv

(
φd(si,s j)

)
, (4.9)

where d(si,s j) is a metrical distance between location si and s j, and σ2 is the marginal variance
given as

σ
2 =

Γ(v)
Γ(v+d/2)(4π)d/2φ 2v

.

Lindgren, Rue and Lindström (2011) showed that, on a regular grid, the GMRF representation
when v = 2 is a convolution of the processes with a precision matrix of v = 1. That is, the
GMRF representation becomes denser for increased values of v, leading to a wider neighborhood
structure, thereby losing its sparsity, increasing smoothness, and incurring expensive computation.
Further, they proposed a set of solutions on a triangular mesh representation for irregular points
in the spatial domain using the finite element method. The representation is given as

h(s) =
q

∑
l=1

al(s)θl, (4.10)
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where θl is a normally distributed weight, q is the total number of triangulation nodes, and al(.)

is a deterministic basis function at each node. The value of the basis function centered at triangle
vertices is formed and evaluated at a given coordinate. It is a function of the area of the opposite
triangle formed by the other two vertices. The basis function values at the vertices sum to one. If
a coordinate, however, falls on the edge of the triangulation, the basis function at this point will
only have two non-zero values, whereas, when the point falls on the node, the basis function has
a single non-zero value, which is one.

The basis function values for each data point can be coded into a row vector a, such that
(4.10) can be written as h(si) = aiθθθ and ai = (a1(si),a2(si), ...,aq(si)). The spatial field θθθ is then
modeled using a Gaussian Markov Random Field (GMRF) with a precision matrix governed
by the Matérn covariance function. Details of the covariance matrix are given in Krainski et al.

(2018).

An intuitive parameterization is to control the Matérn covariance parameters through the
marginal standard deviation σ and range ρv =

√
8v/φ . The Penalized Complexity (PC) prior is

assigned for these parameters. A choice of the pair (Uσ , p0) and (Uρ ,q0) are chosen such that
P(σ >Uσ ) = p0 and P(ρv <Uρ) = q0 (SIMPSON et al., 2017; GÓMEZ-RUBIO, 2020) so that
the hyperparameter of the prior distribution is determined. In TMSBrainApp, the spatial models
were implemented using INLA package in R (R Core Team, 2019). A major concern in spatial
modeling is the spatial confounding problem, where the fixed effects are correlated with the
spatial effect. However, it is straightforward to address this problem using the restricted spatial
regression technique. This is described in detail in Appendix 7.6.

4.6 Data analysis with TMSBrainApp

The first step is to import data through the browse button and select the type of signal
summaries to adopt. A box plot according to the associate targets is displayed in the main window.
Use the Replication slider to vary the box plot, which shows how MEP’s first replication compares
with other replications. Select the response and spatial models and explanatory variables. Input
the hyperparameter values and click on Fit Model to analyze the data. The results show the
location of the hotspot and the highest posterior density credible interval of the MEP at the
hotspot. For post-modeling analysis, type a numerical value of a summarized MEP signal in the
MEP text box and click on exceedance probability. Figure 14 shows a screenshot of an example
of modeling results using the TMSBrainApp .

4.6.1 Choice of hyperparameters

The SPDE model requires setting hyperparameter values, including σ2 and ρv. Thus,
TMSBrainApp gives room for users to select hyperparameters values for Uσ ,Uρ , p0, and q0, with
default values derived from the analysis of multiple TMS datasets. Specifically, the default
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values are Uσ = 1,Uρ = 0.05, p0 = 0.01, and q0 = 0.01. Similarly, the default values of the mesh
parameters were obtained in the same procedure. The lattice spatial models allow users to select
the scale and shape hyperparameters for the prior distributions on logτθ and log1/σ2

v , where
both are assigned log gamma prior distribution with parameters shape = 1 and scale = 0.001 in
the application.

4.6.2 Highest posterior density, Tail probability, and Quantile residual

Let U(Rk(Y ),Y ) = I(Y ∈ Rk(Y ))− k
∫

Y∈Rk(Y ) dY be a utility function we wish to maxi-
mize, then the best credible region for Yo is such that Rk(Yo) = {Y ∈ Y : f (Yo | y) > k}, then
Rk(Yo) is the Highest Posterior Density (HPD) credible region for Yo with credible probability
(1−αk) =

∫
Rk(Yo)

f (Yo|y)dYo, where f (Yo|y) is the marginal posterior predictive distribution of
Yo, and αk is the level of significance. Particularly to the TMSBrainAPP, Yo was taken as the
highest posterior predictive mean of the MEP among all locations in the study region, and Rk(Yo)

is the credible interval at 95% displayed on the Higher posterior density window on the main
panel. Pereira and Stern (1999) proposed a Full Bayesian Significant Test (FBST) using the HPD
credibility interval. The null hypothesis (H0) is tested as follows. Construct an HPD credibility
interval with 1−αk credibility, then reject H0 if and only if none of the points of H0 lies within
the credible interval. Thus, users can perform hypothesis tests of 95% credibility.

It may be intuitive to understand the posterior distribution of the hotspot to compare the
hotspot across subjects or the same subject but different TMS sessions. TMSBrainApp allows the
users to calculate tail probabilities of the posterior distribution of the MEP at the hotspot. For
example, assuming the interest is to determine

pt = P(Yo > yo|yt) =
∫

I(Yo > yo) f (Yo | yt)dYo (4.11)

for TMS session t = 1,2, where y0 is a user specified MEP value. If p2 > p1, then we could
conclude that the subject at session 2 is more likely to respond higher to TMS pulses at the
hotspot compared with the subject at session 1. Equation 4.11 is computed using Monte Carlo
simulation from the marginal posterior predictive distribution of the MEP at the hotspot. 10,000
samples are drawn at each click of the Exceedance probability button.

Pearson and deviance residuals are not often suitable for evaluating the adequacy of a
generalized linear mixed model (FENG; LI; SADEGHPOUR, 2020), and thus, in this work, the
quantile residual alternative was adopted to evaluate goodness-of-fit. Suppose ∇∇∇ is a vector of
all the parameters of the adopted model, and F(y;∇∇∇) is the distribution function with density f

given in (4.1). Further, let F?(Y ; ∇̂∇∇) be the estimated distribution function obtained by replacing
∇∇∇ with the posterior Bayes estimate, ∇̂∇∇. The quantile residual of Y follows as

zQ = Φ
−1(F?(Y ; ∇̂∇∇)), (4.12)

where Φ−1 is the quantile function of a known probability distribution. In this work, Φ−1

was taken as the normal quantile due to its well-known characteristics. For Yi, i = 1,2, ...,m,
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zQ
i is sometimes standardized as rQ = (zQ

i − z̄Q)/szQ , where z̄Q = m−1
∑

m
i=1 zQ

i and szQ = (m−
1)−1

∑
m
i=1(z

Q
i − z̄Q)2. Then, rQ is compared with the theoretical standard normal distribution

shown in the Model Diagnostic plot in the output window.

4.7 Application to TMS data
The subject’s data were first checked for minimum requirement using the function

TMSapp.check() and the output data frame was fed into the shiny application for modeling. The
log peak-to-peak (log range) MEP was adopted and served as the response variable. The adjusted
model included the indicators of associates target, stimulation depth, replications, and spatial
location. Based on the DIC and WAIC model selection criteria, the SPDE with the Gaussian
response model outperformed the other response and spatial model combinations for subjects
1R1, 1R2, and 2, and the log-normal response model was optimal for subject 3. Therefore results
from these models were adopted for inference.

4.7.1 Result

The quantile residual plot is shown in Figure 15. The coordinate of the spatial domain
for each subject and the corresponding estimated hotspot location is presented in Table 6. In
addition, the table shows the posterior mean and 95% credible interval in log scale, and the
exceedance probability of obtaining more than 300µV peak-to-peak at the hotspot.

Table 6 – Posterior estimate about the subjects’ hotspot.

Subject Spatial Domain Hotspot Posterior Mean 95% credible Interval (CI) P(MEP> 300µV )
1R1 [12.7,65.6]× [−41.0, 19.0] (46.282,-11.989) 4.838 (3.716,6.156) 0.110
1R2 [39.4,68.5]× [−46.9, 8.5] (59.621,-25.223) 3.774 (2.796,4.788) 0.000

2 [−70.5,−17.3]× [−41.8, 12.5] (-45.125,-16.466) 4.470 (3.301,5.586) 0.020
3 [−69.8,−30.5]× [−43.8, 18.5] (-42.686, 6.059) 3.315 (3.315, 4.152) 0.000

In Table 6, the spatial domain represents the explored rectangular spatial region, and it
is represented as a rectangular coordinate [a,b]× [c,d], where [a,b] is the interval limit of the x

coordinate and [c,d] is for the y coordinate. The adopted coordinates vary depending on the head
structure and positioning of the participants. The "hotspot" in the form (a,b) is the coordinate of
the estimated hotspot, where a is the x coordinate, and b is the y coordinate. The 95% credible
interval of the posterior predictive at the hotspot shows that subject 1R1 has the highest response
rate, with a probability of 0.110 that the peak-to-peak MEP at the hotspot will exceed 300µV .
Subject 2 shows a similar response pattern with a probability of 0.020 that the peak-to-peak
MEP will exceed 300µV . In a similar way, subjects 1R2 and 3 have similar response patterns
with 0 probability that the peak-to-peak MEP response will exceed 300µV .

Figure 16 shows the spatial pattern of the mean of the posterior predictive distribution
of the peak-to-peak MEP for all the subjects. The result shows a wide peak that spans over the
hotspot coordinates. Figure 17 shows the locations on the grid over the motor cortex where
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data were obtained for all the subjects. The plots differentiate these locations according to the
posterior mean of the random intercepts. In addition, the cross sign denotes the estimated hotspot
location, and the box point types are the Associate target location where stimulation with TMS at
the motor cortex begins. This location is commonly referred to as the primary motor cortex. The
result shows that the posterior means of the random intercepts for locations around the hotspot
have the highest positive effect on the log peak-to-peak MEP. Figure 18 shows the posterior
density of the spatial range for all the subjects. The vertical dashed line indicates the posterior
mean. The distribution shows that the spatial range is highest for subject 1R1 and lowest for
subject 3. A higher spatial range indicates that the MEP signal exhibits spatial correlation across
a wider spatial region over the motor cortex. The result of the nonlinear effect of replication
for all the subjects (result not shown here) showed that there is no significant effect on the
peak-to-peak MEP.

4.7.2 Discussion of result

Estimating the hotspot in a TMS treatment session is essential to determining its ef-
fectiveness. As shown in the result, the hotspot’s peak-to-peak MEP and spatial pattern vary
between participants. While a certain quantity of magnetic pulses may cause the MEP signal
to reach a high peak for one participant, the same quantity may lead to a flat MEP signal for a
different participant at the same cross-sectional location in the motor cortex. The finding from
the result also showed that the location of the hotspot is not often among the stimulated locations,
and could be found in unstimulated locations within the motor cortex. Moreover, the hotspot
location can be regarded as a region rather than a single point. This is evident in the plots in
Figure 16. That is, the population of neurons surrounding the hotspot may produce a response
that is similar to the one at the hotspot. This finding corroborates the result of Rao (2013). These
findings could be useful for producing a consistent motor response for the improvement of
patients’ experiences.

4.8 Conclusion

This chapter presented a user interface for performing Bayesian spatial modeling to give
new insight into the spatial pattern of subjects’ responses to TMS brain mapping, which could
help in improving the treatment experience for patients with motor impairment. The interface
allows users to detect a patient’s response hotspot to TMS pulses, thus giving insight that could
be useful for investigating several hypothetical questions. The interface is documented using
standard R documentation procedure and executes smoothly on the R interface. It is available
publicly and could be used by practitioners and experimenters. The interface is capable of being
deployed and hosted online with the right resources. This will enable its usage without the need
for R programming software.
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The analysis conducted showed that there is a variation in the spatial pattern of response
to TMS pulses. Moreover, the result showed a non-significance in the effect of replication on the
MEP and strong evidence of unexplained variation in the residual. The next chapter investigates
these characteristics further by proposing a way to perform prior elicitation from historical TMS
data. The Chapter focused on how data obtained from subjects 1R1 and 1R2 could be statistically
integrated to explain additional variation in the MEP signal.
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Figure 13 – A screenshot of the sidebar and main panels of TMSBrainApp.
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Figure 14 – A screenshot of the analysis of sample data.
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Figure 15 – Residual plot associated with subjects (a) 1R1, (b) 1R2, (c) 2, and (d) 3.
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Figure 16 – Mean of the posterior predictive distribution for subjects (a) 1R1, (b) 1R2, (c) 2, and (d) 3.
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Figure 18 – Posterior density of the spatial range parameter for subjects (a) 1R1, (b) 1R2, (c) 2, and (d) 3.
The vertical dashed line indicates the posterior mean.



75

CHAPTER

5
PRIOR ELICITATION FOR GAUSSIAN

SPATIAL PROCESS

The power and commensurate prior distributions are informative prior distributions that
incorporate historical data as prior knowledge in Bayesian analysis to improve inference about
a phenomenon under study. Although these distributions have been developed for analyzing
non-spatial data (see Section 2.4 in Chapter 2), little or no attention has been given to spatial
geostatistical data. In this chapter, these informative prior distributions were extended to a
Gaussian spatial process, which enables the elicitation of prior knowledge from historical
geostatistical data for Bayesian analysis. Three informative prior distributions were proposed
for spatial modeling, and an efficient Markov Chain Monte Carlo algorithm was developed
for inference. A simulation study was used to assess the adequacy of the informative prior
distributions. Hierarchical models combined with the developed informative prior distributions
were used to analyze subjects 1R1 and 1R2 TMS datasets.

5.1 Model formulation
In many spatial modeling problems, the interest is to estimate the latent spatial process

generating a random vector Y through the model

Y j = µµµ j + εεε j,

µµµ j = XT
j βββ +w(z j)+ f (s), j = 1,2...,n,

(5.1)

where Y j = (Yj1,Yj2, ...,Y jm)
T is an m× 1 vector of response variable at jth replication, and

each entry, Yji, corresponds to the response at spatial location si (i = 1,2, ...,m) in a given
spatial domain G at replication j. µµµ j ∈ Rm, εεε j has a multivariate normal distribution. That is,
εεε j ∼ N(0,τ−1I), and I is an identity matrix of size m. βββ = (β1, ...,βp)

T is a regression parameter
for a p×m design matrix X j, and the terms w(.) and f (.) are smooth functions, where w(.)

corresponds to smooth function of metrical covariate z j = (z j1,z j2, ...,z jm) and f (.) corresponds
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to spatial smooth function for location covariate s = (s1,s2, ...,sm). The implication of (5.1) is
that the realizations of the response variable at each spatial location are independent conditioning
on the latent variables in the linear predictor. The functions w(.) and f (.) are approximated
using some basis functions, such as cubic regression spline and Gaussian Markov Random Field
respectively.

Let the unknown smooth function w(.) be approximated by a spline function such that

w(z ji) =
r

∑
k=1

ψkBd
k (z ji), (5.2)

where Bd
k is the kth basis function and r = K + d + 1. K is the total number of chosen knots

and d is the spline’s degree of freedom. Particularly in this work, d = 3 and K is the number of
chosen knots, giving rise to a cubic B-spline (PERPEROGLOU et al., 2019). Bd

k (z ji) represents
the evaluation of the kth basis function at the observed covariate. The value of the basis function
at z is obtained as

Bd
k (z) =

z−ξk

ξk+d −ξk
Bd−1

k (z)− ξk+d+1 − z
ξk+d+1 −ξk+1

Bd−1
k+1(z), k = 1,2, ...,r,

B0
k(z) =

1, ξk ≤ z ≤ ξk+1

0, otherwise,

(5.3)

and B0
k(z) = 0 if ξk = ξk+1, where ξks are the chosen equidistant knots. Hence (5.2) can be

rewritten as w(z ji) = cT
jiψψψ , where c ji = (Bd

1(z ji),Bd
2(z ji), ...,Bd

r (z ji))
T and ψψψ = (ψ1, ...,ψr)

T .
Thus, for all z ji in z j,

w(z j) = ZT
j ψψψ, (5.4)

where each row of ZT
j is the cT

ji corresponding to the evaluation of the basis functions in (5.2) at
z ji.

The stochastic spatial process f () at location si was modeled as

f (si) =
q

∑
l=1

θlal(si), (5.5)

where al is obtained from some spatial kernel function. Equation 5.5 shares similarities with the
Karhunen-Loeve decomposition of stochastic processes. This decomposition is founded on the
eigendecomposition of the process’s covariance function (SIMPSON et al., 2016). In this work,
al is defined as

al(si) = exp

(
− d(si,vl)

2

ϕ2

)
, ϕ > 0, (5.6)

where vl is the lth location of the chosen spatial knot, vl ∈ D and d(si,vl) is an euclidean
distance between data location si and knot location vl . Reich, Bandyopadhyay and Bondell
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Figure 19 – Flow chat illustrating the borrowing/data integration scheme. The Information Flow Control
(IFC) varies the amount of information passed down from the historical data to the Bayesian
modeling and it is a function of the consistency between the two datasets.

(2013) showed that for a fixed number of spatial knots q and bandwidth ϕ , and any continuous
marginal distribution for Y j, there exists a density function for θl that leads to that marginal
distribution of Y j. Hence, this representation leads to a valid probability distribution. Given
(5.6), (5.5) can be written as aiθθθ , where ai = (a1(si),a2(si), ...,aq(si)) and θθθ = (θ1,θ2, ...,θq)

T .
Therefore, for all si in s,

f (s) = Aθθθ , (5.7)

where each row of A is ai at the corresponding location si. The choices of spatial knot location
are chosen to obtain an optimal model. A higher number of spatial knots over D improves the
performance of the model but increases complexity. (5.1) becomes

Y j = µµµ j + εεε j,

µµµ j = XT
j βββ +ZT

j ψψψ +Aθθθ , j = 1,2...,n.
(5.8)

This framework presents a platform to facilitate information borrowing from geostatistical
historical data. Therefore, the main model parameters we require elicitation are βββ ,ψψψ, and θθθ .

Figure 19 illustrates the proposed borrowing scheme. The first step is to determine the
base prior distribution to incorporate the knowledge about the parameters before the historical
data observation. The second step involves developing informative prior distribution that inte-
grates the historical data and the base prior distribution. The Information Flow Control (IFC)
regulates the amount of information from the historical data allowed into the modeling. The
regulation depends on the consistency between historical data and current data. IFC allows more
information to go through if both data are consistent; otherwise, less information is allowed if
both data are inconsistent. The last step is to combine the informative prior distribution with the
current data in a Bayesian analysis for inference.
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5.2 Base prior distributions
In the frequentist approach, βββ , ψψψ , and θθθ are commonly penalized through some penalty

terms to avoid overfitting. However, in the Bayesian framework, prior distributions are assigned
to all the parameters in the model. This subsection presents the base prior distributions that
incorporate prior knowledge about these parameters before the observation of historical data.
Particularly, the spatial parameter θθθ assumes a Gaussian Random Field (GRF) to capture the
spatial dependencies in the data. That is, θθθ ∼ N(0,τ−1Qθ (κκκ)), where Qθ (κκκ) is a structured
variance-covariance matrix derived from a Matérn covariance function such that Qθ (κκκ) =

σ2
θ
[ql,l′], and ql,l′ =C(vl,vl′|φ ,ν), which follows as

C(vl,vl′;φ ,ν) =
1

2ν−1Γ(ν)
(d(vl,vl′)φ)

νKν(d(vl,vl′)φ); φ > 0,ν > 0, l, l′ = 1,2, ...q, (5.9)

where Kν denotes the Bassel function of the second kind. φ controls the range of the covariance
function and ν controls its smoothness. Notice that vl is the knot location of the spatial fields.

The computation of Qθ (κκκ) in the prior distributions is expensive for large values of
q. To circumvent this issue, a Nearest Neighbor Gaussian Process (NNGP) approximation
for θθθ (FINLEY et al., 2019) was considered. First let θθθ = Hθθθ + e, where H = [hll′] is a
q× q strictly lower-triangular matrix, hll′ = 0 if l′ ≥ l and e ∼ N(0,τ−1σ2

θ
V ) and V = [vll′]

is a diagonal matrix. It is straightforward to show that the covariance of θθθ , τ−1Qθ (κκκ) =

(I−H)−1τ−1σ2
θ
V (I−H)−T where for any matrix K, K−T is the inverse of its transpose. For

the expression to be valid, H and V are obtained as follows. Let N(vl) be a collection of the
indexes less than l and C = Qθ (κκκ) be the covariance matrix obtained using the matérn covariance
function earlier defined. Then the matrices H and V are computed as follows:

H[l,N(vl)] =C(vl,N(vl))(C(N(vl),N(vl)))
−1,

V [l, l] =C(vl,vl)−H[l,N(vl)]C(N(vl),vl), l > 1,

H[1, :] = 0 and V [1,1] =C[1,1],

(5.10)

where H[1, :] indicates the first row of matrix H. Now, to make Qθ (κκκ) a sparse matrix, only
the indexes in N(vl) that are nearest neighbors of knot vl are considered to obtain Q̃θ . Thus,
the inverse Q̃−1

θ
(κκκ) = (I− H̃)T 1

σ2
θ

Ṽ −1(I− H̃) is a sparse matrix, where H̃ and Ṽ are computed

using only the nearest neighbors. The determinant | τ−1Q̃θ (κκκ) |= (τ−1σ2
θ
)q

∏
q
l=1 vll . Note that

from (5.10), C(1 : 2,5 : 6) for example is a 2×2 matrix.

A weakly informative prior is assumed for the regression coefficients βββ . Here, βββ is
assigned a base Gaussian prior distribution with zero mean and a p× p variance-covariance matrix
τ−1Qβ = τ−1σ2

β
I with a large value for σ2

β
. A base random walk (RW) prior model (LANG;

BREZGER, 2004) according to a metrical basis matrix Z, with Gaussian error, was assumed
for ψψψ . Here, a random walk 1 (RW1) model with independent increments is demonstrated. The
RW1 model follows as

ψt = ψt−1 + et , ψ1 = e1, t = 2...,r, et ∼ N(0,σ2
ψ/τ), t = 1, ...,r.
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Solving recursively,

ψ1 = e1,

ψ2 = ψ1 + e2 = e1 + e2,

ψ3 = ψ2 + e3 = e1 + e2 + e2 + e3,

. . .

ψr = e1 + ...+ er.

Therefore, ψψψ = Re, where e = (e1, . . . ,er)
T and matrix R = [Itt ′], and Itt ′ = 1 if t ≤ t ′ and 0

otherwise. Then the precision matrix becomes τQ−1
ψ , where

Q−1
ψ =

1
σ2

ψ

(RRT )−1 =
1

σ2
ψ



2 −1 . . . 0
−1 2 −1 . . . 0

−1 2 −1 . . . 0
... . . . . . . . . . . . . . . .
... . . . . . . . . . 2 −1
0 0 0 . . . −1 1


.

Therefore, ψψψ is a multivariate normal with zero mean and covariance matrix Qψ . The precision
matrix revealed that ψt only depends on ψt−1 and ψt+1 conditioning on the rest.

Since βββ , ψψψ , and θθθ have multivariate Gaussian prior distributions centered at zero with
covariance matrices τ−1Qβ , τ−1Qψ , and τ−1Q̃θ (κκκ), then the field X = (βββ T ,ψψψT ,θθθ T )T has a
Gaussian distribution with mean 0 and a block diagonal variance-covariance matrix τ−1ΣΣΣ(κκκ),
where ΣΣΣ(κκκ) is obtained by diagonally stacking the corresponding covariance matrices, and
each block corresponds to the vectors in X . Then Y j | X ∼ N(V jX ,τ−1I), where V j is
obtained by horizontally stacking XT ,ZT and A such that V jX = XT

j βββ +ZT
j ψψψ +A jθθθ . The

covariance matrix ΣΣΣ(κκκ) is sparse since Qβ ,Qψ , and Q̃θ (κκκ) are themselves sparse matrices.
Usually, p,r < q. To further lower the computational burden, a fill-reducing permutation matrix
technique described in Appendix 7.4.1 was adopted.

5.3 Prior elicitation from point-referenced historical data
Let D0 = {m0,n0,Y0,C0} denote the historical geostatistical dataset, where Y0 is the

response indexed by m0 spatial locations in the spatial domain G0; m0 indicates the number of
locations data were observed; n0 denotes numbers of independent replications in the historical
data and C0 = {X0,Z0,A0} is the set of observed matrices. It is important to state that G0 need
not be identical to the spatial domain of the current data (G ), which jeopardizes the trivial
extension of the power and commensurate prior distributions to geostatistical data. Figure 20
illustrates an example of the availability of one historical spatial data in 2 and 3 denominational
view. The spatial window of the historical data were represented by G0 with observed values
denoted by {y01,y02,y03}. The current data we wish to make inferences from is represented by
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spatial window G with observed response y. Pooling or integrating the historical and current data
is only appropriate if both data are highly consistent; otherwise, the historical data may dominate
the current data especially when the historical data are inconsistent with the current data, which
results in inadequate inferences. Thus, in this section, three prior elicitation distributions were
developed for borrowing information from point-referenced historical data to improve model
performance and prevent historical data dominance in Bayesian analysis. These informative
priors adopt different techniques to arrive at the IFC.

Figure 20 – A two and three-dimensional illustration of historical and current spatial data observed at
different spatial windows. The historical data sets were observed in window G01, and are
denoted by {y01,y02,y03}. The response y was observed in the current spatial window G .

5.3.1 Joint spatial power prior

This section proposed a spatial power prior elicitation method for X based on available
historical data. For notation convenience, s0i ∈ G0 is used to denote the spatial location where
historical data were observed, and A0 is the corresponding projection matrix.

Particularly for a Gaussian process, suppose Y0 j | X ∼ N(µµµ0 j,τ
−1
y I),µµµ0 j = V0 jX are

observed at locations {s0i}m0
i on j = 1, ...,n0 replications, where V0 j = rowstactk(XT

0 j,Z
T
0 j,A0),

X0 j,Z0 j, and A0 were as previously defined for the historical data D0. Let τ ∼ Gamma(aτ ,bτ),
ω0 ∼ π(ω0), and a Gaussian random field prior X ∼ N(0,τ−1ΣΣΣ(κκκ)) and ΣΣΣ(κκκ) is constructed
from the chosen spatial knots with respect to the union of graphs G0 and G . For example,
Figure 21 illustrates spatial knot positioning across G0 and G . In the example, Qθ (κκκ) is a 5×5
covariance matrix derived using the Matérn covariance function (5.9). Similarly, A and A0 are
respectively 1×5 and 2×5 projection matrices derived using the kernel function (5.6).

