• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
Document
Author
Full name
Juliana Scudilio Rodrigues
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2016
Supervisor
Committee
Pereira, Gustavo Henrique de Araujo (President)
Botter, Denise Aparecida
Venezuela, Maria Kelly
Title in Portuguese
Análise de diagnóstico em modelos de regressão ZAGA e ZAIG
Keywords in Portuguese
Análise de diagnóstico
Fundo de investimento
Modelo ZAGA
Modelo ZAIG
Modelos de regressão inacionado no zero
Resíduo quantílico
Abstract in Portuguese
Resíduos desempenham um papel importante na verificação do ajuste do modelo e na idenfiticação de observações discrepantes e/ou influentes. Neste trabalho, estudamos duas classes de resíduos para os modelos de regressão gama inflacionados no zero (ZAGA) e gaussiana inversa inflacionados no zero (ZAIG). Essas classes de resíduos são uma função de um resíduo para o componente contínuo do modelo e da estimativa de máxima verossimilhança da probabilidade da observação assumir o valor zero. Estudos de simulação de Monte Carlo foram realizados para examinar as propriedades dessas classes de resíduos em ambos os modelos de regressão (ZAGA e ZAIG). Os resultados mostraram que um resíduo de uma dessas classes tem algumas propriedades semelhantes à da distribuição normal padrão nos modelos estudados. Além desse objetivo principal, descrevemos os modelos de regressão ZAGA e ZAIG, estudamos propriedades de alguns resíduos em modelos lineares generalizados com resposta gama e gaussiana inversa e discutimos outros aspectos de análise de diagnóstico nos modelos ZAGA e ZAIG. Para finalizar, foi feita uma aplicação com dados reais de fundos de investimentos, em que ajustamos o modelo ZAIG, para exemplificar os tópicos discutidos e mostrar a importância desses modelos e as vantagens de um dos resíduos estudados na análise de dados reais.
Title in English
Diagnostic analysis in ZAGA and ZAIG regression models
Keywords in English
Diagnostic analysis
Inflated regression models
Investiment funds
Quantile residual
ZAGA models
ZAIG models
Abstract in English
Residuals play an important role in checking model adequacy and in the identification of outliers and influential observations. In this paper, we studied two class of residuals for the zero adjusted gamma regression model (ZAGA) and the zero adjusted inverse Gaussian regression model (ZAIG). These classes of residuals are function of a residual for the continuous component of the model and the maximum likelihood estimate of the probability of the observation assuming the zero value. Monte Carlo simulation studies are performed to examine the properties of this class of residuals in both models (ZAGA and ZAIG). Results showed that a residual of one of these class has some similar properties to the standard normal distribution in the studied models. We also described ZAGA and ZAIG regression models, studied properties of some residuals in generalized linear models with response gamma and inverse Gaussian and discussed other aspects of diagnostic analysis in ZAGA and ZAIG models. To finsih,we presented a real data set application from invesment funds of Brazil. We fitted the ZAIG model to illustrate the topics discussed and showed the importance of these models and the advantages of one of the studied residuals in the analysis of real dataset.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-08-12
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.