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ABSTRACT

MARTINS, T. Bayesian inference for term structure models. 2022. 93 p. Dissertação (Mes-
trado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

We explore recent advances in Bayesian methods in order to estimate the Vasicek, CIR and
dynamic Nelson-Siegel (DNS) models for term structure of interest rates. The models are
specified as state space time series. The main goal of this work is assessing and comparing the
forecasting abilities of each model with respect to the observed data via mean absolute error.
When estimated with synthetic simulated datasets, the models are able to successfully recover
the latent vectors. As for the forecasting abilities, the multifactor models generally deliver the
best predictions. The relevance of this work lies in integrating novel computational techniques
for Bayesian inference with canonical models from the field of financial economics. Several
aspects of both fields are discussed throughout the text.

Keywords: Affine interest rate models, Dynamic Nelson-Siegel, Bayesian inference, State space
time series, Asset pricing.





RESUMO

MARTINS, T. Inferência bayesiana para modelos da estrutura a termo. 2022. 93 p. Disser-
tação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2022.

Exploramos avanços recentes em métodos bayesianos para estimar os modelos de Vasicek, CIR e
Nelson-Siegel dinâmico para a estrutura a termo da taxa de juros. Os modelos são especificados
na forma de séries temporais de espaço de estados. O objetivo principal deste trabalho é analisar
e comparar as habilidades de previsão de cada modelo em relação aos dados observados, por
meio do desvio médio absoluto. Quando estimados com conjuntos de dados simulados sintéticos,
os modelos conseguem recuperar os vetores latentes. Com relação às habilidades preditivas, os
modelos multifatores geralmente realizam as melhores previsões. A relevância deste trabalho está
em integrar novas técnicas computacionais para inferência bayesiana com modelos canônicos da
área de economia financeira. Diversos aspectos de ambos os campos são discutidos ao longo do
texto.

Palavras-chave: Modelos afins de taxas de juros, Nelson-Siegel dinâmico, Inferência bayesiana,
Modelos espaço de estados, Precificação de ativos.
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CHAPTER

1
INTRODUCTION

The term structure of interest rates consists of a panel of yields for bonds with similar
characteristics, and each of the bonds’ expiration rates, or maturities. The graphical representation
of the spot rates with each one of the maturities, at a given instant, is known as the yield curve. It
is also common to refer to the term structure as “the yield curve”. The term structure is a key
object of study in economics, as it is formed through the transactions of bonds in the market and
represents the market agents’ expectations of the future.

As the longer and shorter maturity yields contain information about each other, this needs
to be taken into account for statistical modelling of the term structure. Some of the most common
techniques include specifying the panel of observed yields as a function of latent variables,
known as factors. Models such as the ones by Vasicek (1977), Cox, Ingersoll and Ross (1985) or
Diebold and Li (2006) can be written in state space form, and estimation can be carried out with
appropriate statistical tools.

Bayesian estimation of state space models have become commonplace in the last years,
especially with the development of computational tools such as Markov chain Monte Carlo.
Practical advantages of these techniques, such as increased flexibility in specification of larger
models, are becoming evident. Theoretical considerations are also relevant as a justification
for using Bayesian methods. Also, some of the novel procedures in Bayesian modelling and
computation, such as Hamiltonian Monte Carlo algorithms, can be useful in estimating financial
time series models.

Our main goal in this work is using the Bayesian probabilistic framework to obtain
posterior distributions of spot rate forecasts from term structure models. First, we estimate the
models with simulated artificial data, in order to assess computational issues and parameter
estimation, an approach justified by Gelman et al. (2020). Then, we fit the model with real data
and show how to obtain the posterior distribution of forecasts, as well as computing a measure
of error based on the absolute loss function.
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Chapter 2 presents a literature review of yield curve modelling and some of the most
common statistical models, as well as theoretical and practical aspects of Bayesian inference.
Chapter 3 describes our methodology and statistical models, including the estimation techniques.
Chapter 4 presents the results for estimation with simulated data, and observations about the
estimated and true state variable vectors. Chapter 5 presents estimation results for real data,
together with the model comparison via mean absolute error. Chapter 6 concludes with a brief
discussion of the results, and some possible further directions for research.
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CHAPTER

2
LITERATURE REVIEW

In this chapter we present a literature review of term structure modelling, as well as the
definition of some terms used in financial economics. We then proceed in listing some of the most
common term structure models. We cite some of the relations between the term structure and
macroeconomic variables, justifying the relevance of term structure modelling to monetary and
fiscal policy. In Section 2.2 we list both theoretical and practical aspects of Bayesian inference
for statistical time series models.