The proposed joint spatial power prior with hyperparameter vector ΛΛΛ follows as

π
p(X ,τ,ω0,κκκ | τx,ΛΛΛ,D0) ∝ π(ω0)π(κκκ)

2
v+q?

2 kv/2τ(m0n0ω0+q?)/2+a−1

Γ(v/2)|D|1/2 ×

exp

{
− 1

2

(
τ(X −DB)T D−1(X −DB)+ τk

)}
, v > 2,

(5.11)
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Figure 21 – Five spatial knot positions across historical and current spatial windows.

where D−1 = (ω0τx ∑
n0
j VT

0 jV0 j +ΣΣΣ
−1(κκκ)), B = ω0τx ∑

n0
j=1 VT

0 jY0 j, k = ω0(τx ∑
n0
j=1 YT

0 jY0 j)−
BTDB+2bτ , v = 2aτ +m0n0ω0, q? = p+r+q, τy = ττx and κκκ = {σ2

β
,σ2

ψ ,σ
2
θ
,φ ,ν}. A concern

about the prior distribution is whether it is proper. A sufficient condition, but not necessary, is that
for proper distribution π(ω0) and π(κκκ) the joint prior distribution is proper. Notice importantly
that setting ω0 = 0, the historical data vanishes and the prior (5.11) reduces to the base prior dis-
tribution, indicating that no information is borrowed from the historical data. It is straightforward
to extend to K historical data by substituting D−1 =

(
∑

K
k=1 ω0kτxk ∑

n0k
j VT

0 jkV0 jk +ΣΣΣ
−1(κκκ)

)
, B = ∑

K
k=1 ω0kτxk ∑

n0k
j=1 VT

0 jkY0 jk, k = ∑
K
k′=1 ω0k′τxk′ ∑

n0k′
j=1 YT

0k′ jY0k′ j −BTDB+2bτ , m0n0ω0 =

∑
K
k=1 m0kn0kω0k. If the interest is only on the spatial effects, then the computation burden can be

lessened by integrating out the fixed and the nonlinear effect latent parameters, which results in a
simpler spatial power prior distribution followed as

π
p(θθθ ,τ,ω0,κκκ | ΛΛΛ,D0) ∝

π(ω0)π(κκκ)
2

v+q
2 k

v
2 τ

n0m0ω0+q+2a
2 −1

Γ(v/2) | E |1/2 exp

{
− τ

2

(
(θθθ −EF)T E−1(θθθ −EF)+ k

)}
,

(5.12)

where k = 2b−FT EF+ω0τx ∑
n0
j=1 YT

0 jY0 j−(ω0τx ∑
n0
j=1 P0 jY0 j)

T D(ω0τx ∑
n0
j=1 P0 jY0 j), E−1 =

(Q−1
θ

+ n0ω0τxAT
0 A0 − (ω0τx ∑

n0
j=1 AT

0 PT
0 j)D(ω0τx ∑

n0
j=1 P0 jA0), v = n0m0ω0 + 2a, F =

(
ω0τx

∑
n0
j=1 AT

0 Y0 j − (ω0τx ∑
n0
j=1 AT

0 PT
j )D(ω0τx ∑

n0
j=1 P0 jY0 j)

)
, D−1 = τ

(
ω0τx ∑

n0
j=1 P0 jPT

0 j +L−1
)

,

and PT
0 j = rowstack(XT

0 j,Z
T
0 j), L=diag(Qβ ,Qψ). ω0’s linked to the current data in D is strength-

ened by the precision parameter τ . The derivations are shown in Appendix 7.4.3.1.

A competing choice of distribution for ω0 is the beta probability distribution. Suppose
ω0 follows a beta distribution, with parameters γ0 and λ0, then the density function is given as

π(ω0|γ0b,λ0b) =
ω

γ0b−1
0 (1−ω0)

λ0b−1

B(γ0b,λ0b)
, ω0 ∈ [0,1], γ0b,λ0b > 0,

where B(γ0b,λ0b) is the beta function. The hyperparameters for the prior distributions on ω0 play a
crucial role in determining the amount of information passed down to the current data. The choice
of γ0 and λ0 could be challenging, in that, different choices could lead to different inferential
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estimates for ω0. Ibrahim, Chen and Sinha (2001) suggested working with the reparameterization
µ0 = γ0b/(γ0b +λ0b) and σ0 =

µ0(1−µ0)
γ0b+λ0b+1under beta prior distribution on ω0, which represent its

mean and variance. The reparameterization enables direct control over the location and dispersion
of the distribution. The adopted parameterization is γ0b = µ0

(
µ0(1−µ0)

σ0
−1
)
, λ0b =

(
1−µ0

µ0

)
γ0b ,

µ0 ∈ (0,1) and 0 < σ0 < µ0(1−µ0). Thus, the prior distribution for ω0 follows as

π(ω0|µ0,σ0) = ω

µ0

(
µ0(1−µ0)

σ0
−1
)
−1

0 (1−ω0)
µ0

(
1−µ0

µ0

)(
µ0(1−µ0)

σ0
−1
)
−1
.

(5.13)

The hyper-prior distributions follows as µ0 ∼Uni f orm(0,1) and σ0 ∼ uni f orm(0,µ0(1−µ0)).
A different prior distribution choice that can be considered for ω0 includes simplex probability
distribution and truncated normal at [0, 1] interval.

5.3.2 Joint spatial commensurate prior

In the previous subsection, the developed prior elicitation technique act as an ancillary
for borrowing information about the parameters of interest from historical data. However, for the
Gaussian process, the posterior variance of these parameters is inflated by the power parameter
ω0. In this section, a framework for incorporating commensurability between historical and
current data as a primary tool to measure the concordance between these data is developed.
Unlike the joint spatial power prior, the spatial commensurate prior separates the fields associated
with the current and historical data. Let X ,X0 ∈ Rq? , where X is the target spatial field. X0

can be referred to as a copy of X , which learn directly from the historical data. The joint location
commensurate prior is given as

π(X ,λλλ |D0) ∝

∫
L(X0|D0)π(X |X0,λλλ )π(X )π(λλλ )dX0, (5.14)

where L(X0|D0) is the likelihood of the historical data with parameter X0 learned from the
historical data. π(X |X0,λλλ ) is chosen such that the probability distribution of X is centered
at X0, where the positive definite matrix λλλ ∈ Rq?×q? measures the commensurate between X0

and X . π(X ) is the base prior knowledge on X and π(λλλ ) denotes the prior knowledge on the
commensurate.

To develop the prior for a Gaussian spatial process, start by supposing that the historical
response variable Y0 j ∈ Rm0 is Y0 j | X0 ∼ N(V0 jX0,H−1

0 ), X ∼ N(X0,λλλ
−1), and X ∼

N(0,τ−1ΣΣΣ(κκκ)), where X0 = (βββ TTT
000 ,,,ψψψ

TTT
000 ,,,θθθ

TTT
000 )

T . A similar construction of the spatial covariance
and projection matrices for the joint spatial power prior is adopted for Qθ (κκκ). In this setup,
Equation 5.14 is reasonable since as X → X0, π(X | λλλ ,X0)→ L(X |D0)π(X ). Integrating
out X0 according to the relation of equation 5.14, the commensurate prior for a historical dataset
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with hyperparameter vector ΛΛΛ follows as

π
c(X ,λλλ ,κκκ | ΛΛΛ,D0) ∝

| 2πD |1/2 π(λλλ )π(κκκ)

| 2πH |n0/2 |2πλλλ
−1|1/2 | 2πτ−1ΣΣΣ(κκκ) |1/2

×

exp
(
− 1

2

(
(X −EF)T E−1(X −EF)−FTEF− (

n0

∑
j=1

VT
0 jH

−1
0 Y0 j)

T D(
n0

∑
j=1

VT
0 jH

−1
0 Y0 j)

))
,

(5.15)

where E−1 = (τΣΣΣ(κκκ)−1 + λλλ − λλλ
T Dλλλ ), F = λλλ

T D(∑
n0
j VT

0 jH
−1
0 Y0 j), B = (∑

n0
j VT

0 jH
−1
0 Y0 j +

λλλX ), D−1 = (∑
n0
j=1 VT

0 jH
−1
0 V0 j +λλλ ), and κκκ = {σ2

β
,σ2

ψ ,σ
2
θ
,φ ,ν}. It is easy to see that matrix

E is positive definite. That is

λλλ
T Dλλλ = λλλλλλ

−1(λλλ−1
n0

∑
j=1

VT
0 jH

−1
0 V0 j + I)−1

λλλ

= (λλλ−1
n0

∑
j=1

VT
0 jH

−1
0 V0 j + I)−1

λλλ .

(5.16)

Since λλλ
−1

∑
n0
j=1 VT

0 jH
−1
0 V0 j is positive definite, the eigenvalues of (λλλ−1

∑
n0
j=1 VT

0 jH
−1
0 V0 j + I)

are all greater than 1, which implies that the eigenvalues of the inverse (λλλ−1
∑

n0
j=1 VT

0 jH
−1V0 j +

I)−1 lie between 0 and 1. Thus, all the eigenvalues of (λλλ−1
∑

n0
j=1 VT

0 jH
−1
0 V0 j + I)−1λλλ are less

than eigenvalues of λλλ .

A prior choice for the commensurate parameter λλλ is the Wishart distribution. That is,
λλλ ∼Wishart(M ,υ), where M is a positive scale matrix and υ > q?−1 is the degree of freedom.
A different choice that is more computationally efficient is to consider a commensurate parameter
for the spatial component and non-spatial components. For instance, let λβ ,λψ ,λθ ∈ R+ be
the commensurate parameters. Thus, λλλ = [λll′], where λll = λβ for l = 1, ..., p, λll = λψ for
l = p+ 1, ..., p+ r, and λll = λθ for l = p+ r + 1, ...,q?, and 0 otherwise. A gamma prior
distribution can then be assumed for λβ , λψ and λθ . The joint commensurate prior given in 5.15
can be easily extended to accommodate multiple observed historical data. The derivations are
shown in Appendix 7.4.3.2.

5.3.3 Joint scalable spatial commensurate prior

The joint spatial power prior and commensurate prior distributions developed so far use
spatial fields (knots) that span over the spatial windows of both the historical data and the current
data. That is the matrices A and A0 are constructed from (5.6) for fixed knots {v1, ...,vq} which
span over G and G0. For several available historical data, q is large, thus high computational
power is required to invert ΣΣΣ(κκκ). Instead, this section proposed a technique that uses spatial knots
constructed for each historical data. For example, the spatial knots {v1, ...,vq} and {v01, ...,v0q0}
are used to construct projection matrices A and A0 respectively, such that q0,q1 << q.

Figure 22 illustrates knot positions for the historical and current spatial windows. Let
N(s0) be the set of q locations of the current knots and X0 ∈Rq denotes the corresponding spatial
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Figure 22 – An illustration of spatial knot positions corresponding to the historical and current spatial
windows. The spatial fields at the historical knot locations learn from the historical data and
share with the spatial fields at the knots of the current data.

field (parameter) at those locations. Further let X
′
= (X

′
[N(s0)]

T ,X
′T

1 )T ∈ Rqc+q0 , qc ≤ q

denotes the spatial field at the historical knots, where qc +q0 is the total number of historical
knots. Here X

′
[N(s0)] ∈ Rqc is used to denote the spatial field at the historical knot considered

to be in close proximity to X0. In the figure, X
′
[N(s0)] is the spatial fields in the locations of

historical knots with arrows, and X
′

1 ∈ Rq0 is the spatial field in the location of the historical
knots without arrows, and are considered not in close proximity with X0. The idea is that the
information learned by the spatial field from the historical data at the historical knots’ positions
is borrowed by the spatial field at the positions of the current knots.

To begin, suppose that Y0 | X
′
is conditionally independent and identically distributed

with Gaussian. Thus, given the posterior distribution of X
′ | Y0, we can derive the posterior

predictive distribution π(X0 | X
′
[N(s0)],D0) of the spatial field X0 at locations in N(s0). Let

X ∈ Rq be the spatial fields at locations of interest in the current spatial window, the joint prior
distribution is given as

π
sc(X ,X0,X

′
[N(s0)],λλλ | X

′
1 ,D0) ∝ π(X | X0,λλλ )×

π(X0 | X
′
[N(s0)])π(X

′
[N(s0)] | X

′
1 ,D0)π(X )π(λλλ ),

(5.17)

A major difference between (5.14) and (5.17) is that the former assumes a uniform prior distribu-
tion for the historical field, whereas, the latter assumes an arbitrary prior distribution. Integrate
out X0 and X

′
[N(s0)] leads to the proposed joint scalable spatial commensurate prior given as

π
sc(X ,λλλ |X

′
1 ,D0) ∝ π(X )π(λλλ )

∫ ∫ [
π(X |X0,λλλ )×

π(X0 | X
′
[N(s)])π(X

′
[N(s)] | X

′
1 ,D0)

]
dX0dX

′
[N(s0)]).

(5.18)

Notice that the largest covariance matrix in (5.18) has size max(q,q0) unlike (5.14). A natural
benefit of the prior distribution is that it is hardly affected by noise in the historical data.

Particularly for Gaussian process, let Y0 j |X
′ ∼N(V0 jX

′
,τ−1

1 I) and X
′ ∼N(0,τ−1

1 ΣΣΣ1(κκκ1)),
τ1 ∼Gamma(aτ1,bτ1), where X

′
is the spatial field of the historical data and κκκ1 = {σ2

β
,σ2

ψ ,σ
2
θ
,φ1,ν1}.
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Let X
′
=(X

′
[N(s0)]

T ,X
′T

1 )T , then the Bayes update is (X
′
[N(s0)],X

′T
1 )T | τ1,D0 ∼N

(
µµµ

′
,ΣΣΣ

′
)
)

where

µµµ
′
=

(
µµµ1

µµµ2

)
= (

n0

∑
j=1

VT
0 jV0 j +ΣΣΣ

−1
1 )−1(

n0

∑
j=1

VT
0 jY0 j) and

ΣΣΣ
′
=

(
Q11 Q12

Q21 Q22

)
= τ

−1
1 (

n0

∑
j=1

VT
0 jV0 j +ΣΣΣ

−1
1 (κκκ1))

−1.

(5.19)

Here µµµ1 and µµµ2 are associated with X
′
[N(s0)] and X

′
1 respectively and the corresponding

matrices are denoted by the block entries in ΣΣΣ
′
. Therefore, X

′
[N(s0)] |X

′
1 ,τ1 ∼N(A ,B), where

A = µµµ1 +Q12Q−1
22 Q21(X

′
1 − µµµ2) and B = Q11 −Q12Q−1

22 Q21. Let X
′
[N(s0)] be the spatial

field in G0 having close proximity to spatial field X0 of locations in G . Adopting Markov property,
the conditional predictive distribution X0 | X

′
equals X0 | X

′
[N(s0)]∼ N

(
cT X

′
[N(s0)], D

)
,

where cT = ΣΣΣ01Q−1
11 and D = ΣΣΣ00 −ΣΣΣ01Q−1

11 ΣΣΣ10. Here, ΣΣΣ01 is the covariance matrix between the
spatial field at locations in X0 and X

′
[N(s0)], ΣΣΣ00 is the covariance matrix of the spatial field

associated only to X0, and ΣΣΣ01 = ΣΣΣ
T
01.

Given this background, the proposed commensurate prior distribution for Gaussian
spatial process with hyperparameter vector ΛΛΛ follows as

π
sc(X ,λλλ ,κκκ,κκκ1 | X

′
1 ,ΛΛΛ,D0) =

| 2πE |1/2| 2πK |1/2

| 2πλλλ
−1 |1/2| 2πD |1/2| 2πB |1/2

×

exp
{
− 1

2

(
X T M−1X −WT X −X T W−A T B−1(KB−1 − I)A

)}
×

π(X )π(λλλ )π(κκκ)π(κκκ1),

(5.20)

where M−1 = (λλλ − λλλEλλλ − λλλED−1cT KcD−1Eλλλ ), W = (λλλED−1cT KB−1A ), E−1 = (λλλ +

D−1), and K−1 = (cD−1cT +B−1 − cD−1ED−1cT ). π(X ) = N(0,τ−1ΣΣΣ(κκκ)), and κκκ is as de-
fined in Section 5.3.2. The derivations are shown in Appendix 7.4.3.3. It is straightforward to
extend to independent multiple historical data by simply deriving (5.20) for each historical data
and obtaining the grand product.

5.4 Hierarchical model

Let D = {m,n,Y,C} denote the current geostatistical data, where Y is the response
indexed by m spatial locations in the spatial domain G ; m indicates the number of locations
data were observed; n denotes numbers of independent replications in the current data; C =

{X,U,Z,A} is the set of observed matrices. Consider Y j to be a realization assuming multivariate
normal distribution (Y j ∼ N(ηηη j,τ

−1I)) of the current data (D) with j = 1,2, ...,n replications at
spatial location si = 1, ...,m, and ηηη j ∈ Rm is a m×1 vector of the linear predictor on replication
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j. Let V jX = XT
j βββ +ZT

j ψψψ +Aθθθ , V j = rowstack(XT
j ,ZT

j ,A) and X = (βββ T ,ψψψT ,θθθ T )T , the
hierarchical structure is given as

Y j|X ,ϑϑϑ ∼ N(ηηη j,τ
−1I),

ηηη j = UT
j ϑϑϑ +V jX ,

X ∼ π
o, o ∈ {p,c,sc},

ϑϑϑ ∼ π(ϑϑϑ),

τ ∼ Gamma(aτ ,bτ).

(5.21)

Here, U is used to introduce a new set of covariates only available in the current data, and ϑϑϑ

is the corresponding effect with prior knowledge π(ϑϑϑ) = N(0,R). To make inferences from
the marginal posterior distributions, the Metropolis-Hasting within Gibbs algorithm (MH-G)
of the Markov Chain Monte Carlo was implemented to draw posterior samples from the joint
posterior distribution. The Gibbs sampling algorithm allows drawing posterior samples from
standard posterior conditional distributions, and the Metropolis-Hasting algorithm permits
drawing posterior samples from non-standard posterior conditional distributions. The MH-G
algorithm is implemented for all the models considered and the detailed algorithms and links to
R codes are shown in Appendix 7.4.2.

5.5 Simulation study

Forty-five simulation scenarios were used to investigate the performance of the three
competing prior distributions for the recovery of the simulated spatial pattern. Current and
historical spatial responses were simulated from different distributions with varied expected
values and variances, which collectively form the scenarios considered. The marginal expected
values of the historical response Y0 that give rise to the historical data were classified into three
scenarios as: "lower", "equal", and "higher" than the marginal expected values of the current
response Y forming the current data. Similarly, with the precision of the historical response, the
scenarios were classified into: "lower", "equal" and "higher" than the precision of the response
forming the current data. The general form of the sampling distribution scheme is given in the
following equations.

For sampling the current data,

θθθ ∼ N(0,τ−1Qθ (κκκ)),βββ = (0.5,3,−1,−2)T ,

X =(βββ T ,θθθ T )T ,

Y ∼N(VX ,τ−1I),

where V =rowstack(XT ,Iθ ),

(5.22)
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and for sampling the historical data,

βββ 0 = c1βββ , τ
−1
0 = c2τ

−1,

θθθ 0 ∼ N(0,τ−1
0 Qθ0(κκκ)),

X0 = (βββ T
0 ,θθθ

T
0 )

T ,

Y0 ∼ N(V0X0,τ
−1
0 I),

where V0 = rowstack(XT
0 ,Iθ0).

(5.23)

Here X0 and Iθ0 are the covariates of the fixed effect and an identity projection matrix of the
historical data respectively, and X and Iθ are the corresponding matrices in the current data;
c1 and c2 are constant factors. The sample locations which gave rise to the matrices Qθ (κκκ)

and Qθ0(κκκ) are different and were selected randomly. Specifically, the spatial window of the
historical data was fixed at (0.4,0.9)× (0.4,0.9) and for the current data, (0.2,0.8)× (0.2,0.8),
while (0.0,1.0)× (0.0,1.0) for the test window in the form (xcord1,xcord2)× (ycord1,ycord2).
Figure 23 shows the train locations for historical and current spatial data used in the modeling
stage and the test locations used to evaluate the out-of-sample predictive performance of the
models. A bimodal spatial pattern was simulated, with peaks toward locations (0.3,0.3) and
(0.8,0.8).
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Figure 23 – Simulated data location of current and historical data for training and testing.

Marginalizing over the spatial effect, the resulting marginal expectation E(Y) =XT βββ and
E(Y0)=XT

0 βββ 0 = c1XT
0 βββ , and the corresponding marginal variances are Var(Y)= τ−1(AQθ (κκκ)AT +

Im) and Var(Y0)= c2τ−1(A0Qθ0(κκκ)A
T
0 + Im0), where Im0 and Im are corresponding identity ma-

trices, and m = 30 and m0 = 50 are the numbers of sampled train locations (Figure 23). c1 and
c2 were varied over a grid c1 ∈ {0.2,1,2} and c2 ∈ {0.5,1,100} leading to nine possible combi-
nations. For c1 = c2 = 1, the marginal expectation and variance of the historical response are
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most consistent with the response of the current data compared to other combinations. Moreover,
in other cases, the marginal properties of the historical data are either discounted or inflated,
causing both data to lose consistency.

The columns of the design matrix X were formed from the covariates x0, x1, x2, x3, each
drawn from a standard normal distribution, except x0 = 1, acting as the intercept. The design
matrix X0 was also obtained in a similar manner. The hyper-parameters ν = 1 and φ = 5 were
fixed for both data and the true precision parameter τ = 1. To investigate the performance of
the models over various sample sizes, n and n0 were varied over the set {1,5,10,20,50} for
each combination of c1 and c2. In addition to the borrowing schemes using spatial power prior
(π p), spatial commensurate prior (πc), and scalable spatial commensurate prior (πsc), this work
investigated the "No-borrowing" (πno) and "Full-borrowing" (π f ull) models. The π f ull and πno

act as baselines for the other models: πno disregards the existence of historical data and π f ull uses
all the information in the historical data regardless of whether it is consistent with the current
data or not. It is expected that models depending on the developed priors perform equivalently
as π f ull if the current and historical data are consistent. In addition, it is expected that models
depending on the developed priors perform equivalently as πno if the historical and current data
were inconsistent. In other situations, it is expected that the borrowing techniques developed
should outperform the extreme models.

In the estimation procedure, the chosen hyperparameter values were aτ = 2,bτ = 1,aτ1 =

2,bτ1 = 1,σ2
β
= 1000,τx = 1, σ2

θ
= 10, and the diagonal representation form of the commensurate

matrix was adopted and the prior distribution for λβ ∼ gamma(aλ1,bλ1), λθ ∼ gamma(aλ2,bλ2)

and uniform priors for the hyperparameters aλ1,bλ1,aλ2, and bλ2 , which were updated using
Metropolis Hasting algorithm. The model performances were evaluated using Conditional
Predictive Ordinate (CPO) and the out-of-sample root mean square error (rMSE). The CPO for
the current observation Y j was approximated as

CPO j = f (y j | D− j)≈

[
1
M

M

∑
k=1

1
L(y j | D− j,X(k),τ(k))

]−1

, (5.24)

where X(k), τ(k), k = 1,2, ...,M are draws from the posterior distribution, D− j is the training
data excluding jth replication, and L() is the likelihood of the current data. The higher the CPO j

the better the model fits the data. The summary mlCPO = 1
n ∑

n
j=1 logCPO j was used to quantify

the overall model fit performance in the training samples. Moreover, the out-of-sample rMSE
was evaluated as

rMSE =

√√√√ N

∑
l=1

(Ŷl −Yout)2

N
, (5.25)

where Ŷl is the out-of-sample prediction on test locations, Yout is the true sampled response
at the test location. The prediction was repeated N = 200 to evaluate (5.25), where for each l,
different data were simulated from the true model to evaluate the performance of predicting Yout .
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It is expected that the rMSE equals zero, indicating that the closer to zero it is, the better the
estimation model.
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Figure 24 – (a) The in-sample mlCPO and (b) the out-of-sample rMSE for nine possible combinations and
varying sample sizes. Each block, demarcated by a vertical dashed line, is a single combination
of c1 and c2 with varying replication sizes n0 = n ∈ {1,5,10,20,50} in increasing order.
Starting from the left, the combinations of c1 and c2 are (0.2,0.5), (0.2,1.0), (0.2,100.0),
(1.0,0.5), (1.0, 1.0), (1.0,100.0), (2.0,0.5), (2.0,1.0), and (2.0,100.0) in the form (c1,c2).

Figure 24a & b showed the mlCPO of the samples used in the training data and the rMSE

on the test locations respectively. The figure shows nine blocks of scenarios demarcated by dashed
vertical lines, each representing a combination of (c1,c2). Within each block, n0 = n= 1,5,10,20
and 50. It can be seen that the performance of all the models improves as the replication at each
training location increases, indicating consistency. Focusing on the πno and π f ull , the result
shows that when both historical data and current data are inconsistent, πno outperforms π f ull

and when both data are consistent π f ull outperformed πno in both in-sample and out-of-sample
examples. Moreover, models involving πc and πsc prior distributions uniformly outperformed the
baseline models (Figure 24a). The models involving π p uniformly outperformed baseline models,
except for scenarios where (c1,c2) were (2.0,0.5),(2.0,1.0), and (2.0,100.0). This was directly
linked to the sensitivity of the power parameter ω0. A poor choice of the assumption of the prior
distribution for ω0 could lead to too much borrowing when it should not. Thus, a sensitivity
analysis is recommended in real data applications when using π p. Another possible way is to
assume a simplex prior distribution for ω0 due to its stability as compared to the beta distribution
(LÓPEZ, 2013). In addition, Figure 24b shows that the models involving the proposed priors
performed better than the baseline models in the out-of-sample prediction, except in a few cases
for the power prior distribution which occurred in three scenarios, one each from the first three
blocks. As expected the power and commensurate parameters increase as c1 and c2 draw closer
to 1 in a finer grid (result not shown).

