• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.104.2022.tde-10032022-163610
Document
Auteur
Nom complet
Mariella Ananias Bogoni
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2022
Directeur
Jury
Zuanetti, Daiane Aparecida (Président)
Paz, Rosineide Fernando da
Zanini, Carlos Tadeu Pagani
Titre en portugais
Seleção Bayesiana de variáveis para modelos de mistura de regressão logística com variáveis latentes Pólya-Gamma
Mots-clés en portugais
G-priori
Pólya-Gamma-sampling
Priori spike e slab
Seleção de variáveis
Resumé en portugais
Neste trabalho, métodos Bayesianos para estimação e seleção de variáveis em um modelo de mistura de regressão logística são apresentados. Com o objetivo de simplificar a inferência Bayesiana e ganhar eficiência computacional, a abordagem de aumento de dados com variáveis latentes Pólya-Gama é estendida para modelos de mistura de regressão logística. Através dela, o algoritmo amostrador de Gibbs é aplicado para a estimação do modelo completo, com a estimação do número de componentes da mistura sendo feita através de critérios Bayesianos de seleção de modelos. Para a seleção de variáveis, duas distribuições a priori para os coeficientes de regressão são investigadas, adicionando um segundo conjunto de variáveis latentes para indicar a presença e ausência das variáveis preditoras em cada componente da mistura. De modo análogo ao modelo completo, o algoritmo amostrador de Gibbs é aplicado no modelo com a seleção de variáveis e a conjugação obtida para a distribuição dos coeficientes de regressão, com a inclusão das variáveis Pólya-Gama, nos permite calcular analiticamente a verossimilhança marginal e ganhar eficiência computacional no processo de seleção de variáveis. Para analisar a performance dos métodos, as metodologias apresentadas são aplicadas em dados simulados e reais.
Titre en anglais
Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
Mots-clés en anglais
G-prior
Pólya-Gamma-sampling
Spike and slab prior
Variable selection
Resumé en anglais
In this work, Bayesian methods for estimating and selecting variables in a mixture of logistic regressions model are presented. In order to simplify its Bayesian estimation, we extend the data augmentation approach with Pólya-Gamma random variables to the mixture of logistic regression models. Through the data augmentation approach, we present a Gibbs sampling algorithm for estimating the full model, and the number of components in the mixture is identified by Bayesian model selection criteria. In the model with variable selection, we investigate the performance of two prior distributions for the regression coefficients, adding a second set of latent variables to indicate the presence and non-presence of the predictor variables at each component of the mixture. Analogously to the full model, a Gibbs sampling algorithm is applied to the model with variable selection and the conjugation obtained for the distribution of the regression coefficients, through the inclusion of Pólya-Gamma variables, allows us to analytically calculate the marginal likelihood and gain computational efficiency in the variable selection process. To analyse the performance, the presented methodologies are applied in simulated and real data.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
mariella_revisada.pdf (1.10 Mbytes)
Date de Publication
2022-03-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.