2.1 Yield curve and asset pricing

2.1.1 The yield curve: spot and forward rates

Modelling of the term structure of interest rates is of great relevance in areas such as
economics and finance. Unlike the modelling of one stock price, where there is only one observed
variable, in the case of term structure modelling the data consists of a panel of observed interest
rates, each one with a different time to maturity.1 The yield curve is the graphical representation
of each rate with its respective maturity. A statistical model for the term structure needs to take
into account the joint dynamics of all observed rates. The yield curve is commonly seen in three
different shapes: flat, steep and inverted, as presented in Figure 1. A statistical model for the
yield curve ideally should be able to replicate those patterns.

The yield curve can represent the yield to maturity (YTM) of coupon bonds, however it
is also very common to work with the zero-coupon curve.2 For the US case, the zero-coupon
curve can be obtained through a process called stripping (FABOZZI, 2007, p. 81).

The yields on zero-coupon bonds are called spot rates, and the yield curve for the spot
rates is the term structure of interest rates (FABOZZI, 2007, p. 82). As the spot rates are not

1 The maturity is the date when the loaned amount is due to be paid back.
2 The YTM is the rate sets a bond’s cash flow at present value equal to its market price plus interest



20 Chapter 2. Literature review

Figure 1 – Three different yield curve shapes for US Treasury yield data

Note – The vertical axis contains the yields and the horizontal axis denotes time to maturity in years.

Source: Elaborated by the author.

always observable, statistical procedures such as bootstrapping can be used in order to construct
the term structure from the observed curves (FABOZZI, 2007, p. 135).

The final type of yield curve is the forward curve, derived from the forward rates. A
forward rate is a rate that can be “locked in” at a present instant for a transaction that will take
place between two future instants (JAMES; WEBBER, 2000, p. 40). Forward rates are also not
observable, so implied forward rates are obtained from the spot rates (FABOZZI, 2007, p. 148).

It is also possible to define spot and forward rates mathematically. A spot interest rate
RS(t,T ) is a rate observed at time t for a period that extends from t until T , t < T . A forward
rate RF(t,T1,T2) is an interest rate locked in at instant t for a transaction that will supposedly
take place between T1 and T2, with t < T1 < T2.

As it was mentioned before, yield curves are usually calculated for zero-coupon bonds,
i.e., bonds that pay interest only at the maturity date.3 Although the spot yield curve specifies
only rates observed at the present instant t, implied forward rates are obtained by the following
relation:

(1+RS(t,T2))
T2 = (1+RS(t,T1))

T1(1+RF(t,T1,T2))
T2−T1 . (2.1)

The assumption that current implied forward rates are unbiased estimates of future spot
rates is known as the expectations hypothesis. If the expectations hypothesis is true, the forward
rate in equation (2.1) will be the average of the spot rate between T1 and T2. In other words,
holding either a long bond or a sequence of short bonds over the same time period should yield
the same as the term premium (the excess return on long over short bonds) is constant over time
(CAMPBELL, 2017).

Fama and Bliss (1987) test the empirical validity of the expectations hypothesis and
conclude that the term premiums are not constant over time but related to the business cycle.
They also conclude that current forward rates perform badly at forecasting short-term changes
in interest rate. However, when the forecasting window is increased (over 1 year), the forward

3 Also worth of notice is that the yield curve is commonly calculated for bonds assumed as free of credit
and liquidity risks, usually government (sovereign debt) bonds.
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rates are better at predicting changes, a fact the authors attribute to a mean-reverting tendency in
interest rates.

Additional empirical tests of the expectations hypothesis include Froot (1989), which
concludes that the hypothesis holds in the long-term but not in the short-term due to the time-
varying term premium. Campbell and Shiller (1991) also arrive to a similar conclusion regarding
the increased predictability of forward rates in time horizons larger than a year. Cochrane and
Piazzesi (2005) forecast excess return on long bonds by means of a novel predictor, a linear
combination of forward rates which is also connected to the business cycle, and attain high
predictability. If the expectations hypothesis is perfectly valid, there is no need to model the
yield curve, as all future (forward) rates can be inferred from the current spot rates.