Figure 25 showed a posterior predictive of the models involving the proposed prior
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distributions and baseline models at the scenario where c1 = 0.2 and c2 = 1.0 at n0 = n = 1
in each train location. The true pattern of the current data exhibits bimodal peaks towards
coordinates (0.3,0.3) and (0.8,0.8). The posterior predictive showed that models that involved
the proposed prior distributions better captured the peaks and troughs in the spatial pattern of
the response. While π f ull could somewhat indicate both peaks, the πno showed no indication of
peak at (0.8.0.8).

This simulation showed the potential risk associated with pooling multiple spatial
datasets, which is a commonly used technique for data integration. The historical dataset may
dominate the current dataset, as shown by the "Full borrowing" baseline model (Figure 24),
particularly when both datasets are inconsistent. However, the simulation study has shown that
the developed models have the capability to prevent this dominance and filter the information
provided by the historical data to improve model performance at a little additional computational
cost. Thus the proposed models give the assurance that the worst-case scenario when combining
geostatistical datasets is to attain baseline model performance.
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Figure 25 – The posterior predictive of the simulated pattern based on the developed priors and baseline
models at a scenario (c1 = 0.2,c2 = 1.0) for n0 = n = 1. The true pattern exhibits a bimodal
characteristic, which was captured better by the models involving the developed priors.

5.6 Application

5.6.1 Data

This application aims to understand the spatial pattern of the subject’s brain response
to TMS pulses over the motor area after adjusting for possible confounding variables such as
stimulation depth and the number of repetitive simulations. This pattern will help to identify the
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Table 7 – Variables included in the model.

Variable Type Description
Log peak-to-peak MEP Response (continuous) The range summary of the output signal generated after TMS are delivered

at each predefined location on the patient’s motor cortex.
Associate target Covariate (categorical) The label differentiating the clusters of locations on the motor cortex.
Replication Covariate (metrical) Indicate at what TMS replicated pulse an MEP response was obtained.

It ranges from 1-10. Replication equal to 3 means that the MEP response
was obtained at the third TMS pulse in a given associate target. The time
interval between the pulses were kept constant.

Location Covariate (Coordinate) The exact Cartesian coordinate where the response was obtained.

areas in the motor cortex that have optimal control over the movement of the right FDI muscle. In
addition, this work seeks to make inferences on the suitable number of repetitive pulses necessary
to produce desired responses. This study is crucial for advancing the understanding of the brain’s
motor function and has the potential to inform the development of more treatment options for
motor disorders among patients.

Two TMS datasets of subject 1 (1R1 and 1R2) were available. Dataset 1R2 was derived
from a formal TMS therapy session of subject 1, and dataset 1R2 is the current TMS dataset
to be analyzed. It is believed that the 1R1 dataset contains useful information that could assist
in estimating the spatial pattern of subject 1 response to TMS pulses. This work wishes to
improve the estimation of the spatial pattern by incorporating 1R1 dataset in the Bayesian
analysis of 1R2 dataset. Figure 26 shows the geographical locations where the current data
(1R1) and historical data (1R2) were obtained. Each location indicates the coordinate where
TMS pulses were delivered in the motor cortex. In total, m = 225 and m0 = 171 locations were
stimulated in the current and historical data respectively. These locations are clustered over the
"Associate Targets" (AT). The target variable is peak-to-peak motor-evoked potential
(MEP) recorded by EMG in microVolt (µV ) and the response variable Y = log peak-to-peak
MEP. The linear covariate is the "Associate target" indicator (X1), indicated as the square
boxes in Figure 26. The metrical covariate is the "replication" (X2), which indicates what
TMS replicated pulse generated a given response at a given AT, and the spatial covariate is the
location (X3) on the motor cortex where the TMS pulses were delivered. Further descriptions
of the covariates are shown in Table 7. Variable X1 was introduced to account for the varying
intercept across the associate targets, X2 was introduced to understand the pattern of multiple
TMS pulses on MEP at controlled intervals, and X3 was introduced to understand the spatial
pattern of MEP.

Figure 27 shows the box plots of Y for historical data (left) and the current data (right).
The overall mean, median, and standard deviation of the MEP for the current data are 100.95µV,
37.37µV, and 123.96µV, and for the historical data are 36.39µV, 38.309µV, and 33.37µV. The
prior models developed in this work were applied to understand the spatial patterns in the current
data. The covariate X1 was modeled linearly, X2 was modeled non-linearly, and X3 was modeled
spatially. The hyper-parameters are σ2

θ
= σ2

φ
= 10, σ2

β
= 1000, aτ = aτ1 = 10,bτ = bτ1 = 2,µφ =

µν = 0,σ2
φ
= σ2

ν = 10, and τx = 10. The chosen hyperparameter set produced the best model
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Figure 26 – Geographical locations where the current and historical data were observed. The "AT"
indicates the associate target. The point (0,0) indicates the location of the primary motor
cortex, M1, of the subject.

performance among various combinations. 10,000 iterations were conducted, and 2000 was
dropped as burn-in samples. The remaining samples were used for inference. The acceptance
rates of all the Metropolis-Hasting steps for all the models lie in the interval (0.21,0.57). The
trace plot of the marginal log-likelihood was used to verify the chain convergence, and the
Geweke test (GEWEKE et al., 1991) was used to numerically verify the convergence of the
chains for all the models. In addition, the spatial pattern of the exceedance probability was
obtained as

P(Y > yI | D) =
∫

P(Y > yI | X ,τ,D)π(X ,τ | D ,D0)d(X ,τ). (5.26)

Here, π(.) is the posterior distribution, P(.) is the distribution of the current data, and y =

log(400), chosen relative to the subject’s motor threshold.
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Figure 27 – Box plot of the historical data (left) and the current data (right) according to the "associate
targets".

5.6.2 Results

The average computational run time for no, f ull, p, sc, and c are 4.20, 4.68, 6.64, 12.11,
and 18.94 minutes accounting for 9%, 10%, 14%, 26%, and 41% of the total runtime respectively
on an Intel(R) Core(TM) i7- @ 2.80GHz with 8GB RAM. The result showed about a 15% gain in
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the model based on scalable commensurate prior compared with the one based on commensurate
prior. Figure 28 shows the box plot of the CPO for each location and replication and mlCPO
criteria for all the competing models, including the baseline models. The result showed that
the median of the CPO and the mlCPO of the model based on the power, commensurate, and
scalable commensurate priors are higher than the baseline models. Figure 29 shows the model
residual quantiles for the models. The result shows that the proposed models had a better fit to
the data compared with the baseline models. The result indicates that despite both data being
obtained from a single subject at different TMS sessions, the distribution of the response to TMS
stimulation significantly varies. This is evident as the full baseline model performed least among
the models, indicating a lack of consistency in both data. However, the proposed model is able to
harness the important information in the historical data to improve inference and prediction.

The posterior mean and the 95% credible interval of the power parameter ω are 0.182(0.02,
0.447). The estimate can be interpreted as the percentage (18.2%) amount of information bor-
rowed from the historical data for inference, which indicates low similarity between the data
distributions. For the model based on spatial commensurate prior, the posterior mean and the
credible interval for the commensurate parameter for fixed and nonlinear effects combined, λβψ ,
is 2.385(0.651, 5.381) and spatial effect, λθ , is 0.304(0.297, 0.307), indicating higher com-
mensurate in the fixed and nonlinear effects. Similarly with the scalable spatial commensurate
prior, the posterior mean and 95% credible interval for λβψ is 1.794(0.169, 7.735) and λθ is
7.615(2.149, 19.873) indicating higher commensurate in the spatial effect. The posterior mean
and 95% credible interval for τ in the "full" baseline model is 2.207(1.905, 2.527), "no" baseline
is 2.977(2.455, 3.552), and model based on the power prior model is 2.202(1.908,2.519), the
commensurate prior is 3.562(3.080,4.083), and the scalable commensurate prior is 3.7865(3.182,
4.434).

Figure 30 shows the posterior densities of the effect of associate targets. The model based
on the power prior distribution indicates the associate targets (0,0), (0,1), and (0,2) as promising
targets in producing optimal MEP. The model based on commensurate prior indicates (1,2), (2,1),
and (2,2), while the model based on scalable spatial commensurate prior indicates (0,0), (1,2),
and (2,2). The "full" baseline model had a similar pattern as the power prior model and the "no"
baseline model had a similar pattern as commensurate prior.

Figure 31 shows the non-linear effect of replication on the log peak-to-peak MEP for the
proposed model and baseline models. The middle line is the posterior mean and the dashed lines
are the 95% credible intervals. Overall, the result shows that log peak-to-peak MEP decreases
as the TMS replication pulse increases. The minimum effect varies with the models. The effect
pattern produced by the model based on power prior is similar to the one produced by the
"full" baseline model, whereas, the effect produced by the model based on commensurate
prior is similar to one produced by the "no" baseline model. The model based on scalable
commensurate prior distribution has a distinct shape between replication 4 and 8, however, like
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and the numerical figures are the mlCPO value.
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Figure 29 – The residual quantiles of the baseline and proposed models.

the commensurate model, it reached the minimum effect at replication 8. The result shows
that the level of neuronal excitation initially decreases as the number of TMS pulses delivered
increases. However, as more TMS pulses are administered to the motor cortex, the level of
neuronal excitation gradually recovers.

Figure 32 shows the posterior prediction of the spatial effect over the whole spatial
window after adjusting for other covariates using proposed models and baseline models. The
posterior predicted spatial effect of the model based on power and commensurate prior distri-
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Figure 30 – Posterior density of the effects of associate targets on the log peak-to-peak MEP obtained
based on the proposed models and the baseline models. The brighter the density, the higher
the likelihood that the associate target will contain the locations that produce higher MEP.
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Figure 31 – The non-linear effect of replication on the MEP. The middle line indicates the posterior mean
and the dashed lines indicate the 95% credible interval. On average, the result indicates that
more repetitive stimulation lowers the peak-to-peak MEP until the 7th pulse.

butions have similar patterns with the baseline models. However, the scalable commensurate
prior distribution showed a slightly different pattern. The locations with the high effect indicate
candidate coordinates of the motor cortex that could produce high MEP. Among all the posterior
predictive patterns, locations around coordinate (55,-10) consistently had a high spatial effect
across all models, with a predicted MEP of 551.02µV for the model based on the power prior
model, 672.68µV and 460.80µV for the model based on the commensurate and scalable com-
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Figure 32 – Posterior prediction of the spatial effect based on proposed models and baseline models.

mensurate prior respectively. This location is referred to as the primary motor cortex, M1. Figure
33 shows the posterior exceedance predictive probabilities of a log MEP obtained at a given
spatial location exceeds a threshold of log(400). This probability was computed over the spatial
window using (5.26). The "no" baseline model and models based on commensurate and scalable
commensurate priors exhibit bi-modal locations with relatively high exceedance probability. The
exceedance probability was estimated to be at least 0.5 at these peaks, indicating the regions that
respond mostly to TMS stimulation of the motor cortex. Particularly, location M1 has a 0.65
probability of producing above 400 µV MEP.
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Figure 33 – The probability of an MEP obtained at a given location exceeding 400 µV .
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5.6.3 Discussion of result

Although the TMS sessions that generate the historical and current data were conducted
by the same practitioner on the same subject, there appears to be a weak relationship in the
response pattern between the two TMS therapy sessions. This can be attributed to the dynamics
of the brain which has the tendency to react to stimulation differently at different brain states
as a result of intra-individual variability that may change in a time scale of minutes to hours
(BERGMANN, 2018). The finding suggested that the location of the primary motor cortex
is responsible for most movement of the FDI muscle, which is visually identified as it is
predominantly located in the middle knee of the central sulcus (CS), formed by the posterior
curvature of the precentral gyrus (PreCG) around the hand knob (SILVA et al., 2020).

Moreover, findings revealed that the effect of stimulation replications on the peak-to-peak
MEP at a given AT of the participant decreases non-linearly as the replication increases. That
is, in the mesoscopic scale, the release of action potentials by the populations of neurons under
stimulation lowers with an increase in stimulation replication at a given AT location, indicating
that the number of depolarized neurons depreciates with the increase in stimulation, and thus, the
aggregate neuronal activities over the mesoscopic level depreciate. It could be associated with
the effect of repetitive suppression from the brain (KARIMINEZHAD et al., 2020). However,
the finding also indicates an ascension in the effect after replication 7. Findings also showed that
there is heterogeneity across AT locations. It shows the differences in the capacity of neuronal
activation at different ATs. The closer the ATs are to M1, the more probable they produce high
MEP.

5.7 Conclusion

This work proposed three informative spatial prior distributions based on available
historical geostatistical spatial data for performing Bayesian spatial analysis. Models based on
these priors allow modeling linear, nonlinear, and spatial covariates in a single framework, and
scales with the availability of many historical data. As demonstrated by the simulation studies,
the proposed approach assures that the historical data do not obscure the true spatial pattern
in the current data and provide evidence of improvement in the estimation compared with the
naive pooling of these data. This technique is applicable to any geostatistical data and can be
used conveniently to model large spatial data by partitioning the large data into batches, each
considered as historical data. Each batch can be processed in parallel and then linked to one
another using the scalable commensurate model. In the data analysis of the TMS data, though
the same practitioner conducted both TMS sessions on the same subject, the response pattern
was not consistent. This is because the brain is constantly changing and reacting differently to
stimulation depending on its current state. However, the study did find that the primary motor
cortex is responsible for most of the movement of the FDI muscle, and this location can be



98 Chapter 5. Prior Elicitation for Gaussian spatial process

identified visually and could facilitate TMS therapy and speed up the whole process in future
stimulation sessions. The analysis provides a deeper understanding of the neural mechanisms
underlying motor function and ultimately improves treatment options for individuals with motor
impairments. Though the proposed approach only accommodates Gaussian processes, it can
be extended to accommodate other spatial processes such as the student-t process (ORDOÑEZ
et al., 2023). The main drawback of the proposed methods is the computational complexity
incurred by incorporating the historical data. Although this chapter suggests elegant ways to
lower the complexity, future work may focus on faster estimation techniques such as variational
inference.

Acquiring TMS data is expensive, and thus it is important to develop models that could
capture all the possible variations in the data. While this chapter presents a parametric spatial
model to better harness these variations, the spatial process was assumed to be stationary and
Gaussian. Hence, the next chapter relaxes this assumption and proposed a nonparametric spatial
model to further improve the existing model.
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CHAPTER

6
MIXTURES OF DIRICHLET PROCESS

PRIORS FOR SPATIAL MODELS

The spatial pattern of subjects’ responses to TMS stimulation possesses a complex
structure that has the tendency to be modulated by stimulation in different brain states as studies
have shown intra-individual variability in a time scale of minutes. Thus, it is challenging to
use the spatial pattern for one subject to gain insight into the improvement of a TMS treatment
experience of a different subject. It is believed that the recorded responses to TMS stimulation
may be due to mixtures of latent spatial patterns that are common to every subject and those
particular to each subject. Hence, the goal of this chapter is to distinguish these latent processes
in the TMS datasets so that the common pattern that is consistent across subjects could give
the required insight into improving the treatment experiences of different subjects. This chapter
developed a mixture of Dirichlet process models to arrive at a non-stationary and non-Gaussian
spatial model that statistically combines multiple related geostatistical data within a single
modeling framework. The model creates a probabilistic informed pathway for information
sharing among multiple spatial sub-models to improve inferential and predictive performances.
The proposed model was adopted to analyze subjects 1R1, 2, and 3 TMS datasets.

6.1 Spatial model with single Dirichlet process prior

This section first presents a nonparametric spatial model for analyzing a single dataset
and laid the statistical foundation that will be adopted in the subsequent sections for modeling
multiple datasets.

6.1.1 Model specification

Suppose for spatial locations s1,s2, ...,sI ∈ G , Yt = (Y1t ,Y2t , ...,YIt)
T is the corresponding

random response vector for each replicate t = 1,2,3, ...,n and the probability distribution of Yt
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belong to a class of distributions F , such that Yt ∼ f ∈ F . Yit ∈ R is the response observed
at location i in replication t. In relation to TMS data, si represents the grid cell on the scalp
where TMS pulses were delivered, and Yit is the corresponding recorded peak-to-peak motor-
evoked potential (MEP) at that location in replication t. The goal is to model the underlying
spatial process that generates data Yt . Yit was assumed to have a conditional independent
Gaussian distribution, so that, Yt | βββ ,φφφ ,θθθ t ∼ N(µµµ t ,τ

−1
t I), where τt is the precision at replication

t and µµµ t = (µ1t ,µ2t , ...,µIt)
T ∈ RI is defined by a structural additive predictor. That is, µit =

xT
it βββ +g(zit ,φφφ)+h(si,θθθ t), where µit is the conditional expected value of the response at location

si in replication t. βββ is a p× 1 regression coefficient of covariate vector xit , g(zit ,φφφ) is an
unknown nonlinear function with R×1 parameter vector φφφ introduced to describe the smooth
function of metrical covariate zit , and h(si,θθθ t) is a spatial effect at location si in replication t,
governed by a spatial process denoted by a L×1 vector θθθ t . The covariate xit could represent
the angular readings of the TMS coil positioning and the intensity, and zit could be the coil
positioning error. Both effects were introduced in the model to avail the opportunity to adjust for
TMS technical noise.

Let θθθ t = (θ1t ,θ2t , ...,θLt)
T , where θlt is the spatial parameter corresponding to lth fixed

spatial knot location vl ∈ G in replication t. The approximate of the spatial effect function is given
by h(si,θθθ t) = aiθθθ t , where ai = (a(1)i ,a(2)i , ...,a(L)i ) is a deterministic vector and a(l)i is obtained
by approximating h using a Gaussian kernel basis function with a bandwidth ψ evaluated at data
location si and spatial field location vl . That is,

a(l)i = exp

(
− d(si,vl)

2

ψ2

)
,ψ > 0, (6.1)

where d(si,vl) is the euclidean distance between data location si and knot vl . Given the kernel
(6.1), Reich, Bandyopadhyay and Bondell (2013) proved that for a fixed number of knots
L and bandwidth ψ , and any continuous marginal distribution for Yit , there exists a density
function for θit that leads to that marginal distribution of Yit . Hence, this representation leads
to a valid probability distribution. The approximation h(si,θθθ t) = aiθθθ t is similar in spirit to the
Karhunen–Loeve decomposition of stochastic processes (SIMPSON et al., 2016). Equation
(6.1) provides a structure for combining the analysis of multiple geostatistical spatial data with
different spatial windows.

The function g is approximated semi-parametrically by a spline function to model the
nonlinear relationship of metrical covariates (ELIERS; MARX, 1996). For a metrical covariate zit

in the model, g(zit ,φφφ) = ∑
R
r=1 Bd

r (zit)φr, where Bd
r (zit) is the rth spline basis function of degree d,

evaluated at zit and φr is the corresponding coefficient. Particularly in this work, R = d +Kd +1,
where Kd is the number of equidistant knots and degree d = 3, giving rise to a cubic B-spline.
The values of the basis functions are obtained using Equation (5.3). Let φφφ = (φ1,φ2, ...,φR)

T and
bit = (Bd

1(zit),Bd
2(zit), ...,Bd

R(zit)), then g(zit ,θθθ) = bitφφφ in vector form.

Therefore, the structural additive form for all the spatial locations at replication t is given



6.1. Spatial model with single Dirichlet process prior 101

as

µµµ t = XT
t βββ +Btφφφ +Aθθθ t , (6.2)

where each row of XT
t , Bt and A is the corresponding xT

it , bit and ai vectors respectively. The
generating model is given as

Yt | βββ ,φφφ ,θθθ t ∼ N(µµµ t ,τ
−1
t I),

µµµ t = XT
t βββ +Btφφφ +Aθθθ t ,

θθθ t ∼ H,

H ∼ DP(α,G),

(βββ ,,,φφφ)∼ π(βββ ,,,φφφ),

ΛΛΛ ∼ π(ΛΛΛ),

(6.3)

where DP is a Dirichlet process with concentration parameter α and base probability distribution
G, π(βββ ,,,φφφ) is the joint prior distribution for the linear and nonlinear effects and π(ΛΛΛ) is the prior
distribution of the vector of hyperparameters, ΛΛΛ. In Equation (6.3), θθθ t incorporates the spatial
dependence of Yt through the base distribution G. The prior models are discussed specifically in
Subsection 6.1.2.

6.1.2 Prior model

The main model parameters are the βββ , φφφ , and θθθ t . A Gaussian prior distribution with zero
mean and a precision matrix Qβ = τβ Ip was assumed for βββ , where Ip is an identity matrix of
size p. A random walk model I (RW1) with a Gaussian error as prior distribution was assigned
for φφφ . In general, higher orders of random walks and autoregressive models can be considered
(LANG; BREZGER, 2004). Specifically, let φφφ be a vector whose elements correspond to the
parameters of the cubic spline basis function. Then the RW1 model is given as

φr = φr−1 + er, φ1 = e1, er ∼ N(0,τ−1
φ

),r = 1,2, ...,R. (6.4)

Solving recursively, φφφ = Re, e ∼ N(0,τ−1
φ

IR), IR is an identity matrix of size R, and the matrix
R = (Irr′), where Irr′ = 1 if r ≤ r′ and 0 otherwise. Therefore, the prior distribution on φφφ ∼
N(0,Q−1

φ
), Q−1

φ
= τ

−1
φ

RRT. The prior distribution is rank one deficient, and thus, a sum-to-zero
constraint on the effect is imposed. The nonlinear effect with a random walk prior was considered
to determine how the angular variation from a reference point in the coil positioning on the motor
cortex affects the elicited MEP.

A random prior distribution H is assumed for θθθ t , which is modeled non-parametrically.
That is θθθ t ∼ H and H ∼ DP(α,G), t = 1,2, ...,n, where DP(α,G) is a Dirichlet process with
concentration parameter α and a base distribution G. Since θθθ t is linked to Yit through f , the
model is referred to as a DP mixture with kernel f . Sethuraman (1994) provided a stick-breaking
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representation of the DP. Recall that DP(α,G) could be represented as ∑
∞
b=1 ωbδ

θθθ
(b)
t

. δa denotes

a point mass at a and θθθ
(b)
t ∼ G. Let ω1 = a1 and ab ∼ Beta(1,α), b = 2,3, ... independently,

then, the stick-breaking representation follows as ωb = ab ∏
b−1
k=1(1− ak). It is easy to arrive

at the probability distribution for θθθ t following this representation. For example, suppose that
the base distribution G is a spatial process, then draw samples θθθ

(b)
t from G and independently

draw abs from Beta(1,α) and evaluate ωb. Repeating the procedure for several b; the collection
{(ω1,θθθ

(1)
t ), (ω2,θθθ

(2)
t ), ...} gives rise to the desired probability distribution, however discrete. The

base distribution G helps to retain the spatial structure. The specified DP is thus referred to as
Dependent Dirichlet Process (DDP).

Integrating out H from θθθ t ∼ H and H ∼ DP(α,G) using the Pólya Urn scheme (BLACK-
WELL; MACQUEEN, 1973) the conditional prior distribution becomes

θθθ t | θθθ−t ∼
1

n−1+α
∑
k ̸=t

δθθθ k +
α

n−1+α
G, (6.5)

where θθθ−t = (θθθ 1, ...θθθ t−1,θθθ t+1, ...,θθθ n). The conditional prior distribution given in (6.5) simply
means that there is 1/(n−1+α) probability that θθθ t assume value from θθθ−t and α/(n−1+α)

it assumes value from the base distribution G. It implies that as the concentration parameter α

increases, θθθ t is more likely to follow G, hence, new clusters are created.

A stationary Gaussian process centered at zero with L×L variance-covariance matrix ΣΣΣ

was assumed for G. ΣΣΣ is governed by a stationary Matérn covariance function given as:

ΣΣΣ(l,l′) =
σ2

2ν−1Γ(ν)

(√
2νd(vl,vl′)

κ

)ν

Kν

(√
2νd(vl,vl′)

κ

)
, (6.6)

where σ2,κ,ν > 0, and Kν(.) is the modified Bassel function of the second kind with an order
of differentiability ν . A particular case of the Matérn covariance function is the exponential
covariance function for ν = 1/2. More generally, the limiting function as ν approaches infinity
is the squared exponential covariance function. The κ parameter controls the spatial range, while
ν controls the smoothness, and σ2 is the partial sill.

Besides the main model effect’s parameters, there are associated hyperparameters ΛΛΛ =(α ,
τt , τφ , τβ , σ2, κ , ν)T in the model hierarchy. Throughout this work, α ∼ Gamma(aα ,bα) was
assumed for the concentration parameter, which guarantees a faster technique of posterior
update (ESCOBAR; WEST, 1995). Moreover, τt ∼ Gamma(aτ ,bτ), τφ ∼ Gamma(aφ ,bφ ), and
τβ ∼ Gamma(aβ ,bβ ) for known parameters. A lognormal prior distribution was assigned to
κ ∼ lognormal(µκ ,σ

2
κ) and ν ∼ lognormal(µν ,σ

2
ν ). A possible prior distribution for σ2 is the

inverse gamma.
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6.2 Spatial model with mixture of Dirichlet process priors

Combining sub-spatial models within a single modeling framework is important, es-
pecially in situations where the data generation process possesses shared and specific spatial
characteristics. Consider for example the TMS mapping dataset, which is illustrated in Figure
34. The top panel shows the TMS data of three subjects corresponding to G1,G2, and G3 whose
location of the primary motor cortex (M1) is fixed and known, and it is visually located over a sub-
ject’s scalp. For each subject j ( j = 1,2,3), practitioners usually form a spatial window denoted
by G j around M1. The TMS responses (y11,y12,y13), (y21,y22), and (y31,y32,y33) are recorded
respectively for subject 1,2, and 3 within the windows for each subject. y ji = (y ji1,y ji2, ...,y jiTj),
and y jit is the recorded response at replication t, spatial location i for subject j. The spatial
pattern of subjects’ responses to TMS stimulation possesses a complex structure that has the
tendency to be modulated by stimulation in different brain states as studies have shown intra-
individual variability in a time scale of minutes (BERGMANN, 2018). Thus, it is challenging to
use the spatial pattern for one subject to gain insight into the improvement of a TMS treatment
experience of a different subject. It is believed that the recorded responses to TMS stimulation
may be due to a spatial pattern that is common to every subject and those particular to each
subject. Thus, the common pattern, which is similar across subjects could give the required
insight into improving treatment experiences of different subjects.

