• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.104.2020.tde-10062020-104710
Document
Auteur
Nom complet
Gustavo Alexis Sabillón Lee
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2020
Directeur
Jury
Zuanetti, Daiane Aparecida (Président)
Ferreira, Ricardo Felipe
Saraiva, Erlandson Ferreira
Titre en portugais
Algoritmos de estimação para modelos Markovianos não-homogêneos
Mots-clés en portugais
Cadeia de Markov
Estados ocultos
Matriz de transição
Modelo Markoviano oculto
Resumé en portugais
Os modelos Markovianos ocultos são um paradigma estatístico que podem ser utilizados para modelar processos estocásticos onde valores observáveis dependem diretamente de uma sequência de variáveis aleatórias não observáveis. No modelo Markoviano oculto o sistema que está sendo modelado é considerado um processo de Markov com estados não observáveis (isto é, ocultos) e em cada estado oculto temos a emissão de um valor observável. Os modelos Markovianos ocultos podem ser homogêneos ou não-homogêneos. O foco principal deste trabalho, serão os modelos Markovianos não-homogêneos. Neste trabalho, apresentamos alguns procedimentos de estimação utilizados com modelos Markovianos. A estimação dos parâmetros é realizada sob abordagem Bayesiana e frequentista, fazendo uma comparação da performance dos mesmos usando algumas métricas como o erro quadrático médio e o viés dos estimadores. As comparações dos modelos são desenvolvidas utilizando diferentes critérios para comparação de modelos como o Bayes Information Criterion e o Deviance Information Criteria.
Titre en anglais
Estimation algorithms for non-homogeneous Markov models
Mots-clés en anglais
Hidden Markov model
Hidden states
Markov chain
Transition matrix
Resumé en anglais
Hidden Markov models are a statistical paradigm which can be used to mode stochastic processes where the observable values are directly dependent on a sequence of hidden random variables. In the context of the hidden Markov model, the system being modeled is considered a Markov process with non-observable hidden states, and for each hidden state we have the emission of an observable value. Hidden Markov models can be homogeneous or non-homogeneous. In this investigation, we present estimation procedures used with Markov models. Parameters estimation is done under Bayesian and frequentist perspectives, comparing the performance of these methods using metrics such as mean squared error and bias. Model comparison is done using criteria such as the Bayes Information Criterion and the Deviance Information Criterion.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-06-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.