• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.104.2017.tde-11012017-103139
Document
Auteur
Nom complet
Victor Sae Hon Sung
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2015
Directeur
Jury
Pinto Junior, Dorival Leão (Président)
Catuogno, Pedro Jose
Ruffino, Paulo Régis Caron
Titre en portugais
Hedging no modelo com processo de Poisson composto
Mots-clés en portugais
Mean-variance hedging
Mercado futuro Hedging
Modelo com processo de Poisson composto
Princípio da programação
Processo de Poisson composto
Resumé en portugais
Interessado em fazer com que o seu capital gere lucros, o investidor ao optar por negociar ativos, fica sujeito aos riscos econômicos de qualquer negociação, pois não existe uma certeza quanto a valorização ou desvalorização de um ativo. Eis que surge o mercado futuro, em que é possível negociar contratos a fim de se proteger (hedge) dos riscos de perdas ou ganhos excessivos, fazendo com que a compra ou venda de ativos, seja justa para ambas as partes. O objetivo deste trabalho consiste em estudar os processos de Lévy de puro salto de atividade finita, também conhecido como modelo de Poisson composto, e suas aplicações. Proposto pelo matemático francês Paul Pierre Lévy, os processos de Lévy tem como principal característica admitir saltos em sua trajetória, o que é frequentemente observado no mercado financeiro. Determinaremos uma estratégia de hedging no modelo de mercado com o processo de Poisson composto via o conceito de mean-variance hedging e princípio da programação dinâmica.
Titre en anglais
Hedging in compound Poisson process model
Mots-clés en anglais
Compound Poisson process
Dynamic programming
Futures hedging
Mean-variance hedging
Resumé en anglais
The investor, that negotiate assets, is subject to economic risks of any negotiation because there is no certainty regarding the appreciation or depreciation of an asset. Here comes the futures market, where contracts can be negotiated in order to protect (hedge) the risk of excessive losses or gains, making the purchase or sale assets, fair for both sides. The goal of this work consist in study Lévy pure-jump process with finite activity, also known as compound Poisson process, and its applications. Discovered by the French mathematician Paul Pierre Lévy, the Lévy processes admits jumps in paths, which is often observed in financial markets. We will define a hedging strategy for a market model with compound Poisson process using mean-variance hedging and dynamic programming.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-01-18
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.