The bottom panel of Figure 34 illustrates an imaginary overlapping of these spatial
windows with reference to the primary motor cortex. In the figure, G denotes the window that
encloses all the sub-windows. It is assumed that combining the shared spatial pattern in G

with the subject-specific spatial patterns leads to the recorded responses. For example, it is
possible that the recording leading to response y111 in y11 was elicited by a process shared across
subjects, whereas y112 could be a response elicited by a subject-specific process as a result of a
rapid change in brain state during a TMS therapy session. Hence, the goal of this section is to
distinguish these latent processes.

Suppose there are J subjects that participated in the experiment. Let Y jt =(Yj1t ,Yj2t , ...,Y jI jt)
T

be a vector of the responses at the spatial locations (s j1,s j2, ...,s jI j) with corresponding spa-
tial field θθθ jt = (θ j1t ,θ j2t , ...,θ jL jt)

T in the tth replication for the jth subject. The proposed
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Figure 34 – The top panel illustrates three TMS brain mapping point referenced data for three different
subjects. The data points {y11,y12,y13}, {y21,y22}, and {y31,y32,y33} correspond to the
observed peak-to-peak of the motor evoked potential response signal in spatial window
G1,G2, and G3 formed for each subject during TMS therapy session. The bottom panel
illustrates an imaginary overlap of these windows with reference to the primary motor cortex
for each subject.

hierarchical model follows as:

Y jt | βββ j,θθθ jt ,φφφ j ∼ N(µµµ jt ,τ
−1
jt I),

µµµ jt = XT
jtβββ j +B jtφφφ j +A jθθθ jt ,

θθθ jt ∼ ε jH0I(w jt=1)+(1− ε j)H jI(w jt=0),

H j ∼ DP(α j,G j),

H0 ∼ DP(α0,G0),

(βββ j, φφφ j)∼ N(0,τ−1
j Q−1

β j
)N(0,τ−1

j Q−1
φ j
),

ΛΛΛ ∼ π(ΛΛΛ), t = 1,2, ...,Tj, j = 1,2, ...,J,

(6.7)

where G j and G0 are Gaussian spatial processes for the subject-specific and shared prior dis-
tributions. In (6.7), ΛΛΛ is a vector of all hyperparameters with joint density π(ΛΛΛ), and w jt is a
latent variable. With probability ε j, w jt = 1 and with probability 1− ε j, w jt = 0. It is assumed
that s ji ∈ G j, vl ∈ G and ∪G j ⊂ G , as shown in Figure 34. The mixture of DP priors in (6.7)
allows spatial information sharing between multiple sub-models. Moreover, the model implies
that the window where data are observed for different spatial data do not necessarily have to
overlap but be in the same global spatial domain G . ε j ∈ [0,1] is the weight parameter that can
be interpreted as a measure of the marginal relationship between data j and others. The proposed
model is flexible and it encompasses several sub-spatial models. For example, setting ε j = ε ∀ j

leads to a simpler model that allows information sharing at a constant rate across sub-models.
Further, at the extreme value ε = 0, it implies that all the studies are independent and share no
spatial relationship, whereas, at the other extreme, ε = 1, it implies that the spatial pattern of
all the studies are perfectly related and are assumed to be generated by the same process or
originated from the same population. The proposed model leads to a mixture of a non-Gaussian
and non-stationary spatial process and allows information sharing between subjects. In the model,
the linear and non-linear effects are not involved in the mixing of the observed response and
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can be used to adjust for subject-specific effects and noise introduced by differences in TMS
therapeutic procedures across subjects. This assumption is valid since data were obtained from
subjects with different independent therapies. For example, TMS stimulation intensity was set
on a given percentage of a subject-specific resting motor threshold, which varies for different
patients. However, the proposed model can be easily extended to accommodate the linear and
nonlinear effects in the mixing.

Conditioning on the latent variable w jt , the prior model for the spatial effects in Equation
6.7 reduces to θθθ jt | w jt = 1 ∼ H0, and θθθ jt | w jt = 0 ∼ H j, with w jt having a Bernoulli probability
distribution with success probability ε j. Let ∆∆∆0 j = {θθθ jt : w jt = 1}, ∆∆∆ j = {θθθ jt : w jt = 0}, and ∆∆∆

−t
0 j

be ∆∆∆0 j but excluding θθθ jt , and ∆∆∆
−t
j be ∆∆∆ j but excluding θθθ jt . Furthermore, let N j = {( jt) : w jt = 1},

n0 j = |N j|, and n j = |N c
j | for data j. Integrating out H j and H0 from (6.7), then

[θθθ jt | w jt = 0,∆∆∆−t
j ]∼ 1

n j −1+α j
∑
k ̸=t

δθθθ jk +
α j

n j −1+α j
G j,( jk) ∈ N c

j ,

[θθθ jt | w jt = 1,∆∆∆−t
0 j ]∼

1
n0 j −1+α0

∑
k ̸=t

δθθθ jk +
α0

n0 j −1+α0
G0,( jk) ∈ N j,

(6.8)

for j = 1,2, ...,J. Equation (6.8) implies that conditioning on w jt = 1, θθθ jt is shared among all
the data, whereas w jt = 0, θθθ jt is specific to data j. Therefore, the joint distribution for (θθθ jt ,w jt)

follows as

[θθθ jt ,w jt = 0 | ∆∆∆
−t
j ]∼

(1− ε j)

n j −1+α j
∑
k ̸=t

δθθθ jk +
α j(1− ε j)

n j −1+α j
G j,( jk) ∈ N c

j ,

[θθθ jt ,w jt = 1 | ∆∆∆
−t
0 j ]∼

ε j

n0 j −1+α0
∑
k ̸=t

δθθθ jk +
α0ε j

n0 j −1+α0
G0,( jk) ∈ N j.

(6.9)

Restraining all ε j = ε , the joint distribution (6.8) is straightforward to adjust to allow an equal
sharing rate across all datasets. That is, the prior distribution becomes

[θθθ jt ,w jt = 0 | ∆∆∆
−t
j ]∼ (1− ε)

n j −1+α j
∑
k ̸=t

δθθθ jk +
α j(1− ε)

n j −1+α j
G j,( jk) ∈ N c

j ,

[θθθ jt ,w jt = 1 | ∆∆∆
− jt
0 ]∼ ε

n0 −1+α0
∑

(uk)̸= jt
δθθθ uk +

α0ε

n0 −1+α0
G0,(uk) ∈

J⋃
j=1

N j,

(6.10)

where n0 = ∑
J
j=1 n0 j and ∆∆∆

− jt
0 is

J⋃
j=1

∆∆∆0 j but excluding θθθ jt .

G js and G0 were assumed to be stationary Gaussian spatial processes centered at zero
with variance-covariance matrix, λ

−1
j ΣΣΣ(ν j,κ j) and λ

−1
0 ΣΣΣ(ν0,κ0) respectively. These matrices

are constructed from a Matérn covariance function in (6.6) based on known common knots
locations in G . Given these specifications, Y jt is a non-stationary and non-Gaussian spatial
process, and thus, the model is capable of capturing the processes that naturally generate the
TMS datasets.
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Based on the above specification and from (6.6), σ2
j =

1
λ jτθ

for a fixed common τθ > 0 for
all j. Similar prior distributions to those discussed in Section 6.1.2 for (βββ j,φφφ j,α j,τβ j ,τφ j ,κ j,ν j)
were utilized for each j, with unique hyperparameters. A lognormal prior distribution was
assigned to κ0 ∼ lognormal(µκ0,σ

2
κ0
) and ν0 ∼ lognormal(µν0,σ

2
ν0
). τ jt ∼ Gamma(aτ jt ,bτ jt )

and λ j ∼ Gamma(aλ j ,bλ j). A possible prior distribution for ε j is Beta(ε j;aε ,bε). Hence, ΛΛΛ =

({τ jt},{α j},{τβ j},{τφ j}, {κ j}, {ν j},{λ j},{ε j},κ0,ν0)
T .

The theoretical derivation of the predictive distribution of the proposed model for new
replicates of the response on new spatial locations is shown in Appendix 7.5.1. A Metropolis
Hasting algorithm within Gibbs sampling of the Markov Chain Monte Carlo method (MCMC)
was developed to draw samples from the joint posterior distribution. In the estimation chain,
there is a positive probability that θθθ jt would take a value in ∆∆∆

−t
j or ∆∆∆

−t
j0 and thus, after several

iterations, there would be only a fixed distinct value referred to as clusters values of data j, and the
probability of sampling a new value becomes relatively smaller, and the cluster values are rarely
updated. This occurs when the chain is balanced on a small set of clusters. To circumvent this
problem, it is important to remix the cluster values from their posterior distributions. The posterior
distribution is obtained by conditioning on the cluster indicators, and using the likelihood of only
the response in the cluster and the base prior distribution. A data augmentation technique was
adopted for a smooth update of α j and α0 from their posterior distributions. The details of the
MCMC algorithm and the link to the R code are shown in Appendix 7.5.2.

A possible computational concern is the increase in model complexity with the number
of spatial knots. A way to ensure control over the complexity is to introduce sparseness by con-
sidering only data locations in the nearest neighborhood of the knot positions in constructing the
projection matrix A jt (GOTWAY; YOUNG, 2002). In addition, the Nearest Neighbor Gaussian
Process (NNGP) (FINLEY et al., 2019) is adopted for the base distribution using the sparse
representation of the covariance matrices as leverage.

6.3 Simulation study

Two simulation experiments were conducted. The first was aimed to extensively assess
the adequacy of the proposed model with the independent Dirichlet process prior as a reference,
asses the predictive performance, and the impact of spatial knot positions. The second experiment
aimed to compare the proposed model performance with independent and exchangeable Dirichlet
process priors and assess the sensitivity of the hyperparameters.

6.3.1 Experiment 1

Two non-stationary related spatial data were simulated. Let G1 and G2 represent two
spatial regions each within the subregion of G . For example, Figure 35a shows the spatial window
([0,1]×[0,1]) adopted and the selected data locations used for training and testing. Let’s denote
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Figure 35 – (a) Simulated data locations and spatial knots adopted to construct the (b) sparse projection
matrix A j and (c) the NNGP precision matrix Σ̃ΣΣ

−1
j using 10 nearest neighbors.

simulated spatial effects at I different locations for two patients as I × 1 vectors ϑϑϑ 1t and ϑϑϑ 2t

and their shared spatial effect as ϑϑϑ 0t in replication t. Here, the ith entry of ϑϑϑ jt can be likened to
h(si,θθθ t). The spatial effects were drawn from a zero-mean non-stationary Gaussian process with
a covariance function

σ
2(si)σ

2(si′)exp
(
−ρ jd(si ,si′)

)
,ρ j > 0, i, i′ = 1,2, ...,L, j = 0,1,2. (6.11)

First, set σ2?(si) = λ−1((xc(si)− midxc(si))
2 + (yc(si)− midyc(si))

2), where xc(si) is the
x−coordinate of location si and yc(si) is the y−coordinate. midxc = (max xc(si)+min xc(si))/2
and midyc = (max yc(si)+min yc(si))/2. This implies that the σ2?(si) approaches zero towards
the center of the spatial window and increases away from the center. To avoid degenerating
spatial term (σ2(si) = 0) in Equation 6.11, set σ2(si) = max(σ2?(si),1).

We assumed λ−1 = 2.52, τ1t = 0.5,τ2t = 0.03∀t, ρ1 = 2.5,ρ2 = 3, and ρ0 = 5. In
addition, linear effects were included to introduce TMS technical noise. That is βββ 1 = (2,−2,1)
and βββ 2 = (3.5,1,−2.5,0.1), and the associated covariates were drawn from a standard normal
distribution. The responses were drawn as follows: draw w jt ∼ Bernoulli(e j), and set Y jt =

XT
jtβββ j +ϑϑϑ jt + εεε jt if w jt = 0 and Y jt = XT

jtβββ j +ϑϑϑ 0t + εεε jt if w jt = 1, where εεε jt ∼ N(0,τ jtI),
j = 1,2 and t = 1,2, ...20. 150 spatial sites (i = 1,2, ...150) were selected, out of which 100 were
used for training and the rest was used for testing.

The hyperparameters assumed are as follow: τθ = 1, τβ = 10−3, and for all j, t,

τ jt λ j κ j ν j τφ j ε α j

Gamma Gamma Log-Normal log-Normal Gamma Beta Gamma
aτ jt = 2 aλ j = 2 µκ j = 0 µν j = 0 aφ = 2 aε = 5 aα = 2

bτ jt = 1 bλ j = 1 σ2
κ j
= 2.5 σ2

ν j
= 2 bφ = 1 bε = 5 bα = 1 .

L = 70 equidistant spatial knots were selected, which are represented in Figure 35 as
dots, and used to construct ΣΣΣ whose inverse is a sparse matrix shown in Figure 35c for shared and
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specific spatial effects. The element ΣΣΣ(l,l′) was obtained using the Matérn covariance function
with l, l′ being the locations of the chosen spatial knots. ψ j = 4.0 and the nearest 20 field
locations around a given data point were used in the spatial kernel to obtain A j shown in Figure
35b, ∀ j. In the simulation e j = e∀ j and e ∈ {0.0,0.2,0.4,0.6,0.8}. The proposed model was
compared with the model based on independent Dirichlet process priors for each data j. The
independent Dirichlet process served as a reference for comparison.

Based on the hyperparameter choices and knot positions, Figure 36a shows the posterior
mean and the 95% credible interval of probability ε against the mixing probability used in
the simulation. Figure 36b shows the root mean square error (RMSE) of the models for the
spatial effect across all spatial locations data were simulated. Figure 36c is the RMSE of the
out-of-sample prediction of the simulated response. Each scenario was repeated 100 times and
the fainted lines in the figure are the RMSE 95% confidence intervals for the reference model
derived from the repeated simulation. The result shows that the proposed model outperformed the
reference model, and their performance decreases with an increase in the mixing, though more
severe for the reference model. A similar conclusion was obtained for the posterior predictive of
the response.

To have a deeper view of the proposed model performance, a simulation for fixed e = 0.4
was conducted. Figure 37 shows the posterior predictive density for the specific and shared spatial
effects. The histograms are the true distribution of these effects across the simulated locations.
For the shared spatial effect (right panel), the predictive density represented by black curves
are the shared predictive densities estimated from data 1 and the blue curves are those from
data 2. The posterior mean and 95% credible intervals of the spatial range and smoothness for
spatial effects 1, 2 and shared are κ1 = 3.248(0.042, 11.731), ν1 = 0.648(0.029, 2.081), κ2 =

1.188(0.079, 3.154), ν2 =(0.106, 5.244), and κ0 = 9.528(4.355, 14.643), ν0 = 0.689(0.031,3.084),
given rise to the auto-correlation curves in Figure 38a and covariance in Figure 38b. The correla-
tion function for the shared spatial effect exhibits a short range, which agrees with ρ0 since it was
relatively larger than the specific effects. On the contrary, auto-correlation of spatial effect 2 had
the longest range despite ρ2 being relatively moderate. However, the estimated covariance closely
represents the actual covariance pattern in the simulated data. Figure 39 shows the in-sample
and out-of-sample posterior predictions of the responses. The histograms are the true simulated
values and the density overlaid are the predictive densities. To aid visualization, five spatial
sites from training and testing sites were randomly chosen. The grey histograms correspond
to data 1, and the white correspond to data 2. The black posterior densities correspond to the
in-sample predictive densities, and the red corresponds to the out-of-sample predictive densities.
The result shows that the model performed well in describing the true data distribution. In the
same simulation scenario, but repeated 100 times, the average posterior mean, standard deviation,
mode, bias, and coverage probability (CP) of the corresponding linear effects and precision
parameters are shown in Table 8.
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Figure 39 – Histogram of simulated response and posterior predictive densities: the histograms represent
the true distribution of the response and the overlaid densities represent the corresponding
posterior predictive density. The grey and white histograms correspond to data 1 and data
2 respectively, and the black and red densities correspond to in-sample and out-of-sample
predictive densities respectively.

The impact of spatial knot position on the model’s predictive performance was examined
by considering multiple simulation scenarios for different choices of the number of spatial knots
and positions. The types of knot positions covered were (1) regular spatial knots and (2) random
spatial knot positions. In (1), the spatial knots are placed at equidistant points from one another;
whereas, in (2) they are randomly placed over the spatial region. The overall impact on the
posterior prediction performance in simulated data 1 and 2 was measured through the RMSE.
As expected, the result shows that the RMSE decreases as the number of chosen spatial knot
locations increases. This confirms that the model performance increase with increases in the
number of spatial knots; however, the model complexity increases. Thus, there is a trade-off
between prediction performance and complexity. In the simulation scenarios, the model based on
randomly selected spatial knot locations consistently outperformed the model based on regularly
selected spatial knots.
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Table 8 – Average posterior mean, standard deviation, mode, bias, and coverage probability (CP) over
hundred repeated simulations.

Parameters True value Mean (sd) Mode Bias CP
β11 2.0 2.008 (0.044) 2.010 0.008 0.97
β12 -2.0 -2.006 (0.044) -1.995 -0.006 0.96
β13 1.0 0.998 (0.044) 1.007 -0.002 0.93
β21 3.5 3.500 (0.086) 3.500 -0.000 0.92
β22 1.0 1.006 (0.084) 1.014 0.006 0.91
β23 -2.5 -2.500 (0.082) -2.488 0.000 0.93
β24 0.1 0.103 (0.084) 0.106 0.003 0.90
ε 0.4 0.457 (0.071) 0.456 0.157 0.90
τ1 0.5 0.705 (0.198) 0.704 0.205 0.96
τ2 0.03 0.042 (0.009) 0.042 -0.158 0.95

6.3.2 Experiment 2

Three related data were simulated in the following scheme. Let G1,G2, and G3 represent
the three spatial regions each within the subregion of G , and ϑϑϑ 0,ϑϑϑ 1,ϑϑϑ 2, ϑϑϑ 3 be the spatial
effect obtained from a stationary Gaussian random field centered at zero with Matérn covariance
function with partial sill σ2

0 = 0.1 and range κ0 = 1.0 for shared effect (ϑϑϑ 0), partial sill σ2
1 = 0.5

and range κ1 = 5.0 for specific effect 1 (ϑϑϑ 1), partial sill σ2
2 = 0.2 and range κ2 = 0.25 for spatial

effect 2 (ϑϑϑ 2), and partial sill σ2
3 = 0.25 and range κ3 = 0.1 for spatial effect 3 (ϑϑϑ 3), with a con-

stant smoothness ν = 0.5. The arbitrarily chosen linear effects were βββ 1 = (2.0,1.0,−1.4), βββ 2 =

(0.2,−2.5,−3.0,4.0),βββ 3 = (−2.0,0.5). The corresponding design matrices for the linear effect
were drawn from the standard normal distribution. A random walk model was adopted for the
nonlinear effect. That is, z jr ∼ N(z j(r−1),σ

2
φ
),z j1 ∼ N(0,σ2

φ
), j = 1,2,3, where σφ = 0.5.

In this example, w jt ∼Bernouli(e j), e1 = 0.2,e2 = 0.4, and e3 = 0.5, τ jt ∼ gamma(0.5,2),∀ j, t.
If w jt = 0, Y jt =XT

j βββ j+z j+ϑϑϑ j+e jt , otherwise Y jt =XT
j βββ j+z j+ϑϑϑ 0+e jt . e jt ∼N(0,τ−1

jt I), t =
1,2, ...,50. The number of data locations was fixed at I j = 100 for all j. Similar hyperparameters
in experiment 1 were used, except that aε j = 0.3 and bε j = 0.3.

To relatively evaluate the proposed model’s adequacy, the performances of the "no
sharing" and "full sharing" reference models were obtained alongside the proposed model. The
"no sharing" is the model which assigns an independent Dirichlet process prior to the spatial fields
corresponding to each j data, and the "full sharing" assigns a single (exchangeable) Dirichlet
process prior to the spatial effect corresponding to all j data.

Table 9 shows the posterior mean, 95% credible interval, and the bias of the linear effect
estimates. As expected in Table 9, the linear effect estimates are only slightly different from one
another. This is because these effects do not directly involve in the sharing component of the
model. Thus, the sharing associated with the spatial effect has little impact on the linear effects
estimates. The nonlinear effect estimate from the proposed model is shown in Figure 40. Similar
to the linear effect, the estimate of the nonlinear effect from the "no sharing" and "full sharing"
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Table 9 – Posterior estimates of the fixed effects.

Parameter Proposed No sharing (Independent) Full sharing (Exchangeable)
True mean 2.5% 97.5% bias mean 2.5% 97.5% bias mean 2.5% 97.5% bias

β11 2.00 1.976 1.953 2.001 -0.024 2.010 1.977 2.046 0.010 2.008 1.976 2.038 0.008
β12 1.00 0.923 0.900 1.095 -0.077 0.902 0.879 0.926 -0.098 0.909 0.885 0.941 -0.091
β13 -1.40 -1.406 -1.427 -1.384 -0.006 -1.396 -1.430 -1.365 0.004 -1.403 -1.438 -1.377 -0.003
β21 0.20 0.209 0.1983 0.220 0.009 0.168 0.148 0.187 -0.032 0.160 0.139 0.174 -0.040
β22 -2.50 -2.406 -2.521 -2.393 0.092 -2.514 -2.531 -2.500 -0.014 -2.522 -2.537 -2.506 -0.022
β23 -3.00 -3.001 -3.011 -2.990 -0.001 -2.937 -2.950 -2.923 0.063 -2.950 -2.965 -2.937 0.049
β24 4.00 3.998 3.986 4.008 -0.002 4.051 4.032 4.067 0.051 4.0234 4.008 4.036 0.023
β31 -2.00 -1.929 -1.943 -2.091 0.071 -2.009 -2.028 -1.995 -0.009 -1.997 -2.012 -1.983 0.003
β32 0.500 0.520 0.5062 0.535 0.020 0.476 0.459 0.491 -0.024 0.483 0.467 0.497 -0.017
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Figure 40 – Posterior estimates of the nonlinear effects from the proposed model for (a) j = 1, (b) j = 2,
and (c) j = 3. The black lines are the true effects and the red lines are the estimated effects.

also had similar patterns.

Figure 41 shows the spatial effect estimates for the three competing models. Panel
(a) is the true spatial effect. The estimate of the spatial effect through the proposed model is
shown on panels (b), while the estimate from the "no sharing" and "full sharing" models are
respectively shown on panels (c) and (d). The proposed model could capture the pattern in
the true spatial effect. It shows more accurate estimates of the regions with very high or low
effects. The posterior mean and 95% credible interval for ε j, j = 1,2,3 are 0.167(0.000,0.550),
0.320(0.024,0.730), and 0.524(0.426,0.827) respectively, and α js were 7.675(4.510,11.554)
for the shared component, 1.005(0.035,3.642), 0.966(0.029,3.790), and 4.910(2.449,8.764)
for j = 1,2,3 respectively. The density plots of the 50 replicates of the predicted responses were
overlaid on the simulated responses and are shown in Figure 42. The estimated density showed
a considerably good fit to the true density. The performances of the model for other mixing
probabilities e ∈ {0.6,0.9} were again investigated using 30 replicates (t = 1,2, ...,30) at each
scenario. The result shows a slight decline in the recovery accuracy of the spatial effects as e

increases, which conforms with experiment 1. That is, the spatial effects appear more similar
to the estimates obtained with "full sharing" (ε = 1) as e increases. However, the fixed and the
nonlinear effects were unaffected.

The sensitivity of the hyperparameters involved in the prior distributions was investigated.
The variance assigned to the prior distribution for the linear effects varied from σ2

β
= 10,100,

and 10000 for all the related spatial data, and the results showed no significant impact on the
estimates. Similarly, for the nonlinear effects and the hyperparameter of the likelihood (τ jt and
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Figure 41 – (a) The true simulated spatial effect. The corresponding projected spatial effect using the (b)
proposed, (c) no sharing, and (d) full sharing reference models. Rows 1, 2, and 3 correspond
to data 1, 2, and 3.
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Figure 42 – True response density (black) and the proposed model predictive density (grey) for (a) j = 1,
(b) j = 2, and (c) j = 3.
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τφ ), the shape and the rate parameter of the gamma prior distribution assigned were varied
in the set {2,10,20} and {1,10} respectively. While no significant impact on the result was
observed for τ jt , the combination of the shape and scale that lead to a higher prior mean of
τφ increases the smoothness of the nonlinear effect. One essential parameter of the spatial
effect is the ε . The hyperparameters of the beta distribution were varied such that the prior
variance is large. Specifically, aε j = ga ×Tj and bε j = gb ×Tj, ga,gb ∈ (0,1) were varied in
the set {1/300,1/30,1/3}. Choosing a relatively high proportion of the total replicate (Tj) for
the hyperparameters aε j and bε j pulls the prior distribution around 0.5 and whereas smaller
proportions pull the prior mean away for 0.5 with higher variance. It was observed in both
situations that the changes affect the posterior distribution of the parameter. It is recommended
that a careful prior distribution choice be considered for ga and gb to avoid bias. A possible
choice is the simplex and truncated normal distributions. Moreover, the concentration parameter
α was also sensitive to the prior hyperparameters. However, the estimated spatial effects were
not significantly affected. Based on these findings, the choice of hyperparameters should be
carefully considered and model performance must be evaluated using metrical criteria in a real
data application.

6.4 Data analysis

6.4.1 Data

The developed model was applied to analyze TMS data from three subjects (1R1, 2,3),
observed independently by the same TMS practitioner. Hence, j = 1,2,3. Here, the subjects’
datasets were tagged "Data 1", "Data 2", and "Data 3". The analysis aimed to unravel the spatial
pattern of the subjects’ response to TMS at the motor cortex. Such findings may help quantify
the cortical and spinal excitability over the motor cortex, which is essential for improving
patients’ treatment experience. 10 TMS pulses were delivered at each spatial location, and
therefore, t = 1,2, ...,10. The spatial covariate considered in this analysis is the Cartesian
coordinate. The peak-to- peak MEP (µ V ) at those locations serves as the target variable.
The linear covariate, replicate index, indicates what stimulation replicate gave rise to the
corresponding MEP response, and the nonlinear covariate, angular error, is the angular
positioning error of the TMS coil, measured in degree. The response variable is defined as y= log
(peak-to-peak MEP). The box plot of the response according to some selected rectangular grid
groupings (Associate Targets) is shown in Figure 43. It is evident that there exist variations in
the patient’s responses to TMS pulses across locations and participating subjects. The developed
method was adopted to allow spatial information sharing between the subjects while estimating
the subject-specific spatial pattern.

Three different structural functional forms were considered. In structural form 1, the
functional form µ jit = x jitβ j + g(z jit ,φφφ j)+ h(s ji,θθθ jt) was adopted, where x jit is 1∀ j, i, t and
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Figure 43 – Descriptive plot of the log peak-to-peak MEP according to rectangular grid cells for the
purpose of better visualization. The neighborhood with an empty box plot indicates that no
data was captured in that rectangular grid. The grid is labeled according to the coordinate of
the cell centroid.

the coefficient β j is a scalar. This model assumed that there is a common intercept over all the
spatial locations in G j and across replications, and it is relatively simple and parsimonious. Here
z jit represents the angular error modeled using cubic spline, and s ji is the spatial location i

(Cartesian coordinate) of the tth replication in the jth data. The structural form 2 follows
as µ jit = x jitβ jt +g(z jit ,φφφ j)+h(s ji,θθθ jt). Here x jit and β jt have similar dimensions as in form 1,
however, it is assumed that the intercept varies across replication, and each x jit is constructed
from the replicate index indicator. Lastly, the structural form 3, µ jit = x jitβ jit +g(z jit ,φφφ j)+

h(s ji,θθθ jt). Here x jit and β jit have a similar dimension as form 1, however, the model assumes
that the intercept varies across location and replication. Again, x jit is constructed from the
replication index and the data coordinate (Cartesian coordinate). Other components
were retained for all the models. Each β was assigned a Gaussian prior distribution. τ

−1
β

= 103,
aφ j = 2,bφ j = 1, aλ j = 50, and bλ j = 10, aτ jt = 5, bτ jt = 5,∀ j, t, aα = 2, and bα = 1.

Each dataset was allowed to determine its sharing rate. That is, aε j = bε j = (1/10)*Tj

and Tj = 10,∀ j. In the data, I1 = 171, I2 = 225, I3 = 201. The covariance matrices of the base
prior distribution of the DP process were constructed using randomly chosen spatial knots.

The Conditional Predictive Ordinate (CPO) was used to investigate the performance of
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the models. The CPO for observation ji was approximated as

CPO ji ≈

[
1
M

M

∑
k=1

1
f (y ji | D− ji,X(k))

]−1

, (6.12)

where X(k),k = 1,2, ...,M represents all the model parameters drawn from their respective
marginal posterior distributions; M is the total number of draws; D− ji is the data excluding
jith observation and f () is the data model. Higher values of CPO indicate a better fit. For a
chosen MEP, the uncertainty of the joint posterior distribution about y was computed. That is the
exceedance probability given a threshold y was computed as

P(Y j > y1 | D) = E(I(Y j>y1) | D) =
∫

I(Y j>y1)P(Y j | D)dY j, (6.13)

where 1 is a column vector of ones and I(Y j>y1) is an indicator random vector. Equation 6.13 was
approximated using Monte Carlo samples from the posterior predictive distribution P(Y j | D).
An MEP of 400µV was chosen, which implies that y = log(400). The chosen threshold was
informed based on the resting motor thresholds of the participants.

Two MCMC chains were used to check for the convergence of all the parameters through
the behavior of the joint log-likelihood. The Gelman and Rubin (1992) diagnostic test was used
to verify the convergence. The trace plots are shown in the Appendix (Figure 51).

6.4.2 Result

Figure 44 shows the CPO for each observation. The higher the score, the better the
model. From the figure, the proposed model based on the structural form 1 and 3 performed
nearly equally, however, they underperformed relatively to form 2. To numerically quantify the
performance of the model and in comparison with exchangeable priors, Table 10 shows the
Watanabe-Akaike information criterion (WAIC) and the mlCPO. The mlCPO was defined as the
negative mean of log CPO, indicating that the lower the mlCPO and WAIC, the better the model.
Based on these measures, the proposed model outperformed the exchangeable prior, indicating
that there is a significant mixture of latent processes in the acquired data. Figure 45 shows the
quantile residual analysis. From the Figure, the model fits the data adequately, though better for
Data1 and Data2.
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Figure 44 – Model comparison using CPO.
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Figure 45 – Quantile residual from the data analysis.

Table 10 – Adequacy measure.

WAIC mlCPO
Structural form 1 10194.127 53.919

Proposed Structural form 2 -373.5657 1.362
Structural form 3 3040.114 9.973

Exchangeable Structural form 2 1960.287 3.324

The posterior mean and 95% credible intervals of the sharing probability for each Data
are ε1 = 0.918 [0.715,0.980], ε2 = 0.819 [0.723,0.970] and ε3 = 0.750 [0.722,0.890], and the
scale parameters of the DP prior are α1 = 3.887 [2.373,5.793], α2 = 3.860 [2.302,5.782], α3 =

3.87 [2.353,5.751], α4 = 3.583 [2.268,5.212]. The posterior mean and 95% credible interval for
τ1,τ2 and τ3 are 0.636 [0.083,1.718], 0.662 [0.098,1.773], and 0.335 [0.053,1.003] respectively.
Figure 46a & b show the posterior mean and the 95% credible interval for the linear and nonlinear
effects. Figure 46a shows that the replication effects for Data1 and Data2 are significant since
the credible intervals do not contain zero. However, this is not true for Data3. In Data1 and
Data2, the replications effect decreases from replication 1 to 2 but increases from replication 2
to 4. While the fixed effect for Data2 reaches the minimum at replication 6 and then gradually
increases afterward until replication 10, the replication effect for Data1 has a sinusoidal pattern
until it reaches the minimum at replication 7 and thereafter gradually increases until replication
10. The replication effects for Data3 had a sinusoidal pattern and imitates the patterns in Data1
and 2, and more closely from replicate 6 to 10. Figure 46b shows the nonlinear pattern of angular
positioning error. The result shows that angular positioning does not significantly affects the
MEP of DATA 2 and 3 since the pattern behaved sinusoidally around the null effect; however, it
significantly alters the MEP of DATA 1, which leads to higher positive effects as angular error
increases. Moreover, findings also showed that stimulation depth is not significant (result not
shown).

Figure 47 shows the mean of the posterior predictive distribution of the response over
the whole spatial domain for each data. The locations with high values signify the candidate
locations where optimal cortical and spinal excitability can be obtained for the corresponding
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Figure 46 – Posterior mean and 95% credible interval for the (a) replicate effect, and (b) TMS angular
positioning error.

subjects. The locations with low values indicate the non-candidate locations and should not be
considered optimal in a TMS motor mapping for these subjects. The result shows that the primary
motor cortex, M1, is a candidate location that could be considered for optimal excitability of
the right first dorsal interosseous muscle. For Data1, it is located at (52.102,−14.105), and
(53.224,−8.217) and (−47.479,−16.880) for Data2 and 3 respectively. The locations with
optimal excitability are concentrated in Data2 and 3, whereas they are dispersed in Data1.

Figure 48 shows the uncertainty about an MEP exceeding 400µV . The higher the
exceedance probability, the higher the possibility a subject’s motor evoked potential exceeds
400µV . The uncertainty map produced helps to compare the stimulation effectiveness and
response rate to TMS pulses among the subjects. The result revealed that the subject associated
with Data 2 has the highest exceedance probability compared with other subjects. Moreover, the
subject of Data1, which had the lowest probability, has its peak probability at locations away
from M1, unlike other subjects. Figure 49 shows the shared spatial effect with reference to the
primary motor cortex. The primary motor cortex is located at the center (0,0) of the plot, which
coincides with all the subjects. The x and y axes are the distance away from this location. The
result shows that at the primary motor cortex, there is a relatively lesser shared effect compared
with its surroundings, especially the first and fourth quadrants. This indicates that, at this location,
responses to TMS stimulation tend to be more particular to each subject and less likely to respond
at a similar frequency across the subjects.

6.4.3 Discussion of result

The results obtained unveil the spatial patterns of cortical and spinal excitability among
the three subjects. The finding supports the theory of the delivery of repetitive TMS (rTMS)
pulses for brain treatment. This is evident in the replication effects, where the first replicate did
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Figure 47 – The posterior mean of the predictive distribution of the response.
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Figure 48 – Exceedance probability over MEP threshold of 400µV .

not produce the highest average excitability response and revealed an ascension tendency at the
end of replication 10. This may be associated with why rTMS causes a long-lasting after-effect
and is thought to induce plasticity (KLOMJAI; KATZ; LACKMY-VALLÉE, 2015). The non-
significance of the effect of stimulation depth is expected as the TMS pulses are electromagnetic
and pass through several layers of the brain unimpeded, which has made TMS a popular non-
invasive neurophysiological technique (NAJIB et al., 2011). The finding shows that the location
of the primary motor cortex of the hand, M1, was consistently obtained as a candidate location
for achieving optimal functional excitability, however, vary significantly with relatively low
shared patterns. This implies that M1 could be used as a location to attain significantly high
functionality, especially in cases where cost and exploration time are to be minimized. The
visibility of the M1 location to practitioners makes this efficiency gain even more realistic. The
shared spatial effect pattern reveals the existence of consistent patterns around the M1. That is,
locations around the primary motor cortex tend to better share information and behave more
similarly across subjects. The spatial pattern produced in this work reveals new insight that
could be used by TMS practitioners to informatively guide brain stimulation for a better patient
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treatment experience.

6.5 Conclusion
This study presents a novel technique for combining and modeling geostatistical spatial

datasets using a Dirichlet process within a single Bayesian framework. This approach offers
several advantages over traditional models by relaxing modeling assumptions and allowing
for more flexibility. To account for model covariates’ impact, a structural additive predictor
with linear, nonlinear, and spatial terms was implemented. The developed model probabilisti-
cally switches data replicates between shared and specific components of the model, allowing
information sharing among sub-spatial models. A Markov chain Monte Carlo algorithm was
developed for model estimation. The model was applied to quantify the spatial pattern of patients’
brain activation in a motor mapping of the right first dorsal interosseous muscle. The results
revealed that the primary motor cortex consistently showed optimal neuron activation, making it
a promising candidate area for motor cortex stimulation. These findings help practitioners tailor
their approach accordingly to improve the efficacy of treatment, while also reducing the risk
of adverse effects. The generated plots provided valuable insights into the response capacity of
different areas of the motor cortex, which can be used to improve patients’ medical experiences.
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CHAPTER

7
CONCLUSION

7.1 Remarks

This project developed Bayesian spatial statistical models for analyzing Transcranial
magnetic stimulation (TMS) geostatistical datasets, to unveil new insight into responses of
the right first dorsal interosseous muscle to TMS stimulation pulses for the improvement of
patients’ treatment experiences. This is crucial given that a TMS therapy session heavily relies on
accurately determining the true spatial response pattern of the patient undergoing treatment. This
factor directly impacts the effectiveness of the therapy. Therefore, it is imperative to prioritize
the precise identification of the patient’s spatial response pattern to ensure optimal outcomes.

The first contribution of this project was a systematic review and meta-analysis of the
existing Bayesian spatial models that could be considered for analyzing TMS datasets. Several
state-of-the-art Bayesian spatial models and methodological gaps were identified. Based on
some selected existing models in the literature, the second contribution of this project was
the development of a user interface for performing Bayesian spatial modeling for analyzing
TMS datasets with state-of-the-art models. The interface was documented as an R package
and was used to analyze the TMS data of this project. Findings from the analysis identified,
with uncertainties, the hotspot regions of patients’ motor cortexes that are responsible for the
movement of the right first dorsal interosseous muscle.

The third contribution proposed novel spatial statistical models for integrating geosta-
tistical datasets in the form of prior elicitation in a Bayesian analysis. It creates a medium
through which inference can be improved by elicitating coherent information from historical
point-referenced data. The proposed models were validated using simulation studies. The study
shows that naively integrating geostatistical datasets without ensuring the consistency of the
data is detrimental to the desired inferences; however, the proposed model showed evidence
of ensuring appropriate integration necessary for obtaining better results. The models were
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used to analyze the TMS dataset for this project and the results showed significantly superior
performance over comparable methods in the literature. The models unveiled new insights into
the spatial patterns and replication significance effects of patient responses to TMS pulses.

The final contribution of this project is the proposition of a nonparametric spatial model
with a nonstationary spatial process for the joint analysis of geostatistical datasets. The method
used a Dependent Dirichlet process with some latent variables to share information across sub-
spatial models. The proposed model is capable of harnessing and sharing coherent information
across sub-spatial models, necessary to improve inference and simultaneously analyze multiple
datasets. Two simulation studies were used to validate the model performance in comparison
with a single analysis of individual data. The model showed superior performance over equiva-
lent nonparametric models. The proposed model was used to simultaneously analyze multiple
subjects’ TMS data by sharing spatial information about the response of the motor cortex across
sub-spatial models. The result unveils new insights that could be highly relevant for improving
the stimulation skill of TMS practitioners and thereby improving patients’ treatment experiences.

Though the statistical models developed in this work were motivated by the TMS detests,
they can be adapted for any similar geostatistical or point-referenced spatial dataset to unveil
spatial patterns and make predictions on unsampled locations. It is important to note that while
the TMS dataset does not suffer from spatial confounding issues, Appendix 7.6 provides valuable
steps to overcome spatial confounding problems in similar geostatistical datasets.

7.2 Limitations and future consideration

The first limitation associated with this project is the few number of participants’ data
available. This is a result of the cost related to TMS therapy. Hence, findings on the project may
require further validation with additional numbers of participants. Recall that the peak-to-peak
measure of signal variation was considered in this work, other stable and robust measures of
variations such as those proposed in Rousseeuw and Croux (1993) can be considered. Moreover,
the raw signal data can be equally considered, so long it is interpretable.

Another limitation of the work is the computational cost associated with analyzing
the data using the proposed nonparametric model since it was required to loop through each
observation during estimation. For large datasets, this limitation could be a significant drawback.
Hence future work can develop fast algorithms to loop through the datasets in a systematic
and block-type manner. In addition, future work can consider the Variational Bayes estimation
algorithms for the proposed models for analyzing a high volume of data.

A future version of the developed TMSBrainApp could implement more response models
and more robust signal variation estimators which could improve on the generality of the interface.
In addition, the future version can consider the implementation of shape files for analyzing and
plotting disease patterns in epidemiological datasets. Lastly, Non-Gaussian random field models
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could be implemented.

Future work can consider a mixture of hierarchical Dirichlet processes, which is able to
detect shared hierarchical clusters across multiple data sources with multiple sources of variation.
For example, this could be adopted in Single-cell RNA sequencing data to reveal shared cell
interactions.
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7.3 Appendix of Chapter 3

Table 11 – List of Questions for Conceptual Classification Scheme

QUESTION 1 Is it only an application?
1.1 Yes
1.2 Both
1.3 No (only method)

QUESTION 2 What is the field of application?
2.1 Medical science
2.2 Economics and Humanity
2.3 Physical Science and Engineering
2.4 Agricultural and Environmental Science
2.5 Sport

QUESTION 3 What Spatial domain was employed?
3.1 Area or lattice
3.2 Geostatistical data
3.3 Spatial point patterns
3.4 Area and Geostatistical data

QUESTION 4 What type of spatial priors are used?
4.1 Conditional Autoregressive (CAR)
4.2 Besag York Mollié (BYM)
4.3 Leroux CAR
4.4 Gaussian Markov Random Field (Other specifications)
4.5 Covariance Function (Not GMRF)
4.6 Other (new methodology/proposed)

QUESTION 5 What type of response variable is used?
5.1 Discrete (Countable)
5.2 Continuous
5.3 Combined (Mixed)
5.4 Ordinal

QUESTION 6 What is the statistical model used?
6.1 Generalize Linear (mixed) model (or Hierarchical models)
6.2 Survival and Longitudinal models
6.3 Non-parametric models (Machine Learning models)
6.4 Spatial Econometrics
6.5 Proposed
6.6 Not stated
6.7 Other

QUESTION 7 How are model Prior specified?
7.1 Vague prior (Non-informative)
7.2 Used verbatim from the literature
7.3 Elicitated from experts or from the problem
7.4 No explicit use or reference/not applicable

QUESTION 8 What is the estimation method applied?
8.1 Markov Chain Monte Carlo (MCMC)
8.2 Integrated Nested Laplace Approximation (INLA)
8.3 Expectation-Maximization (EM)
8.4 Maximum (Penalized quasi) Likelihood Method
8.5 Not stated
8.6 Other

QUESTION 9 Is the model validated through simulation?
9.1 Yes
9.2 No

QUESTION 10 Is the application validated through data-driven procedures?
10.1 Cross-validation and data splitting (K-fold / Holdout)
10.2 Leave-One-Out Cross-Validation (LOOCV)
10.3 Posterior predictive check
10.4 Other
10.5 None or not applicable
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7.4.1 Fill-reducing permutation matrix
Let P be a fill-reducing permutation matrix such that the Cholesky decomposition L of a sparse matrix ΩΩΩ

has the least number of non-zero elements and LLT = PΩΩΩPT and the corresponding inverse is L−TL−1 = PΩΩΩ
−1PT .

Since L has fewer non-zero elements, the computation cost of ΩΩΩ
−1 is cheaper. In general, the modification

is compensated for in a quadratic form. Suppose r is a conforming vector to ΩΩΩ, the quadratic form rT ΩΩΩr =

(Pr)T LLT Pr is computationally cheaper to evaluate and the det(ΩΩΩ) = (det(L))2. This technique was adopted in
the estimation algorithm, presented in the next section.

7.4.2 Metropolis-Hasting within Gibbs Algorithm

7.4.2.1 Under joint spatial power prior

The posterior distribution derived from the model based on the spatial power prior distribution allows
inference to be made on the current experiment while borrowing historical knowledge through the parameter ω0.
The hyper-parameters involved in the model are aτ ,bτ ,σ

2
β
,σ2

ψ ,σ
2
θ
,τx,µφ ,σ

2
φ
,µν , and σ2

ν . To make an inference, the
hyper-parameters are either fixed or elicited based on previous studies. If fixed, the hyper-parameters are chosen
such that the prior distribution entails the true parameter. At the start of the chain, the initial values of every random
parameter in the model are drawn from their respective prior distributions.

The main effect X is first updated using the posterior conditional distribution. That is X is then updated
from a multivariate normal distribution given as X | . ∼ N(µµµX ,ΣΣΣX ), where ΣΣΣX = τ−1(∑n

j=1 VT
j V j +D−1)−1

and µµµX = τΣΣΣX (∑n
j=1 VT

j (Y j −UT
j ϑϑϑ)+B). The matrix D−1 and ∑

n
j=1 VT

j V j are sparse matrices; however, they
do not guarantee the sparseness of ΣΣΣX . Since ΣΣΣX is a function of τ and ω0, the matrix is updated at every
step in the MCMC chain. To improve on the computational burden, we find a "one-time" optimal fill-reducing
permutation matrix PX of ΣΣΣX , and determine the Cholesky decomposition LX , such that LX LT

X = PX ΣΣΣX PT
X .

Draw q? = p+r+q independent uniform samples in the interval (0,1) to form a vector u. Compute uX = PT
X L−T

X u
and µµµX = τPT LX LT

X PX (∑n
j=1 VT

j (Y j −UT
j ϑϑϑ)+B) and set X = µµµX +uX . In this setup, the fill-reducing

permutation matrix is computed once throughout the MCMC chain.

Similarly, ϑϑϑ is updated from the posterior conditional distribution. Assuming a multivariate normal
distribution prior for ϑϑϑ ∼ π(0,τ−1R), the conditional posterior distribution is given as ϑϑϑ | .∼ N(µµµϑ ,ΣΣΣϑ ), where
ΣΣΣϑ = τ−1(R−1 +∑

n
j=1 U jUT

j )
−1 and µµµϑ = τΣΣΣϑ ∑

n
j=1 U j(Y j −V jX ). Next, we update the precision parameter

of the current data from its posterior conditional distribution. The conditional posterior distribution is given as
τ | . ∼ Gamma(eτ , fτ), where eτ = (mn+m0n0ω0+q?+p0+2aτ )

2 and fτ = 1
2

(
∑

n
j=1(Y j −UT

j ϑϑϑ −V jX )T (Y j −UT
j ϑϑϑ −

V jX )+(X −DB)T D−1(X −DB)+ k+ϑϑϑ
T R−1ϑϑϑ

)
. A similar technique, using the permutation matrix, can be

adopted to evaluate DB. Since D−1 is a sparse matrix, it is possible to obtain a fill-reducing permutation matrix PD.
Thus, DB can be evaluated as PT

DLDLT
DPDB, where LD is a Cholesky decomposition of PDDPT

D.

The power parameter ω0 is then updated from its posterior conditional distribution. Unlike the parameters
previously updated, there is no close form for the posterior conditional distribution. Thus, we update ω0 using the
Metropolis-Hasting algorithm. The posterior conditional distribution follows as

π(ω0 | .) ∝
(2k)

v
2 τ(m0n0ω0)/2

Γ( v
2 ) | D |1/2 exp

{
− 1

2

(
τ(X −DB)T D−1(X −DB)+ τk

)}
π(ω0),

where π(ω0) is the prior distribution. Notice that π(ω0 | .) is indirectly linked to the current data through τ and
X , by explaining how much the historical data explains these parameters. The computation of the determinant of
D is less expensive using LD since the permutation matrix is only computed once. That is, det(D)1/2 = det(LD).
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An alternative method to compute the determinant is to compute the determinant of the sparse matrix D−1, and
set det(D)1/2 = det(D−1)−1/2. A truncated normal distribution in the interval of (0,1) was used for the proposal
distribution. The Metropolis-Hasting step follows. Suppose that the chain is at t, sample from the proposal
distribution ω

(t*)
0 ∼ qω0(.|ω

(t−1)
0 ) and compute the acceptance probability

αω0 = min

(
1,

π(ω
(t*)
0 |.)qω0(ω

(t−1)
0 |ω(t*)

0 )

π(ω
(t−1)
0 |.)qω0(ω

(t*)
0 |ω(t−1)

0 )

)
.

Draw U ∼Uni f orm(0,1) and set ω
(t)
0 = ω

(t*)
0 if U < αω0 and set ω

(t)
0 = ω

(t−1)
0 otherwise. A Beta distribution given

in Equation 5.13 was considered for π(ω0). Thus, the hyper-parameters were considered random and assigned prior
distributions. Update the hyperparameters as follows. Draw a proposal σ

(t*)
0b ∼ qσ0b(.|µ0b) =Uni f orm(0,µ(t−1)

0b (1−
µ

t−1
0b )) and compute the acceptance probability

ασ0b = min

(
1,

π(σ
(t*)
0 |.)qσ0b(σ

(t−1)
0b |µ0b)

π(σ
(t−1)
0 |.)qσ0b(σ

(t*)
0b |µ0b)

)
.

Draw U ∼Uni f orm(0,1) and set σ
(t)
0b = σ

(t*)
0b if U < ασ0b , otherwise set σ

(t)
0b = σ

(t−1)
0b , where

π(σ0b|.) ∝ ω

µ0b

(
µ0b(1−µ0b)

σ0b
−1
)
−1

0 (1−ω0)
µ0b

(
1−µ0b

µ0b

)(
µ0b(1−µ0b)

σ0b
−1
)
−1

I(σ0b < µ0b(1−µ0b)),

and I(.) denotes an indicator function.

To update µ0b, draw a proposal µ
(t*)
0b ∼ qµ0b(.|a0,b0) =Uni f orm(a0,b0), 0 < a0 < b0 < 1 until µ

(t*)
0b (1−

µ
(t*)
0b )> σ

(t)
ob and compute the acceptance probability

αµ0b = min

(
1,

π(µ
(t*)
0 |.)qµ0b(µ

(t−1)
0b |a0,b0)

π(µ
(t−1)
0 |.)qµ0b(µ

(t*)
0b |a0,b0)

)
.

Draw U ∼Uni f orm(0,1) and set µ
(t)
0b = µ

(t*)
0b if U < αµ0b , otherwise set µ

(t)
0b = µ

(t−1)
0b , where

π(µ0b|.) ∝ ω

µ0b

(
µ0b(1−µ0b)

σ0b
−1
)
−1

0 (1−ω0)
µ0b

(
1−µ0b

µ0b

)(
µ0b(1−µ0b)

σ0b
−1
)
−1

I(0 < µ0b < 1)I(µ0b(1−µ0b)> σ0b).

Similarly, the parameters (φ ,ν) are jointly updated. An independent log-normal distribution to the pair
(φ ,ν) was assigned. The conditional posterior distribution follows as

π(φ ,ν | .) ∝
1

| D |1/2 exp
{
− 1

2

(
X T

τΣΣΣ
−1(κκκ)X

)}
π(φ ,ν | µφ ,σ

2
φ ,µν ,σ

2
ν ).

Samples are drawn in a similar way using the Metropolis-Hasting algorithm with gamma proposal distributions.
The R code used for the computation is accessible through the link
https://github.com/eosafu/SpatialPriorElicitation/blob/main/simulationPowerBorrow.R.

7.4.2.2 Under joint spatial commensurate prior

The spatial commensurate prior distribution provides a different scheme to borrow knowledge from
historical point-referenced data. However, its inferential procedure follows a similar technique outlined in the
previous section. To make an inference, samples are drawn from the joint posterior distribution using conditional
distributions. The fixed hyper-parameters included in this model are aτ ,bτ ,σ

2
β
,µφ ,σ

2
φ
,µν ,σ

2
ν ,M ,υ . At the start of

the chain, the initial values of the parameters are drawn from their corresponding prior distributions.

First, we update the field X through its posterior conditional distribution given as X | .∼ N(µµµX ,ΣΣΣX ),
where ΣΣΣX = τ−1(∑n

j=1 VT
j V j +E−1)−1 and µµµX = (∑n

j=1 VT
j V j +E−1)−1(∑n

j=1 VT
j (Y j −UT

j ϑϑϑ)+F). In a similar

https://github.com/eosafu/SpatialPriorElicitation/blob/main/simulationPowerBorrow.R
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manner, we adopt the fill-reducing permutation matrix PX to ease the burden of factorizing ΣΣΣX several times.
To sample from the posterior conditional, find the Cholesky decomposition LX , such that LX LT

X = PX ΣΣΣX PT
X .

Draw q? independent uniform samples in the interval (0,1) to form a vector u. Compute uX = PT
X L−T

X u and
µµµX = τPT LX LT

X PX (∑n
j=1 VT

j (Y j −UT
j ϑϑϑ)+F) and set X = µµµX +uX .

Similarly, we update ϑϑϑ from the posterior conditional distribution given as ϑϑϑ | . ∼ N(µµµϑ ,ΣΣΣϑ ), where
ΣΣΣϑ = τ−1(R−1+∑

n
j=1 U jUT

j )
−1 and µµµϑ = τΣΣΣϑ ∑

n
j=1 U j(Y j−V jX ). Moreover, we update the precision parameter

τ from the posterior distribution given as τ | .∼ Gamma(eτ , fτ), where eτ =
(mn+m0n0+q?+p0+2aτ )

2 and

fτ =
1
2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T (Y j −UT

j ϑϑϑ −V jX )+
n0

∑
j=1

YT
0 jY0 j +X T E−1X −2X T F−

(
n0

∑
j=1

VT
o jY0 j)

T D(
n0

∑
j=1

VT
o jY0 j)+ϑϑϑ

T R−1
ϑϑϑ +2bτ .

(7.1)

Adopting the Metropolis-Hasting algorithm, next, we update the commensurate parameter λλλ . The posterior
conditional distribution follows as

π(λλλ | .) ∝
| D |1/2

| λλλ
−1 |1/2

exp
{
− τ

2

(
X T E−1X −2X T F− (

n0

∑
j=1

VT
0 jY0 j)

T D(
n0

∑
j=1

VT
0 jY0 j)

)}
π(λλλ ),

where π(λλλ ) is a Wishart distribution scale matrix M and degree of freedom υ , or a joint independent gamma
distribution for λβ , λψ , and λθ . A possible proposal distribution is the Wishart distribution with scale matrix I and
q? degree of freedom or gamma proposals, as the case may be. The MH steps follow as previously discussed.

Finally, update the pair of parameters (φ ,ν) from the joint conditional posterior distribution using the
Metropolis-Hasting algorithm. Independent log-gamma prior distributions were assigned to (φ ,ν). The joint
conditional posterior distribution follows as

π(φ ,ν | .) ∝
1

| ΣΣΣ(κκκ) |1/2 exp
{
− τ

2
X T

ΣΣΣ(κκκ)X
}

π(φ ,ν | µφ ,σ
2
φ ,µν ,σ

2
ν ).

In a similar way, we adopted the fill-reducing permutation matrix for the computation of det(ΣΣΣ(κκκ))1/2 and used
gamma distributions as proposals. The outlined steps are iterated over until convergence is reached. The R code
used in the estimation is accessible through the link
https://github.com/eosafu/SpatialPriorElicitation/blob/main/simulationCommenBorrow.R.

7.4.2.3 Under joint scalable spatial commensurate prior

The scalable spatial commensurate prior distribution allows historical knowledge to be borrowed with lesser
computation cost compared with the commensurate spatial prior distribution. The scalable prior allows the historical
precision parameter τ1 to be random. The hyper-parameters included in the model are aτ ,bτ ,aτ1 ,bτ1 ,M ,υ ,µφ ,σ

2
β
,σ2

φ
,µν ,σ

2
ν .

The initial values of the random parameters are drawn from their respective prior distributions. The following steps
outline the technique used for inference under the scalable prior distribution.

First, we update the historical field X
′

using the posterior conditional distribution given as X
′ | τ1,D0 ∼

N
(

µµµ
′
,ΣΣΣ

′
)

, where ΣΣΣ
′
= τ

−1
1 (∑

n0
j=1 VT

0 jV0 j +ΣΣΣ
−1
1 (κκκ1))

−1 and µµµ
′
= τ1ΣΣΣ

′
(∑

n0
j=1 VT

0 jY0 j). Depending on the computa-

tional demand of factorizing ΣΣΣ
′
, the fill-reducing permutation matrix could be adopted at this stage to lower the

computational burden. Moreover, we update the historical precision τ1 from the posterior conditional distribution
given as τ1 | .∼ Gamma(eτ1 , fτ1), where eτ1 =

m0n0+q?1+2aτ1
2 and fτ1 =

1
2

(
∑

n0
j=1(Y0 j −V0 jX

′
)T (Y0 j −V0 jX

′
)+

X
′T ΣΣΣ

−1
1 X

′
+2bτ1

)
.

https://github.com/eosafu/SpatialPriorElicitation/blob/main/simulationCommenBorrow.R
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We find the set N(s0) that contains the index of the members of the historical field X
′

that forms the
nearest neighbors to the field X , which is associated with the current data. Denote the subset of the historical field
forming the nearest neighbor by X

′
[N(s0)] and the remaining as X

′
1 . Given X

′
1 , evaluate matrix A and B given

in Section 5.3.3. Next, we update the current field using the conditional posterior distribution given as X | . ∼
N(µµµX ,ΣΣΣX ), where ΣΣΣX = (M−1 +τΣΣΣ(κκκ)−1 +∑

n
j=1 VT

j τIV j)
−1, and µµµX = ΣΣΣX (τ ∑

n
j=1 VT

j (Y j −UT
j ϑϑϑ)+W). A

similar technique of using the fill-reducing permutation matrix is adopted to draw samples from the posterior
conditional distribution.

Furthermore, the posterior samples of ϑϑϑ are drawn from the posterior conditional distribution given as
ϑϑϑ | .∼ N(µµµϑ ,ΣΣΣϑ ), where ΣΣΣϑ = τ−1(R−1 +∑

n
j=1 U jUT

j )
−1 and µµµϑ = τΣΣΣϑ (∑

n
j=1 U j(Y j −V jX )). We update the

precision parameter τ using the posterior conditional distribution which follows as τ | .∼Gamma(eτ , fτ), where eτ =
mn+q?+p0+2aτ

2 and fτ =
1
2

(
∑

n
j=1(Y j −UT

j ϑϑϑ −V jX )T (Y j −UT
j ϑϑϑ −V jX )+X T ΣΣΣ(κκκ)−1X +ϑϑϑ

T R−1ϑϑϑ +2bτ

)
.

Similarly, we update the commensurate parameter λλλ using a Metropolis-Hasting algorithm. Depending on
the type of commensurate parameters adopted, the Wishart proposal distribution or independent gamma proposal
distributions are assigned to λλλ or λβ , λψ , and λθ respectively. The posterior conditional distribution follows as

π(λ | .) ∝
| E |1/2| K |1/2

| λλλ
−1 |1/2

exp

{
− 1

2

(
X T M−1X −WT X −X T W−A T B−1(KB−1 − I)A

)}
π(λλλ ),

where π(λλλ ) is the Wishart prior probability distribution with scale matrix M and υ > q?−1 degree of freedom, or
a joint independent gamma distribution for λβ , λψ and λθ for the diagonal representation form. The fill-reducing
permutation matrix can be adopted to lower the computational burden of evaluating | E |. The Metropolis-Hasting
steps to update λλλ is similar to earlier discussed steps.

Lastly, we update the pair of parameters (φ ,ν) and (φ1,ν1) from the joint conditional posterior distribution
using the Metropolis-Hasting algorithm. Independent log-gamma prior distributions were assigned to (φ ,ν) and
(φ1,ν1). The joint conditional posterior distribution follows as

π(φ ,ν | .) ∝
1

| ΣΣΣ(κκκ) |1/2 exp
{
− τ

2
X T

ΣΣΣ(κκκ)X
}

π(φ ,ν | µφ ,σ
2
φ ,µν ,σ

2
ν ),

π(φ1,ν1 | .) ∝
1

| ΣΣΣ1(κκκ1) |1/2 exp
{
− τ

2
X

′T
ΣΣΣ1(κκκ1)X

′
}

π(φ1,ν1 | µφ ,σ
2
φ ,µν ,σ

2
ν ).

Note that the dimensions of ΣΣΣ(κκκ) and ΣΣΣ1(κκκ1) in the scalable commensurate prior are less or equal to the same
matrix under the commensurate prior, thus, the factorization is cheaper, and a fill-reducing permutation matrix
can be adopted for the computation of the determinants. These MCMC steps, except the ones involved in find-
ing the permutation matrix and nearest neighbors, are repeated several times until convergence is obtained and
samples at the burn-in stage are discarded. The R code used in the estimation is accessible through the link
https://github.com/eosafu/SpatialPriorElicitation/blob/main/simulationScommenBorrow.R.

https://github.com/eosafu/SpatialPriorElicitation/blob/main/simulationScommenBorrow.R
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Figure 50 – Trace plot of some selected parameters of Chapter 5.

7.4.3 Derivation of the prior distributions

7.4.3.1 Derivation of the joint spatial power prior by marginalizing over observed confounding
variables

Given that

Y0 j | θθθ ,βββ ,ψψψ ∼ N(µµµ0 j,τ
−1I), µµµ0 j = XT

0 jβ +ZT
0 jψ +A0Jθθθ ,

∼ N(PT
0 jX0 +A0 jθθθ ,τ

−1I), PT
0 j = horizontal stack(XT

0 j,Z
T
0 j),X0 = (βββ T ,ψψψT )T ,

X0 ∼ N(0,τ−1C),

θθθ ∼ N(0,τ−1Qθ (κκκ)),

τ ∼ Gamma(a,b),

ω0 ∼ π(ω0).

π(θθθ ,X0,τ,ω0 | ΛΛΛ,D0) ∝

∏
n0
j=1

[
N(Y0 j; µ0 j,τ

−1I)
]ω0

N(θθθ ;0,τ−1Qθ (κκκ))N(X0;0,τ−1C)Gam(τ;a,b)π(ω0)∫
∏

n0
j=1

[
N(Y0 j; µ0 j,τ−1I)

]ω0
N(θθθ ;0,τ−1Qθ (κκκ))N(X0;0,τ−1C)Gam(τ;a,b)dθθθdX0,dτ

,

Marginalizing over X0

π(θθθ ,τ,ω0 | ΛΛΛ,D0) ∝

∫
π(θθθ ,X0,τ,ω0 | ΛΛΛ,D0)dX0.
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Considering the denominator and first integrating over X0,

π(ω0)N(θθθ ;0,τ−1Qθ (κκκ))Gam(τ;a,b)
∫ n0

∏
j=1

[
N(Y0 j; µ0 j,τ

−1I)
]ω0

N(X0;0,τ−1C)dX0

=
π(ω0)N(θθθ ;0,τ−1Qθ (κκκ))Gam(τ;a,b)

det(2πτ−1I)
n0ω0

2 det(2πτ−1C)1/2
×

∫
exp
{
− 1

2

( n0

∑
j=1

(
Y0 j −PT

0 jX0 −A0 jθθθ

)T
τI
(

Y0 j −PT
0 jX0 −A0 jθθθ

)
+X T

0 τC−1X0

)}
dX0

=
N(θθθ ;0,τ−1Qθ (κκκ))Gam(τ;a,b)

det(2πτ−1I)
n0ω0

2 det(2πτ−1C)1/2
exp
{
− 1

2

( n0

∑
j=1

YT
0 jω0τIY0 j −

n0

∑
j=1

YT
0 jω0τIA0 jθθθ −

n0

∑
j=1

θθθ
T AT

0 jω0τIY0 j+

n0θθθ
T AT

0 jω0τIA0 jθθθ

)}
×
∫

exp
{
− 1

2

(
(X0 −DB)T D−1(X0 −DB)−BT DB

)}
dX0

=
N(θθθ ;0,τ−1Qθ (κκκ))Gam(τ;a,b)

det(2πτ−1I)
n0ω0

2 det(2πτ−1C)1/2
exp
{
− 1

2

( n0

∑
j=1

YT
0 jω0τIY0 j −

n0

∑
j=1

YT
0 jω0τIA0 jθθθ −

n0

∑
j=1

θθθ
T AT

0 jω0τIY0 j+

n0θθθ
T AT

0 jω0τIA0 jθθθ

)}
× exp

{
− 1

2

(
−BT DB

)}
det(2πD)1/2,

where B =
(

∑
n0
j=1 P0 jω0τIY0 j −∑

n0
j=1 P0 jω0τIA0 jθθθ

)
and D−1 =

(
∑

n0
j=1 P0 jω0τIPT

0 j + τC−1
)

. It implies that

det(2πD)1/2N(θθθ ;0,τ−1Qθ (κκκ))Gam(τ;a,b)

det(2πτ−1I)
n0ω0

2 det(2πτ−1C)1/2
exp
{
− 1

2

( n0

∑
j=1

YT
0 jω0τIY0 j −

n0

∑
j=1

YT
0 jω0τIA0 jθθθ −

n0

∑
j=1

θθθ
T AT

0 jω0τIY0 j+

n0θθθ
T AT

0 jω0τIA0 jθθθ

)}
× exp

{
− 1

2

(
−BT DB

)}
π(ω0)

=
det(2πD)1/2N(θθθ ;0,τ−1Qθ (κκκ))Gam(τ;a,b)

det(2πτ−1I)
n0ω0

2 det(2πτ−1C)1/2
×

exp
{
− 1

2

( n0

∑
j=1

YT
0 jω0τIY0 j −

n0

∑
j=1

YT
0 jω0τIA0 jθθθ −

n0

∑
j=1

θθθ
T AT

0 jω0τIY0 j+ n0θθθ
T AT

0 jω0τIA0 jθθθ −BT DB
)}

π(ω0)

=
det(2πD1)

1/2τ
n0m0ω0+(p+r)+q

2 +a−1−(p+q)/2ba

det(2πI)
n0ω0

2 det(2πC)1/2det(2πQθ (κκκ))1/2Γ(a)
×

exp
{
− 1

2

(
θθθ

T
τQθ (κκκ)

−1
θθθ +2τb+

n0

∑
j=1

YT
0 jω0τIY0 j −

n0

∑
j=1

YT
0 jω0τIA0 jθθθ −

n0

∑
j=1

θθθ
T AT

0 jω0τIY0 j+

n0θθθ
T AT

0 jω0τIA0 jθθθ −
(
(

n0

∑
j=1

P0 jω0τIY0 j)
T D(

n0

∑
j=1

P0 jω0τIY0 j)− (
n0

∑
j=1

P0 jω0τIY0 j)
T D(

n0

∑
j=1

P0 jω0τIA0 jθθθ)−

(
n0

∑
j=1

P0 jω0τIA0 jθθθ)
T D(

n0

∑
j=1

P0 jω0τIY0 j)+(
n0

∑
j=1

P0 jω0τIA0 jθθθ)
T D(

n0

∑
j=1

P0 jω0τIA0 jθθθ)
)}

,

Where D1 = τ−1D. Let K = det(2πD1)
1/2ba

det(2πI)
n0ω0

2 det(2πC)1/2det(2πQθ (κκκ))
1/2Γ(a)

, and

M = 1
2

(
θθθ

T Qθ (κκκ)
−1θθθ +2b+∑

n0
j=1 YT

0 jω0IY0 j−∑
n0
j=1 YT

0 jω0IA0 jθθθ −∑
n0
j=1 θθθ

T AT
0 jω0IY0 j+n0θθθ

T AT
0 jω0IA0 jθθθ −(

(∑
n0
j=1 P0 jω0IY0 j)

T D1(∑
n0
j=1 P0 jω0IY0 j)− (∑

n0
j=1 P0 jω0IY0 j)

T D1(∑
n0
j=1 P0 jω0IA0 jθθθ)−

(∑
n0
j=1 P0 jω0IA0 jθθθ)

T D1(∑
n0
j=1 P0 jω0IY0 j)+(∑

n0
j=1 P0 jω0IA0 jθθθ)

T D1(∑
n0
j=1 P0 jω0IA0 jθθθ)

)
.

Factorizing M, we have that
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M = 1
2

(
(θθθ −EF)T E−1(θθθ −EF)+ k

)
, where

k =−FT EF+2b+ω0 ∑
n0
j=1 YT

0 jY0 j − (ω0 ∑
n0
j=1 P0 jY0 j)

T D1(ω0 ∑
n0
j=1 P0 jY0 j),

E−1 = (Qθ (κκκ)
−1 +ω0n0AT

0 jA0 j − (ω0 ∑
n0
j=1 AT

0 jP
T
0 j)D1(ω0 ∑

n0
j=1 P0 jA0 j), and

F =
(

ω0 ∑
n0
j=1 AT

0 jY0 j − (ω0 ∑
n0
j=1 AT

0 jP
T
0 j)D(ω0 ∑

n0
j=1 P0 jY0 j)

)
. Thus, the numerator is given as

Kτ
n0m0ω0+q+2a

2 −1 exp
{
− τM

}
.

To obtain the denominator, we integrate out θθθ and τ .

Let a* = v+q
2 and v = n0m0ω0 +2a, then

∫ ∫
Kτ

n0m0ω0+q+2a
2 −1 exp

{
− τM

}
dτdθθθ = K

∫
Γ(a*)
Ma* dθθθ

= KΓ(a*)
∫ 1[

1
2

(
(θθθ −EF)T E−1(θθθ −EF)+ k

)]a* dθθθ

= KΓ(a*)
∫ 1[

k
2

(
v(θθθ−EF)T E−1(θθθ−EF)

vk +1
)]a* dθθθ

= KΓ(
v+q

2
)
∫ 1[

k
2

(
(θθθ−EF)T v

k E−1(θθθ−EF)
v +1

)] v+q
2

dθθθ

=
KΓ( v+q

2 )

(k/2)
v+q

2

∫ 1[(
(θθθ−EF)T v

k E−1(θθθ−EF)
v +1

)] v+q
2

dθθθ

=
KΓ( v+q

2 )Γ(v/2)vq/2πq/2 | k
v E |1/2

(k/2)
v+q

2 Γ( v+q
2 )

.

Therefore, the prior distribution is then given as

π
p(θ ,τ,ω0,κκκ | ΛΛΛ,D0) ∝ π(ω0)π(κκκ)

2
v+q

2 k
v
2 τ

n0m0ω0+q+2a
2 −1

Γ(v/2) | E |1/2 exp

{
− τ

2

(
(θθθ −EF)T E−1(θθθ −EF)+ k

)}
.
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7.4.3.2 Derivation of joint spatial commensurate prior

Given that Y0 j ∼ N(V0X0,H), X ∼ N(X0,λλλ ), X ∼ N(0,τ−1Σ(κκκ)), π(τ), π(λλλ ), and π(κκκ),

π(X ,X0,τ,λλλ ,κκκ | ΛΛΛ,D0) = L(X0 | D0)N(X ;X0,λλλ )N(X ;0,τ−1
Σ(κκκ))π(λλλ )π(κκκ)π(τ)

π(X ,τ,λλλ ,κκκ | ΛΛΛ,D0) =
∫ 1

| 2π | H |n0/2

1

|2πλλλ
−1|1/2

1
| 2πτ−1Σ(κκκ) |1/2 exp

(
− 1

2
(X T

τΣ(κκκ)−1X )
)

π(λλλ )π(κκκ)π(τ)×

exp
(
− 1

2
(

n0

∑
j
(Y0 j −V0 jX0)

T H−1(Y0 j −V0 jX0)+(X −X0)
T

λλλ (X −X0)
)

dX0

=
∫ 1

| 2πH |n0/2

1

|2πλλλ
−1|1/2

1
| 2πτ−1Σ(κκκ) |1/2 exp

(
− 1

2
(X T

τΣ(κκκ)−1X )
)

π(λλλ )π(κκκ)π(τ)×

exp
(
− 1

2

(
∑

j
YT

0 jH
−1Y0 j +X T

λλλX −BTDB
)

exp
(
− 1

2
(X0 −DB)T D−1(X0 −DB)

)
dX0

=
1

| 2πH |n0/2

1

|2πλλλ
−1|1/2

1
| 2πτ−1Σ(κκκ) |1/2 exp

(
− 1

2
(X T

τΣ(κκκ)−1X )
)

π(λλλ )π(κκκ)π(τ)×

exp
(
− 1

2

(
∑

j
YT

0 jH
−1Y0 j +X T

λλλX −BTDB
)
| 2πD |1/2

=| 2πD |1/2 1
| 2πH |n0/2

1

|2πλλλ
−1|1/2

1
| 2πτ−1Σ(κκκ) |1/2 π(λλλ )π(κκκ)π(τ)×

exp
(
− 1

2

(
∑

j
YT

0 jH
−1Y0 j +X T

λλλX −BTDB+(X T
τΣ(κκκ)−1X )

))
,

where B = (∑
n0
j V T

0 jH
−1Y0 j +λλλX ) and D−1 = (∑

n0
j=1 V T

0 jH
−1V0 +λλλ ),

BTDB = (
n0

∑
j=1

V T
0 jH

−1Y0i)
T D(

n0

∑
j=1

V T
0 jH

−1Y0i)+(
n0

∑
j=1

V T
0 jH

−1Y0i)
T DλλλX +(λλλX )T D(

n0

∑
j=1

V T
0 jH

−1Y0i)+

(λλλX )T D(λλλX ).

π(X ,τ,λλλ ,κκκ | ΛΛΛ,D0) =
| 2πD |1/2 π(λλλ )π(κκκ)π(τ)

| 2πH |n0/2 |2πλλλ
−1|1/2 | 2πτ−1Σ(κκκ) |1/2

exp
(
− 1

2

n0

∑
j=1

YT
0 jH

−1Y0 j

)
×

exp
(
− 1

2

(
(X −EF)T E−1(X −EF)−FTEF− (

n0

∑
j=1

V T
0i H−1Y0 j)

T D(
n0

∑
j=1

V T
0i H−1Y0 j)

))
,

where E−1 = (τΣ(κκκ)−1 +λλλ −λλλ
T Dλλλ ) , F = λλλ

T D(∑
n0
j V T

0 jH
−1Y0 j), and ΛΛΛ is the vector of all hyperparameters.

For K historical data,

π(X ,τ,κκκ,λλλ 01, ..,λλλ 0K | ΛΛΛ,{D0i}) =
π(κκκ)π(τ)

| 2πτ−1Σ(κκκ) |1/2

K

∏
i=1

[
| 2πDi |1/2 π(λλλ 0i)

| 2πH0i |n0i/2 |2πλλλ
−1
0i |1/2

]
exp
(
− 1

2

K

∑
i=1

n0

∑
j=1

YT
0i jH

−1
0i Y0i j

)
×

exp
(
− 1

2

(
(X −EF)T E−1(X −EF)−FTEF−

K

∑
i=1

(
n0i

∑
j=1

V T
0i jH

−1
0i Y0i j)

T Di(
n0i

∑
j=1

V T
0i jH

−1
0i Y0i j)

))

where E−1 =(τΣ(κκκ)−1+∑
K
i=1(λλλ 0i−λλλ

T
0iDiλλλ 0i)) , and F=∑

K
i=1 λλλ

T
0iDi(∑

n0i
j V T

0i jH
−1
0i Y0i j), and D−1

i =(∑
n0i
j=1 V T

0i jH
−1
0i V0i j+

λλλ 0i).
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7.4.3.3 Derivation of the joint scalable spatial commensurate prior

Let Y01 | X
′ ∼ N(V0X

′
,τ−1

1 I) and X
′ ∼ N(0,τ−1

1 ΣΣΣ1(κκκ1)), τ1 ∼ Gamma(a1,b1). Thus, the joint poste-
rior distribution follows as

π(X
′
,τ1 | D0, .) ∝L(X

′
,τ1 | D0)N(X

′
;0,τ−1

1 ΣΣΣ1(κκκ1))Gamma(τ1;a1,b1)

=
1

det(2πτ
−1
1 I)1/2

τ
a1−1
1

det(2πτ−1ΣΣΣ1(κκκ1))1/2 exp
{
− 1

2

( n0

∑
j=1

(Y0 j −V0 jX
′
)T

τ1I(Y0 j −V0 jX
′
)+

X
′T

τ1ΣΣΣ1(κκκ1)
−1X

′
+2τ1b1

)}
∝τ

m0n0+q?1
2 +a1−1

1 exp
{
− 1

2

( n0

∑
j=1

(Y0 j −V0 jX
′
)T

τ1I(Y0 j −V0 jX
′
)+X

′T
τ1ΣΣΣ1(κκκ1)

−1X
′
+2τ1b1

)}
.

Thus, the conditional posterior distribution of the updated X
′

follows as

π(X
′ | τ1,D0, .) ∝ exp

{
− 1

2
X

′T (
n0

∑
j=1

VT
0 jτ1IV0 j + τ1ΣΣΣ1(κκκ1)

−1)X
′ − (

n0

∑
j=1

YT
0 jτ1IV0 j)X

′ −X
′T (

n0

∑
j=1

VT
0 jτ1IY0 j)

}

Therefore, X
′
= (X

′
[N(s0)],X

′
1 )

T | τ1,D0 ∼ N
(

µµµ
′
,ΣΣΣ

′
)

where

µµµ
′
=

(
µµµ1

µµµ2

)
= (

n0

∑
j=1

VT
0 jV0 j +ΣΣΣ1(κκκ1)

−1)−1(
n0

∑
j=1

VT
0 jY0 j) and

ΣΣΣ
′
=

(
Q11 Q12

Q21 Q22

)
= τ

−1
1 (

n0

∑
j=1

VT
0 jV0 j +ΣΣΣ1(κκκ1)

−1)−1.

Thus,

X
′
[N(s0)] | X

′
1 ,τ1 ∼ N(A ,B), where A = µµµ1 +Q12Q−1

22 Q21(X
′

1 −µµµ2) and B = Q11 −Q12Q−1
22 Q21.

π(τ1 | X
′
) ∝ τ

m0n0+q?1
2 +a1−1

1 exp
{
− τ1

2

( n0

∑
j=1

(Y0 j −V0 jX
′
)T (Y0 j −V0 jX

′
)+X

′T
ΣΣΣ1(κκκ1)

−1X
′
+2b1

)}
.

Therefore, τ1 | .∼Gamma(aτ1 ,bτ1), where aτ1 =
m0n0+q?1+2a1

2 and bτ1 =
1
2

(
∑

n0
j=1(Y0 j−V0 jX

′
)T (Y0 j−V0 jX

′
)+

X
′T ΣΣΣ1(κκκ1)

−1X
′
+2b1

)
.

Thus, to obtain the posterior predictive distribution at locations in G ,

(
X0

X
′

)
=

 X0

X
′
[N(s0)]

X
′

1

∼ N(0,τ−1
1 ΣΣΣ1(κκκ1)

?), where ΣΣΣ1(κκκ1)
? =

(
Σ00 Σ01

Σ10 ΣΣΣ
′
.

)

Let X
′
[N(s0)] be the spatial field in G0 having connection to the spatial field X0 in G . So that, X0 | X

′
= X0 |

X
′
[N(s0)]∼ N

(
cT X

′
[N(s0)], D

)
, where cT = Σ01Q

′−1
11 and D = Σ00 −Σ01Q

′−1
11 Σ10.

Given this background, the proposed commensurate prior distribution follows as

π(X ,X0,X
′
[N(s0)],λλλ | X ′

1 ) = π(X | X0,λλλ )π(X0 | X
′
[N(s0)])π(X

′
N(s0) | X

′
1 ,D0)π(X )π(λλλ ).
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Therefore,

π(X ,λλλ | X ′
1 ) =

∫ ∫ [
π(X | X0,λλλ )π(X0 | X

′
[N(s0)])π(X

′
[N(s0)] | X

′
1 ,D0)

]
dX0,dX [N(s0)]π(X )π(λλλ )

=
∫ ∫ 1

det(2πλλλ
−1)1/2

exp
{
− 1

2

(
(X −X0)

T
λλλ (X −X0)

)}
×

1
det(2πD)1/2 exp

{
− 1

2

(
(X0 − cT X

′
[N(s0)])

T D−1(X0 − cT X
′
[N(s0)])

)}
×

1
det(2πB)1/2 exp

{
− 1

2

(
X

′
[N(s0)]−A )T B−1(X

′
[N(s0)]−A )

)}]
dX0,dX [N(s0)]×

π(X )π(λλλ )

=
1

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫ ∫
exp
{
− 1

2

(
X T

λλλX −X T
λλλX0 −X T

0 λλλX +X T
0 λλλX0+

X T
0 D−1X0 −X T

0 D−1cT X1 − (cT X1)
T D−1X0 +(cT X1)

T D−1(cT X1)+(X1 −A )T B−1(X1 −A )
)}

dX0,dX1π(X )π(λλλ )

=
1

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫
exp
{
− 1

2

(
X T

λλλX +(cT X1)
T D−1(cT X1)+

(X1 −A )T B−1(X1 −A )
)}∫

exp
{
− 1

2

(
X T

0 (λλλ +D−1)X0 −X T
0 (λλλX +D−1CT X1)−

(X T
λλλ +(cT X1)

T D−1)X0

}
dX0dX1π(X )π(λλλ )

=
1

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫
exp
{
− 1

2

(
X T

λλλX +(cT X1)
T D−1(cT X1)+

(X1 −A )T B−1(X1 −A )
)}∫

exp
{
− 1

2

(
X T

0 E−1X0 −X T
0 F−FT X0

}
dX0dX1π(X )π(λλλ )

=
1

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫
exp
{
− 1

2

(
X T

λλλX +(cT X1)
T D−1(cT X1)+

(X1 −A)T B−1(X1 −A )
)}∫

exp
{
− 1

2

(
X0 −EF)T E−1(X0 −EF)−FT EF}dX0dX1π(X )π(λλλ )

=
det(2πE)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫
exp
{
− 1

2

(
X T

λλλX +(cT X1)
T D−1(cT X1)+

(X1 −A )T B−1(X1 −A )−FT EF
)}

dX1π(X )π(λλλ ),
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where E−1 = (λλλ +D−1) and F = (λλλX +D−1cT X1). Now expanding FT EF, we have

det(2πE)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫
exp
{
− 1

2

(
X T

λλλX +X T
1 cD−1cT X1 +X T

1 B−1X1 −X T
1 B−1A −

A T B−1X1 +A T B−1A −
[
(λλλX )T EλλλX +(λλλX )T ED−1cT X1 +(D−1cT X1)

T EλλλX +

(D−1cT X1)
T ED−1cT X1)

])}
dX1π(X )π(λλλ )

=
det(2πE)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫
exp
{
− 1

2

(
X T

λλλX +X T
1 (cD−1cT +B−1 − cD−1ED−1cT )X1−

(A T B−1 +X T
λλλED−1cT )X1 −X T

1 (B−1A + cD−1EλλλX )+A T B−1A −X T
λλλEλλλX

)}
dX1

π(X )π(λλλ )

=
det(2πE)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

∫
exp
{
− 1

2

(
X T (λλλ −λλλ

T Eλλλ

)
X +A T B−1A +X T

1 K−1X1−

LT X1 −X1L
)}

dX1π(X )π(λλλ ),

where K−1 = (cD−1cT +B−1 − cD−1ED−1cT ) and L = (B−1A + cD−1EλλλX ).

Further,

det(2πE)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

exp
{
− 1

2

(
X T (λλλ −λλλ

T Eλλλ

)
X +A T B−1A −LT KL

)}
×∫

exp
{
− 1

2

(
X1 −KL)T K−1(X1 −KL)

)}
dX1π(X )π(λλλ )

=
det(2πE)1/2det(2πK)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

exp
{
− 1

2

(
X T (λλλ −λλλ

T Eλλλ

)
X +A T B−1A −LT KL

)}
×

π(X )π(λλλ ).

Expanding,

=
det(2πE)1/2det(2πK)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

exp
{
− 1

2

(
X T (λλλ −λλλ

T Eλλλ

)
X +A T B−1A −[

(B−1A )T K(B−1A )+(B−1A )T KcD−1EλλλX +(cD−1EλλλX )T KB−1A +

(cD−1EλλλX )T K(cD−1EλλλX )
])}

π(X )π(λλλ )

=
det(2πE)1/2det(2πK)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

exp
{
− 1

2

(
X T (λλλ −λλλEλλλ −λλλED−1cT KcD−1Eλλλ )X −

(B−1A )T KcD−1EλλλX −X T
λλλED−1cT KB−1A −A T B−1KB−1A +A T B−1A

)}
π(X )π(λλλ ).

Thus,

π(X ,λλλ | X ′
1 ,ΛΛΛ,D0) =

det(2πE)1/2det(2πK)1/2

det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2

exp
{
− 1

2

(
X T M−1X −WT X −X T W−A T B−1KB−1A +A T B−1A

)}
π(X )π(λλλ ),

where M−1 = (λλλ −λλλEλλλ −λλλED−1cT KcD−1Eλλλ ), W = (λλλED−1cT KB−1A ) and ΛΛΛ is the vector of hyperparam-
eters.
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7.4.4 Derivation of the conditional posterior distribution

7.4.4.1 Under joint spatial power prior

Given the hierarchical model

Y j | X ,ϑϑϑ ∼ N(ηηη j,τ
−1I),

ηηη j = UT
j ϑϑϑ +VX ,

(X ,τ)∼ π
p,

ϑϑϑ ∼ N(0,τ−1R), j = 1,2, ...,n.

Hence, the joint posterior distribution follows as

π(X ,τ,ω0,κκκ | ΛΛΛ,D ,D0) ∝
1

det(2πτ−1I)n/2

2(v+q)/2kv/2τ(m0n0ω0+q*)/2+a−1

Γ(v/2)det(D)1/2

1
det(2πτ−1R)1/2×

exp
{
− 1

2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T

τI(Y j −UT
j ϑϑϑ −V jX )+

τ(X −DB)T D−1(X −DB)+ τk+ϑϑϑ
T

τ
−1Rϑϑϑ

)}
,

where D−1 =(ω0 ∑
n0
j VT

0jV0j+ΣΣΣ
−1(κκκ)), B=ω0 ∑

n0
j=1 VT

0 Y0 j, k=ω0(∑
n0
j=1 YT

0jY0j)−BTDB+2b, v= 2a+m0n0ω0,
q? = p+ r+q, and κκκ = {σ2

β
,σ2

ψ ,τ1,φ ,ν}. Consider the exponent, then its expanded form follows as

n

∑
j=1

YT
j τIYj −

n

∑
j=1

Y T
j τIUT

j ϑϑϑ −
n

∑
j=1

YT
j τIVjX −

n

∑
j=1

ϑϑϑ
T U jτIY j +

n

∑
j=1

ϑϑϑ
T U jτIUT

j ϑϑϑ +
n

∑
j=1

ϑϑϑ
T U jτIV jX −

n

∑
j=1

X T VT
j τIY j +

n

∑
j=1

X T VT
j τIUT

j ϑϑϑ +
n

∑
j=1

X T VT
j τIV jX +X T

τID−1X −X T
τIB−BT

τIX +BT
τIDB+

τk+ϑϑϑ
T

τR−1
ϑϑϑ .

The posterior conditional for X follows as

π(X | .) ∝ exp
{
− 1

2

(
−

n

∑
j=1

YT
j τIV jX +

n

∑
j=1

ϑϑϑ
T U jτIV jX −

n

∑
j=1

X T VT
j τIY j +

n

∑
j=1

X T VT
j τIUT

j ϑϑϑ+

n

∑
j=1

X T VT
j τIV jX + τX T D−1X − τX T B− τBT X

)}
= exp

{
− 1

2

(
X T (

n

∑
j=1

VT
j τIV j + τD−1)X − (

n

∑
j=1

YT
j τIV j −

n

∑
j=1

ϑϑϑ
T U jτIV j + τBT )X −

X T (
n

∑
j=1

VT
j τIY j −

n

∑
j=1

VT
j τIUT

j ϑϑϑ + τB)
)}

.

Therefore, X | .∼ N(µµµX ,ΣΣΣX ), where ΣΣΣX = τ−1(∑n
j=1 VT

j V j +D−1)−1 and µµµX = τΣΣΣX (∑n
j=1 VT

j (Y j −UT
j ϑϑϑ)+

B).

Similarly,

π(ϑϑϑ | .) ∝ exp
{
− 1

2

(
−

n

∑
j=1

YT
j τIUT

j ϑϑϑ −
n

∑
j=1

ϑϑϑ
T U jτIY j +

n

∑
j=1

ϑϑϑ
T U jτIUT

j ϑϑϑ +
n

∑
j=1

ϑϑϑ
T U jτIV jX +

n

∑
j=1

X T VT
j τIUT

j ϑϑϑ +ϑϑϑ
T

τR−1
ϑϑϑ

)}
= exp

{
− 1

2

(
ϑϑϑ

T (τR−1 +
n

∑
j=1

U jτIUT
j )ϑϑϑ − (

n

∑
j=1

YT
j τIUT

j −
n

∑
j=1

X T VT
j τIUT

j )ϑϑϑ−

ϑϑϑ
T (

n

∑
j=1

U jτIY j −
n

∑
j=1

U jτIV jX )
)}

.



7.4. Appendix of Chapter 5 151

Therefore, ϑϑϑ | .∼ N(µµµϑ ,ΣΣΣϑ ), where ΣΣΣϑ = τ−1(R−1 +∑
n
j=1 U jUT

j )
−1 and µµµϑ = τΣΣΣϑ ∑

n
j=1 U j(Y j −V jX ).

Further,

π(τ | .) ∝ τ
(mn+m0n0ω0+q?+p0+2a)

2 −1 exp
{
− τ

(1
2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T (Y j −UT

j ϑϑϑ −V jX )+

(X −DB)T D−1(X −DB)+ k+ϑϑϑ
T R−1

ϑϑϑ

)}
.

Thus, τ | . ∼ Gamma(aτ ,bτ), where aτ = (mn+m0n0ω0+q?+p0+2a)
2 and bτ = 1

2

(
∑

n
j=1(Y j −UT

j ϑϑϑ −V jX )T (Y j −

UT
j ϑϑϑ −V jX )+(X −DB)T D−1(X −DB)+ k+ϑϑϑ

T R−1ϑϑϑ

)
.

The posterior distribution for ω0 follows as

π(ω0 | .) ∝
(2k)

v
2 τ(m0n0ω0)/2

Γ( v
2 ) | D |1/2 exp

{
− 1

2

(
τ(X −DB)T D−1(X −DB)+ τk

)}
π(ω0)

and for κ , the posterior distribution follows as

π(κκκ | .) ∝
1

| D |1/2 exp
{
− 1

2

(
X T

τΣ
−1(κκκ)X

)}
π(κκκ).

7.4.4.2 Under joint spatial commensurate prior

Given the hierarchical model

Y j | X ,ϑϑϑ ∼ N(ηηη j,τ
−1I),

ηηη j = UT
j ϑϑϑ +VX ,

(X ,τ)∼ π
c,

ϑϑϑ ∼ N(0,τ−1R), j = 1,2, ...,n.

Hence, the joint posterior distribution follows as

π(X ,τ,λλλ ,κκκ | ΛΛΛ,D ,D0) ∝
det(2πτ−1D)1/2π(τ)π(ϑϑϑ)π(κκκ)π(λλλ )

det(2πτ−1I)n/2det(2πH)n0/2det(2πτ−1λλλ
−1)1/2det(2πτ−1ΣΣΣ(κκκ))1/2

×

exp
{
− 1

2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T

τI(Y j −UT
j ϑϑϑ −V jX )+ τ

(
(X −EF)T E−1(X −EF)−FT EF−

(
n0

∑
j=1

VT
0 jY0 j)

T D(
n0

∑
j=1

VT
0 jY0 j)

))}

=
τ

mn+m0n0+q?+p0
2 det(2πD)1/2π(τ)π(ϑϑϑ)π(κκκ)π(λλλ )

det(2πI)n/2det(2πI)n0/2det(2πλλλ
−1)1/2det(2πΣΣΣ(κκκ))1/2

exp

{
− τ

2

(
n

∑
j=1

(
Y T

j Yj −Y T
j UT

j ϑϑϑ −YT
j V jX −

(UT
j ϑϑϑ)T Y j +(UT

j ϑϑϑ)T (UT
j ϑϑϑ)+(UT

j ϑϑϑ)T V jX − (V jX )T Y j +(V jX )T (UT
j ϑϑϑ)+(V jX )T (V jX )

)
+

n

∑
j=1

YT
0 jY

T
0 +X T E−1X −X T F−FT X − (

n0

∑
j=1

VT
0 jY0 j)

T D(
n0

∑
j=1

VT
0 jY0 j)+ϑϑϑ

T R−1
ϑϑϑ

)}
.

The posterior conditional for X follows as

π(X | .) ∝

{
− τ

2

(
−

n

∑
j=1

YT
j V jX +

n

∑
j=1

ϑϑϑ
T U jV jX −

n

∑
j=1

X T VT
j Y j +

n

∑
j=1

X T VT
j UT

j ϑϑϑ +
n

∑
j=1

X T VT
j V jX +

X T E−1X −X T F−FT X
)

= exp
{
− τ

2

(
X T (

n

∑
j=1

VT
j V j +E−1)X − (

n

∑
j=1

YT
j V j −

n

∑
j=1

ϑϑϑ
T U jV j +FT )X −X T (

n

∑
j=1

VT
j Y j−

n

∑
j=1

VT
j UT

j ϑϑϑ +F)
)}

.
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Therefore, X | .∼N(µµµX ,ΣΣΣX ), where ΣΣΣX = τ−1(∑n
j=1 VT

j V j+E−1)−1 and µµµX =(∑n
j=1 VT

j V j+E−1)−1(∑n
j=1 VT

j (Y j−
UT

j ϑϑϑ)+F).

Similarly,

π(ϑϑϑ | .) ∝ exp
{
− τ

2

(
−

n

∑
j=1

YT
j UT

j ϑϑϑ −
n

∑
j=1

ϑϑϑ
T U jY j +

n

∑
j=1

ϑϑϑ
T U jUT

j ϑϑϑ +
n

∑
j=1

ϑϑϑ
T U jV jX +

n

∑
j=1

X T VT
j UT

j ϑϑϑ +ϑϑϑ
T R−1

ϑϑϑ

)}
=exp

{
− τ

2

(
ϑϑϑ

T (R−1 +
n

∑
j=1

U jUT
j )ϑϑϑ)− (

n

∑
j=1

YT
j U j −

n

∑
j=1

X T VT
j UT

j )ϑϑϑ −ϑϑϑ
T (

n

∑
j=1

U jY j −
n

∑
j=1

U jV jX )
)}

.

Therefore, ϑϑϑ | .∼ N(µµµϑ ,ΣΣΣϑ ),
where ΣΣΣϑ = τ−1(R−1 +∑

n
j=1 U jUT

j )
−1 and µµµϑ = (R−1 +∑

n
j=1 U jUT

j )
−1

∑
n
j=1 U j(Y j −V jX ).

The posterior conditional distribution of τ , with τ ∼ Gamma(a,b),

π(τ | .) ∝ τ
mn+m0n0+q?+p0+2a

2 −1 exp
{
− τ

(
1
2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T (Y j −UT

j ϑϑϑ −V jX )+

n0

∑
j=1

YT
0 jY0 j +X T E−1X −2X T F− (

n0

∑
j=1

VT
o jY0 j)

T D(
n0

∑
j=1

VT
o jY0 j)+ϑϑϑ

T R−1
ϑϑϑ +2b

)}
.

Moreover,

π(λλλ | .) ∝
π(λλλ )det(2πD)1/2

det(2πλλλ
−1)1/2

exp
{
− τ

2

(
X T E−1X −2X T F− (

n0

∑
j=1

VT
o jY0 j)

T D(
n0

∑
j=1

VT
o jY0 j)

)}
,

and

π(κκκ | .) ∝
π(κκκ)

det(2πΣΣΣ(κκκ))1/2 exp
{
− τ

2
X T

ΣΣΣ(ϑϑϑ)X
}
.

7.4.4.3 Under joint scalable spatial commensurate prior

Given the hierarchical model

Y j | X ,ϑϑϑ ∼ N(ηηη j,τ
−1I),

ηηη j = UT
j ϑϑϑ +VX ,

X ∼ π
sc,

ϑϑϑ ∼ N(0,τ−1R),

τ ∼ π(τ), j = 1,2, ...,n.

Hence, the joint posterior distribution follows as

π(X ,τ,ϑϑϑ ,λλλ | X ′
1 ,D ,D0) =

det(2πE)1/2det(2πK)1/2π(λλλ )π(τ)

det(2πτ−1I)n/2det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2det(τ−1ΣΣΣ(κκκ))1/2det(τ−1R)1/2

×

exp

{
− 1

2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T

τI(Y j −UT
j ϑϑϑ −V jX )+

(
X T M−1X −WT X −

X T W−A T B−1(KB−1 − I)A
)
+X T

τΣΣΣ(κκκ)−1X +ϑϑϑ
T

τR−1
ϑϑϑ

}
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=
det(2πE)1/2det(2πK)1/2π(λλλ )π(τ)

det(2πτ−1I)n/2det(2πλλλ
−1)1/2det(2πD)1/2det(2πB)1/2det(τ−1ΣΣΣ(κκκ))1/2det(τ−1R)1/2

×

exp

{
− 1

2

(
n

∑
j=1

(
YT

j τIY j −YT
j τIUT

j ϑϑϑ −YT
j τIV jX − (UT

j ϑϑϑ)T
τIY j +(UT

j ϑϑϑ)T
τI(UT

j ϑϑϑ)+(UT
j ϑϑϑ)T

τIV jX −

(V jX )T
τIY j +(V jX )T

τI(UT
j ϑϑϑ)+(V jX )T

τI(V jX )+X T M−1X −WT X −X T W−A T B−1(KB−1 − I)A +

X T
τΣΣΣ(κκκ)−1X +ϑϑϑ

T
τR−1

ϑϑϑ

)
.

The posterior conditional for X follows as

π(X | .) ∝exp

{
− 1

2

(
−

n

∑
j=1

YT
j τIV jX +

n

∑
j=1

(UT
j ϑϑϑ)T

τIV jX −
n

∑
j=1

(V jX )T
τIY j +

n

∑
j=1

(V jX )T
τI(UT

j ϑϑϑ)+

n

∑
j=1

(V jX )T
τI(V jX )+X T M−1X −WT X −X T W+X T

τΣΣΣ(κκκ)−1X

)}

= exp

{
− 1

2

(
X T (M−1 + τΣΣΣ(κκκ)−1 +

n

∑
j=1

VT
j τIV j)X − (

n

∑
j=1

YT
j τIV j −

n

∑
j=1

ϑϑϑ
T U jτIV j +WT )X −

X T (
n

∑
j=1

VT
j τIY j −

n

∑
j=1

VT
j τIUT

j ϑϑϑ +W)

)}
.

Thus, the posterior conditional X | . ∼ N(µµµX ,ΣΣΣX ), where ΣΣΣX = (M−1 + τΣΣΣ(κκκ)−1 +∑
n
j=1 VT

j τIV j)
−1, and

µµµX = ΣΣΣX (τ ∑
n
j=1 VT

j (Y j −UT
j ϑϑϑ)+W).

Similarly,

π(ϑϑϑ | .) ∝exp

{
− 1

2

(
−

n

∑
j=1

YT
j τIUT

j ϑϑϑ −
n

∑
j=1

(UT
j ϑϑϑ)T

τIY j +
n

∑
j=1

(UT
j ϑϑϑ)T

τI(UT
j ϑϑϑ)+

n

∑
j=1

(UT
j ϑϑϑ)T

τIV jX +

n

∑
j=1

(V jX )T
τI(UT

j ϑϑϑ)+ϑϑϑ
T

τR−1
ϑϑϑ

)}

= exp

{
− 1

2

(
ϑϑϑ

T (τR−1 +
n

∑
j=1

U jτIUT
j )ϑϑϑ − (

n

∑
j=1

YT
j τIUT

j −X T
T

∑
j=1

VT
j τIUT

j )ϑϑϑ −ϑϑϑ
T (

n

∑
j=1

U jτIY j−

n

∑
j=1

U jτIV jX )

)}
.

Therefore, the posterior conditional distribution ϑϑϑ | . ∼ N(µµµϑ ,ΣΣΣϑ ), where ΣΣΣϑ = (τR−1 +∑
n
j=1 U jτIUT

j )
−1 and

µµµϑ = (R−1 +∑
n
j=1 U jUT

j )
−1

∑
n
j=1 U j(Y j −V jX ).

Further, assuming π(τ)∼ Gamma(a,b) the posterior conditional follows as

π(τ | .) ∝ τ
mn+q?+p0+2a

2 −1 exp

{
− 1

2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T

τI(Y j −UT
j ϑϑϑ −V jX )+X T

τΣΣΣ(κκκ)−1X +

ϑϑϑ
T

τR−1
ϑϑϑ +2τb

}

= τ
mn+q?+p0+2a

2 −1 exp

{
− τ

(
1
2

( n

∑
j=1

(Y j −UT
j ϑϑϑ −V jX )T (Y j −UT

j ϑϑϑ −V jX )+X T
ΣΣΣ(κκκ)−1X +

ϑϑϑ
T R−1

ϑϑϑ +2b
))}

.



154 Bibliography

The posterior conditional distribution τ | .∼ Gamma(aτ ,bτ), where aτ =
mn+q?+p0+2a

2 and bτ =

(
1
2

(
∑

n
j=1(Y j −

UT
j ϑϑϑ −V jX )T (Y j −UT

j ϑϑϑ −V jX )+X T ΣΣΣ(κκκ)−1X +ϑϑϑ
T R−1ϑϑϑ +2b

))
.

The posterior conditional distribution for λλλ follows as

π(λλλ | .) ∝
det(2πE)1/2det(2πK)1/2

det(2πλλλ
−1)1/2

exp

{
− 1

2

(
X T M−1X −WT X −X T W−A T B−1(KB−1 − I)A

)}
π(λλλ ).

and

π(φ ,ν | .) ∝
1

det(ΣΣΣ(κκκ))1/2 exp
{
− τ

2
(X T

ΣΣΣ(κκκ)X )
}

π(φ ,ν).

7.5 Appendix of Chapter 6

7.5.1 Model prediction
This section gives a theoretical detail of the posterior predictive distribution of the response for the

proposed model in the case where ε j = ε,∀ j.

7.5.1.1 Prediction of replicates of the response

The goal of spatial modeling is often to develop a technique to make predictions on unobserved spatial loca-
tions on each j spatial window. Suppose the interest is to make predictions of a new replication Y j0 for study j. That is
Y j0 = (Yj10,Yj20, ...,YjI j0)

T with corresponding spatial field replicate θθθ j0 = (θ j10,θ j20, ...,θ jL j0)
T . Let X j0 and B j0

be the corresponding design and basis matrices for the linear and nonlinear effects, and D be the observed data used in
modeling. In addition, let Γ

(b)
j =(N (b),N

c(b)
j ,{θθθ

(b)
jt }t) and the collection (βββ

(b)
j ,φφφ

(b)
j ,Γ

(b)
j ,ε(b),ΛΛΛ(b)),b= 1,2, ...,B

be the post-convergence posterior samples through the MCMC technique detailed in the next section. The posterior
predictive distribution given the observed data follows as

Y j0 | X j0,B j0,D ∼
∫

π(Y j0 | X j0,B j0,βββ j,φφφ j,Γ j,ε,ΛΛΛ,D)×

π(βββ j,φφφ j,Γ j,ε,ΛΛΛ | D)d[(βββ j,φφφ j,Γ j,ε,ΛΛΛ)]

= ∑
w j0∈{0,1}

∫ ∫
π(Y j0 | X j0,B j0,βββ j,φφφ j,θθθ j0,τ j0)×

π(θθθ j0,w j0,τ j0,βββ j,φφφ j,Γ j,ε,ΛΛΛ | D)d[(βββ j,φφφ j,Γ j,ε,ΛΛΛ)]d[(θθθ j0,τ0)]

= ∑
w j0∈{0,1}

∫ ∫
π(Y j0 | X j0,B j0,βββ j,φφφ j,θθθ j0,τ j0)×

π(θθθ j0 | w j0,Γ j,ΛΛΛ)π(w j0 | ε)π(τ j0 | ΛΛΛ)×

π(βββ j,φφφ j,Γ j,ε,ΛΛΛ | D)d[(βββ j,φφφ j,Γ j,ε,ΛΛΛ)]d[(θθθ j0,τ0)]

(7.2)

where π(w j0 | ε) is a Bernoulli distribution with success probability ε , and a discrete uniform over the space {τ jt}t

for π(τ j0 | ΛΛΛ). π(βββ j,φφφ j,Γ j,ε,ΛΛΛ | D) is the posterior distribution and π(θθθ j0 | w j0,Γ j,ΛΛΛ) is the conditional prior
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distribution given as

θθθ j0 | Γ j,ΛΛΛ,w j0 = 0 ∼ 1
n j +α j

∑
k=1

δθθθ jk +
α j

n j +α j
G j,( jk) ∈ N c

j , (7.3a)

θθθ j0 | Γ j,ΛΛΛ,w j0 = 1 ∼ 1
n0 +α0

∑
uk

δθθθ uk +
α0

n0 +α0
G0,(uk) ∈ N , (7.3b)

and π(Y j0 | X j0,B j0,βββ j,φφφ j,θθθ j0,τ j0) is the data likelihood.

It is easy to draw samples of the replicate Y j0 from (7.2). w j0 is first drawn from a Bernoulli distribution,
which determines whether the specific spatial effect or shared spatial effect of the posterior samples is to be used
in the prediction. Based on the MCMC posterior samples, θθθ j0 is drawn from (7.3a) for specific spatial effect or
(7.3b) for shared spatial effect. Given θθθ j0, Y j0 is drawn from N(µµµ j0,τ j0I), µµµ j0 = XT

j0βββ j +B j0φφφ j +A j0θθθ j0, using
the posterior samples of βββ j and φφφ j and drawing τ j0 from π(τ j0 | ΛΛΛ).

7.5.1.2 Prediction of replicates of the response on new spatial locations

The interest is to make predictions on new spatial data locations (s̄1, s̄2, ..., s̄Ī0). Suppose that the correspond-
ing random field at chosen spatial knots with respect to the new locations is denoted by θ̄θθ jt = (θ̄ j1t , θ̄ j2t , ..., θ̄ jLot)

T

and the corresponding predicted response for the jth data be Ȳ jt . Again, let (βββ (b)
j ,φφφ

(b)
j ,Γ

′(b)
j ,ε(b),ΛΛΛ(b)),b= 1,2, ...,B

be the B post-convergence posterior draws from the joint posterior distribution. For any bth sample, the configuration
of the spatial effects in Γ

′(b)
j is known and contained in R

(b)
j = ({R(b)

jh } jh,{R
(b)
0h }h) as detailed in the MCMC

algorithm. For emphasis, R jh = {( jt) ∈ N c
j : θθθ jt = θθθ

?
jh} and R0h = {( jt) ∈ N : θθθ jt = θθθ

?
0h}, where θθθ

?
jh is the hth

cluster value for the specific spatial effect j and θθθ
?
0h is the hth cluster value for the shared effect. It implies that

Γ′
j ≡ {R j,θθθ

?
j}, where θθθ

?
j = (θθθ ?

j1,θθθ
?
j2, ...,θθθ

?
jn?j
,θθθ ?

01,θθθ
?
02, ...,θθθ

?
0n?0

)T . Given the observed data D , the prediction of

Ȳ jt is of interest. Thus a pair (θθθ ?
j , θ̃θθ

?
j) is formed, where θ̃θθ

?
j = (θ̃θθ

?
j1, θ̃θθ

?
j2, ..., θ̃θθ

?
jn?j
, θ̃θθ

?
01, θ̃θθ

?
02, ..., θ̃θθ

?
0n?0

)T , j = 1,2, ...,J

are vectors of n?j +n?0 unique cluster effects. Conditioned on the configuration R j, (θθθ ?
jh, θ̃θθ

?
jh)⊥ (θθθ ?

jh′ , θ̃θθ
?
jh′ ),h ̸= h

′

and assumes the base Gaussian prior distribution N(0(L j+Lo),λ
−1
j ΣΣΣ j(L j+Lo)), j = 1, ...,J, where ΣΣΣ j is the NNGP

sparse representation of the full covariance matrix constructed from the Matérn covariance function while using the
posterior estimates of the hyperparameters. Thus, the conditional distribution θ̃θθ

?
jh | θθθ

?
jh is Gaussian for all h and j.

Following from (7.2), let D be the observed data and X̃ j0 and B̃ j0 be the design and basis matrices related to the
new replicate in the new data locations, the posterior predictive of a new replication (Y j0, Ȳ j0) follows as

(Y j0, Ỹ) | (X j0, X̃ j0),(B j0, B̃ j0),D ∼

∑
w j0∈{0,1}

∫ ∫
π((Y j0, Ỹ) | (X j0, X̄ j0),(B j0, B̃ j0),βββ j,φφφ j,(θθθ j0, θ̃θθ j0),τ j0)×

π((θθθ j0, θ̃θθ j0) | w j0,(θθθ
?
j , θ̃θθ

?
j),R j,ΛΛΛ)π((θθθ

?
j , θ̃θθ

?
j) | R j,ΛΛΛ)×

π(τ j0 | ΛΛΛ)π(βββ j,φφφ j,R j,ε,ΛΛΛ,w j0 | D)d[(βββ j,φφφ j,Γ
′
j,ε,ΛΛΛ)]d[(θθθ j0, θ̃θθ j0,τ0)].

(7.4)

Observe that conditioning on R j,

π((θθθ ?
j , θ̃θθ

?
j) | R j,ΛΛΛ) = ∏

h
π((θθθ ?

jh, θ̃θθ
?
jh) | R j,ΛΛΛ)∏

h′
π((θθθ ?

0h, θ̃θθ
?
0h) | R j,ΛΛΛ)

= ∏
h

π(θ̃θθ
?
jh | θθθ

?
jh,R j,ΛΛΛ)π(θθθ

?
jh | R j,ΛΛΛ)×

∏
h′

π(θ̃θθ
?
0h | θθθ

?
0h,R j,ΛΛΛ)π(θθθ

?
0h | R j,ΛΛΛ)

= π(θθθ ?
j | R j,ΛΛΛ)∏

h
π(θ̃θθ

?
jh | θθθ

?
jh,R j,ΛΛΛ)∏

h′
π(θ̃θθ

?
0h | θθθ

?
0h,R j,ΛΛΛ)

(7.5)

The equality in (7.5) indicates that for each cluster, the field value on the new spatial location can be drawn from a
Gaussian distribution conditioning on the field value on the locations used in the modeling. The implication of (7.4)
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and (7.5) is that π(θθθ ?
j | R j,ΛΛΛ)π(βββ j,φφφ j,R j,ε,ΛΛΛ,w j0 | D) = π(w j0 | ε)π(βββ j,φφφ j,Γ

′
j,ε,ΛΛΛ | D), which is the product

of a Bernoulli distribution and the posterior distribution. Therefore, the full posterior predictive follows as

(Y j0,Ỹ) | (X j0, X̃ j0),(B j0, B̃ j0),D ∼

∑
w j0∈{0,1}

∫ ∫
π((Y j0, Ỹ) | (X j0, X̄ j0),(B j0, B̃ j0),βββ j,φφφ j,(θθθ j0, θ̃θθ j0),τ j0)×

π((θθθ j0, θ̃θθ j0) | w j0,(θθθ
?
j , θ̃θθ

?
j),R j,ΛΛΛ)∏

h
π(θ̃θθ

?
jh | θθθ

?
jh,R j,ΛΛΛ)∏

h′
π(θ̃θθ

?
0h | θθθ

?
0h,R j,ΛΛΛ)×

π(τ j0 | ΛΛΛ)π(βββ j,φφφ j,Γ
′
j,ε,ΛΛΛ | D)π(w j0 | ε)d[(βββ j,φφφ j,Γ

′
j,ε,ΛΛΛ)]d[(θθθ j0, θ̃θθ j0,τ0)].

(7.6)

where

π((θθθ j0,θ̃θθ j0) | (θθθ ?
j , θ̃θθ

?
j),R j,ΛΛΛ,w j0 = 0)

=
1

n j +α j

n?j

∑
h=1

n jhδ
(θθθ?

jh,θ̃θθ
?
jh)

+
α j

n j +α j
N(0(L j+Lo),λ

−1
j ΣΣΣ j(L j+Lo)),and

π((θθθ j0,θ̃θθ j0) | (θθθ ?
j , θ̃θθ

?
j),R j,ΛΛΛ,w j0 = 1)

=
1

n0 +α0

n?0

∑
h=1

n0hδ
(θθθ?

0h,θ̃θθ
?
0h)

+
α0

n0 +α j
N(0(L j+Lo),λ

−1
0 ΣΣΣ0(L j+Lo)).

(7.7)

n jh and n0h are the total number of replicates of the jth specific and shared effects in cluster h.

Equation 7.6 shows how samples can be drawn from the posterior predictive distribution. The idea is to
(1) draw (βββ j,φφφ j,Γ

′,ε,ΛΛΛ) from the posterior distribution and draw w j0 from a Bernoulli distribution with success
probability ε . (2) Once w j0 is determined, draw from the conditional θ̃θθ

?
jh | θθθ

?
jh if w j0 = 0 or θ̃θθ

?
0h | θθθ

?
0h if w j0 = 1

for all h based on the posterior samples. This will gives rise to the collection of smaples {(θθθ ?
jh, θ̃θθ

?
jh)}h for w j0 = 0

and {(θθθ ?
0h, θ̃θθ

?
0h)}h for w j0 = 1. (3) Draw (θθθ j0, θ̃θθ j0) from the conditional in (7.7) and draw (Y j0, Ȳ j0) from the data

distribution.

One benefit of using spatial knots in continuous spatial modeling is that it facilitates projection. This
implies that rather than selecting new spatial knots, the same spatial knots used in the modeling are used for
projection, which consequently eliminates θ̃θθ

?
from the projection steps. Thus step (2) above in the projection steps

is eliminated, and projection of the spatial effect on the new location is obtained through the projection matrix A j

and the estimated spatial field.

7.5.2 Details of the MCMC algorithm
This section describes the Markov Chain Monte Carlo method for drawing samples from the joint posterior

distribution, π(θθθ ,φφφ ,βββ ,ΛΛΛ | y) assuming equal rates of sharing. Begin by randomly assigning w jt ∈ {0,1} with
probability 1/2 and determine N and N c

j for all j. The initial values of the model parameters are drawn from their
prior distributions. More specifically, {θθθ jt} are drawn from a multivariate normal distribution centered at zero with
the corresponding prior covariance matrix {λ

−1
j ΣΣΣ j}.

Step I
Draw from the posterior conditional distribution of the spatial effect using the following posterior conditional
distributions. On one hand,

[θθθ jt ,w jt = 0 | y,∆∆∆−t
j ,N j, .]∼ ∑

k∈{t?:( jt?)∈N c
j ∧t? ̸=t}

q jtk δθθθ jk +q jt0H jt , (7.8)
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where q jtk =
v(1−ε)

n j−1+α j
N(y jt ; µµµ jtk ,τ

−1
jt I), µµµ jtk = XT

jtβββ j +B jtφφφ j +A jkθθθ jk, w− jt is a vector of all latent variables
except w jt . Moreover,

q jt0 =
vα j(1− ε)

n j −1+α j

det(2πE jt)
1/2

det(2πτ
−1
jt I)1/2det(2πλ

−1
j ΣΣΣ j)1/2

exp

(
− 1

2

(
d jt −WT

jtE jtW jt

))
and

d jt = τ jt

(
yT

jt(y jt −2XT
jtβββ j −2B jtφφφ j)+(XT

jtβββ j)
T (XT

jtβββ j)+2(XT
jtβββ j)

T (B jtφφφ j)+(B jtφφφ j)
T (B jtφφφ j)

)
.

H jt is a posterior distribution assuming G j as the prior, and it is given as H jt = N(θθθ jt ;E jtW jt ,EEE jt), where
W jt = τ jtAT

jt

(
y jt −B jtφφφ j −XT

jtβββ j

)
,E−1

jt = τ jtAT
jtA jt +λ jΣΣΣ

−1
j . On the other hand,

[θθθ jt ,w jt = 1 | y,∆∆∆− jt
0 ,N , .]∼ ∑

(uk)∈{( jt)?∈N :( jt)? ̸=( jt)}
qutk δθθθ uk +q0t0H0t , (7.9)

where qutk =
vε

n0−1+α0
N(y jt ; µµµ jtuk

,τ−1
jt I),µµµ jtuk

= XT
jtβββ j +B jtφφφ j +Aukθθθ uk. H0t is a posterior distribution given as

H0t = N(θθθ jt ;E0tW jt ,E0t), where E−1
0t = (τ jtAT

jtA jt +λ0ΣΣΣ
−1
0 ) and

q0t0 =
vα0ε

n0 −1+α0

det(2πE0t)
1/2

det(2πτ
−1
jt I)1/2det(2πλ

−1
0 ΣΣΣ0)1/2

exp

(
− 1

2

(
d jt −WT

jtE0tW jt

))
.

v is obtained such that ∑k∈{t?:( jt?)∈N c
j ∧t? ̸=t} q jtk + q jt0 +∑(uk)∈{( jt)?∈N :( jt)? ̸=( jt)} qutk + q0t0 = 1. That is, for any

chosen pair (θθθ jt ,w jt = 0), q jtk is the probability that θθθ jt belongs to the specific data j and takes up the value of
θθθ jk,k ̸= t and with probability q jt0 , it takes up a new value from H jt . Similar for the pair (θθθ jt ,w jt = 1), qutk is
the probability that θθθ jt belongs to the shared component and takes up the value θθθ uk, which belongs to the shared
set, and with probability q0t0 , θθθ jt takes up a new value drawn from the posterior H0t based on the shared prior
distribution G0. After sampling θθθ jt , update the set N and repeat the process for all j = 1,2, ...,J and t = 1,2, ...,n j.
Step II
Given the updated set of all pairs (θθθ ,w) = {(θθθ jt ,w jt), j = 1,2, ...,J, t = 1,2, ...,n j}, obtain the clusters and remix
the cluster effects. Let θθθ

?
jh be the jth data specific spatial effect of cluster h and let θθθ

?
0h be the shared spatial effect

for cluster h, and R jh = {( jt) ∈ N c
j : θθθ jt = θθθ

?
jh} and R0h = {( jt) ∈ N : θθθ jt = θθθ

?
0h} are the corresponding index

sets. Given R jh, update the cluster spatial effect from the posterior distribution based on the base prior distribution
G j with those responses whose indexes are in R jh. The posterior distributions follow as

θθθ
?
jh | y,R jh, .∼ N(µµµ jh,ΣΣΣ jh),

θθθ
?
0h | y,R0h, .∼ N(µµµ0h,ΣΣΣ0h),

(7.10)

where µµµ jh = ΣΣΣ jhW jh,ΣΣΣ
−1
jh =

(
∑( jt)∈R jh

τ jtAT
jtA jt + λ jΣΣΣ

−1
j

)
and W jt = ∑( jt)∈R jh

τ jtAT
jt

(
y jt −XT

jtβββ j −B jtφφφ j

)
,

µµµ0h = ΣΣΣ0hW0h, ΣΣΣ
−1
0h =

(
∑( jt)∈R0h

τ jtAT
jtA jt +λ0ΣΣΣ

−1
0

)
and W0h = ∑( jt)∈R0h

τ jtAT
jt

(
y jt −XT

jtβββ j −B jtφφφ j

)
. Based

on these updates of the cluster values, the elements of each cluster are assigned their cluster values to proceed in the
estimation process.
Step III
Update the hyperparameters α j. For a given j, let n?j be the number of clusters for the specific spatial effect and n?0
be the number of clusters in the shared spatial effect. That is, for a fixed j, n?j is the number of unique spatial effect
in {θθθ jt}t for which the latent variable w jt = 0 and n?0 is the number of unique spatial effect in {θθθ jt} jt for which
the latent variable w jt = 1, and consequently R jh,h = 1,2, ...,n?j and R0h,h = 1,2, ...,n?0. Let γ j be a latent variable
such that given the current value of α j and n?j , γ j ∼ Beta(α j +1,n?j) and α j is then updated from the mixture

α j | γ j,n?j ∼ πα j Gamma(a j +n?j ,b j − logγ j)+(1−πα j)Gamma(a j +n?j −1,b j − logγ j),

πα j = cα j/(1+ cα j),cα j =
a j +n?j −1

n j(b j − logγ j)
, j = 1,2, ...,J,

(7.11)

which also applies for α0.
Step IV
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Next, update the linear and nonlinear effects. Conditioning on the spatial effects, the response variables for each
study are independent of those in a different study, and thus, the posterior conditional distributions of βββ j and φφφ j

only consider the responses from the jth study which are given as

βββ j | y, .∼ N(µµµβ j
,ΣΣΣβ j),

φφφ j | y, .∼ N(µµµφ j
,ΣΣΣφ j),

(7.12)

where µµµβ j
=ΣΣΣβ j Wβ j ,ΣΣΣ

−1
β j

=
(

∑
n j
t=1 τ jtX jtXT

jt +Qβ j

)
and Wβ j =∑

n j
t=1 τ jtX jt

(
y jt −B jtφφφ j−A jtθθθ jt), µµµφ j

=ΣΣΣφ j Wφ j ,ΣΣΣ
−1
φ j

=(
∑

n j
t=1 τ jtBT

jtB jt +Qφ j

)
, Wφ j = ∑

n j
t=1 τ jtBT

jt

(
y jt −XT

jtβββ j −A jtθθθ jt

)
,Q−1

φ j
= τ

−1
φ j

RRT, and Q−1
β j

= τ
−1
β j

I, with fixed
hyperparameters τβ j and τφ j . Due to the rank deficiency of the nonlinear effects, a sum to zero constraint, ∑r φ jr = 0
is imposed for each study effect.
Step V
Similarly, update the precision hyperparameters τ jt from their corresponding posterior conditional distribution. Given
the clustering indices, the prior distribution for each cluster spatial field is known, and thus, the posterior conditional
follows as τ jt | y jt .∼ Gamma(cτ jt ,dτ jt ), where cτ jt = 0.5(I j +2aτ jt ) and dτ jt = 0.5

(
(y jt −µµµ jt)

T (y jt −µµµ jt)+2bτ jt

)
.

Similarly, update λ j, j = 1,2, ...,J and λ0 from the posterior conditional distribution. That is, λ j | y,{R jh}h. ∼
Gamma(λa j ,λb j), where λa j = 0.5(n?jL j + 2aλ j) and λb j = 0.5(∑

n?j
h=1 θθθ

?T
jh ΣΣΣ jθθθ

?
jh + 2bλ j). This also applies to λ0.

Update τβ j | .∼ Gamma(0.5p j +aβ j ,0.5βββ
T
j βββ j +bβ j) and τφ j | .∼ Gamma(0.5r j +aφ j ,0.5φφφ

T
j (RRT )−1φφφ j +bφ j),

where p j and r j are the corresponding vector length of the fixed and nonlinear effects.
Step VI
Next, update the weight parameter ε from the posterior conditional. Let N1 = ∑

J
j=1 ∑

n j
t=1 w jt and N0 = n−N1,n =

∑ j n j. Based on the prior distribution given in Equation (6.10) for all t and j and the Beta prior for ε , the posterior
conditional distribution follows as

ε | N ,N c. ∝(1− ε)N0ε
N1
(

Beta(ε;aε ,bε)
)

∼Beta(ε;N1 +aε ,N0 +bε),
(7.13)

That is, ε is drawn from a Beta distribution. Note that the posterior conditional given in Equation 7.13 depends on
the data through N0 and N1, which are updated at every step in the chain.
Step VII
Recall that for each base prior distribution of the spatial component, there are associated parameters σ2

j , ν j, and
κ j that control the variance (partial sill), smoothness, and range of the stationary spatial field, which may be
difficult to elicit. The Metropolis-Hastings algorithm is used to update each parameter. By construction, in this work,
σ2

j = λ
−1
j τ

−1
θ

, where τθ is a fixed hyperparameter, and (κ j,ν j) are updated from their joint conditional posterior
distribution. Conditioning on the latent variable and assigning an appropriate joint prior distribution, the posterior
conditional distribution follows as

(κ j,ν j) | {R jh}h, . ∝

n?j

∏
h=1

∏
( jt),∈R jh

N
(
θθθ jt ;0,λ−1

j ΣΣΣ j
)
π(κ j,ν j), j = 1,2, ...,J and

(κ0,ν0) | {R0h}h, . ∝

n?0

∏
h=1

∏
( jt)∈R0h

N
(
θθθ jt ;0,λ−1

0 ΣΣΣ0
)
π(κ0,ν0).

(7.14)

An independent lognormal prior distribution for π(κ j,ν j), j = 1,2, ...,J and π(κ0,ν0) were assumed. The parame-
ters are then updated using the Metropolis-Hastings algorithm. An independent truncated normal proposal distribu-
tion was used. Suppose at iteration t the current value are (κt

j ,ν
t
j ), proposals are drawn from q(κ?

j ,ν
?
j | κt

j ,ν
t
j ) and

subjected to a constraint det(ΣΣΣ j)> 0. The acceptance probability is then computed as
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ζ j = min

1,
π

(
κ?

j ,ν
?
j | {R jh}h, .

)
q(κt

j ,ν
t
j | κ?

j ,ν
?
j )

π

(
κt

j ,ν
t
j | {R jh}h, .

)
q(κ?

j ,ν
?
j | κt

j ,ν
t
j )

 . (7.15)

Draw U ∼Uni f orm(0,1) and set (κt+1
j ,νt+1

j ) = (κ?
j ,ν

?
j ) if U < ζ j, otherwise, set (κt+1

j ,νt+1
j ) = (κt

j ,ν
t
j ).

The R code used for the estimation is deposited on a GitHub repository, accessible through the link
https://github.com/eosafu/mixtureDPspatial.

Figure 51 – TMS data analysis trace plot of some selected parameters and the histogram of the MCMC
chain of the log-likelihood. The histogram shows the first chain of the log-likelihood over-
lapped on the second chain, indicating an overall convergence of the chain.

7.6 Correcting for spatial confounding
A situation where the observed fixed effect covariates in X are correlated with the spatial effect can lead to

estimation bias, especially when the spatial effect has a highly effective range of spatial autocorrelation (PACIOREK,
2010). This problem is referred to as spatial confounding. In the presence of spatial confounding, the inference on
the importance of the fixed effect covariates based on βββ estimates can be misleading (HANKS et al., 2015). The
restricted spatial regression (RSR) technique has been used to alleviate spatial confounding. See for example, Hanks
et al. (2015) and Azevedo, Prates and Bandyopadhyay (2022). The RSR technique constrains the spatial effect to be
orthogonal to the fixed effects in X (i.e. XAθθθ = 0). Suppose the nonlinear effect Bφφφ is not confounding with the
spatial component in the linear predictor µµµ = XT βββ +Bφφφ +Aθθθ . Within the modeling framework developed in this
work, the conditional posterior distribution of the fixed effect follows as

βββ | y,θθθ , .∼ N(µµµβ ,ΣΣΣβ ),

https://github.com/eosafu/mixtureDPspatial
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µµµβ = ΣΣΣβ Wβ ,ΣΣΣ
−1
β

=
(

τXXT + τβ

)
and Wβ = τX

(
y−Bφφφ −Aθθθ)

)
. The "." is used to denote other parameters.

Using the law of total expectation and variance, the marginal mean and variance are

E(βββ | y, .) = E(E(βββ | y,θθθ , .) | y)

= E

((
τXXT + τβ I

)−1
τX
(

y−Bφφφ −Aθθθ

)
| y

)

=
(

XXT + τ
?
β

I
)−1

X
(

y−Bφφφ −AE(θθθ | y)
)

= βββ R −Uφφφ −Vθ̂θθ ,

Var(βββ | y, .) = E(Var(βββ | θθθ ,y) | y)+Var(E(βββ | θθθ ,y) | y)

=τ
−1
(

XXT + τ
?
β

I
)−1

+
(

XXT + τ
?
β

I
)−1

XAVar(θθθ | y)AT XT
(

XXT + τ
?
β

I
)−1

where τ?
β
= τβ/τ , θ̂θθ =E(θθθ | y, .), U=

(
XXT +τ?

β
I
)−1

XB, V=
(

XXT +τ?
β

I
)−1

XA, and βββ R is the ridge regression
estimate. By adding the spatial effect to the model, the Bayes estimator (under mean square error) is a shift on
the estimator without the effect and the marginal variance increases. Carefully examining the equation above, the
prediction of y based on the fixed effect is XT

(
βββ R −Uφφφ −Vθ̂θθ

)
. When the spatial effect is correlated with the fixed

effect, then the quantity XT Vθ̂θθ = P(τ?
β
)Aθ̂θθ , where P(τ?

β
) = XT

(
XXT + τ?

β
I
)−1

X in the prediction of y indicates
a duplicated information. To ensure orthogonality, define the new adjusted spatial effect as u = (I−P(τ?

β
))Aθθθ ,

implying that as τβ → 0 =⇒ Xu → 0, and it is exact for a flat prior for βββ (τβ = 0). Thus, the adjusted linear
predictor associated with y is given as

µµµ = XT
βββ
?+Bφφφ +A?

θθθ , (7.16)

where A? = (I−P(τ?
β
))A. Here, P(0) is the projection of the spatial effect onto the space of X. The linear predictor

7.16 is similar to those used in Chapter 4, 5, and 6, and hence can be implemented in a straightforward manner for
the developed models. For the developed interface in Chapter 4, the predictor was achieved as follows: obtain the
orthogonal matrix X? from the QR decomposition of X. Then constrain the spatial effect such that X?Aθθθ = 0. The
constraint is easily achieved in inla() function by using the argument extraconstr and e in the function f()
that defined the spatial model. That is,

f(s, model, extraconstr =list(A=G),e=rep(0,p)), (7.17)

where s is the observed spatial covariate, “model” is the spatial model, G = X?T A, rep(0,p) is a vector of zeroes
with size p, which is the number of fixed effects covariates including the intercept.
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