2.1.2 Asset pricing: risk neutrality, complete markets and arbitrage

The main goal of asset pricing theory in financial economics is to study agents’ behavior
in trading financial assets on the market. As the future payoff of these assets involves uncertainty,
an expected utility framework must be developed in order to study the behavior of agents in face
of uncertainty and risk.

Expected utility theory is the benchmark framework in economics to study how agents
make decisions when faced with random payoffs. The expected utility of the random payoff X is
given by E[u(X)] =

∫
∞

−∞
u(x) f (x)dx, where u(x) is the utility assigned to outcome x and f (x) is

the probability density function of X . In this context the random variable X can also be referred
to as a lottery. The Von Neumann-Morgenstern utility theorem states that the agent will prefer
lottery X to lottery Y if and only if E[u(X)]> E[u(Y )]. Each agents’ preferences will define the
functional forms of u(x), and a very commonly used form is u(x) = log(x) because it can model
risk aversion. Figure 2 represents three patterns for the utility of income functions: risk averse,
risk seeking and risk neutral, respectively. As it can be seen, the marginal utility of income is
diminishing for the risk averse, constant for the risk neutral and increasing for the risk seeking
case.

Defining the set of every possible future states of the economy, contingent claims are
securities that pay 1 if a certain state occurs and 0 for any other state. A market is said to be
complete if every contingent claim can be replicated, making it possible for investors to “bet” on
the occurrence of any of the future states (COCHRANE, 2009, p. 54).

The law of one price states that assets traded on the market with identical payoffs must
have the same price (COCHRANE, 2009, p. 66). If this were not true, it would be possible to
have a riskless profit by buying the same asset at the lower price and selling it at the higher price.
Although it is common in non-technical language to denote “arbitrage” as violations of the law
of one price, the word “arbitrage” in finance theory has a wider meaning (COCHRANE, 2009,
p. 70).
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Figure 2 – Utility of income functions for: (a) risk averse; (b) risk seeking; (c) risk neutral agents

Source: Pindyck and Rubinfeld (2017).

Arbitrage is defined as the opportunity to invest in assets with payoffs that are non-
negative for all states and positive for at least one state with non-null probability, that is, obtain a
return greater than the risk-free rate without taking on additional risk.4 From there, the absence
of arbitrage can be stated as, if one payoff dominates another, then its price is necessarily
higher (COCHRANE, 2009, p. 70), a definition that might be helpful in drawing analogies with
statistical decision theory (DEGROOT; SCHERVISH, 2012, p. 458).

Pricing an asset consists of discounting its future payoffs to present value, and the
stochastic discount factor (SDF) is the random variable that connects both (COCHRANE, 2009,
p. 16). The SDF is a function of investors’ marginal utilities, which by themselves are functions
of future consumption, a random variable. Therefore, the SDF is also a random variable, and
asset pricing would require, at first, knowledge of the investors’ marginal utility functions. As
a matter of fact there is a more simple way of doing this calculation, known as risk-neutral
pricing, which consists in obtaining a set of risk-neutral probabilities. The price of an asset in the
risk-neutral world shall be equal to its expected future payoff discounted by the risk-free rate

4 The payoff of an asset at instant T corresponds to its price at T plus any cash flow, e.g., dividends paid
from the present instant t up to T .



2.1. Yield curve and asset pricing 23

(HULL, 2009, p. 300).5

The risk-neutral probabilities can only be obtained in a complete market with no arbitrage.
A complete market implies a stochastic discount factor exists, and, also in the absence of arbitrage,
that the SDF is positive and unique.

2.1.3 Affine term structure models

There are many possible approaches for statistical modelling of the term structure, and
the affine models are among some of the most common models in the asset pricing literature.
The term “affine model” can have many different meanings, therefore we shall stick to the
one by Piazzesi (2010), which defines affine models as any arbitrage-free model where the
observed bond yields are affine functions of a state vector. In mathematical notation, this means
the logarithm of the bond price Pt(τ), with time to maturity τ , is

lnPt(τ) = A(τ)+B(τ)′xt , (2.2)

which means lnPt(τ) is an affine function of a state vector xt .

The price of a bond at maturity τ = 0 is, by definition, equal to 1, so the price of a bond
is given by

Pt = E∗
[

exp
{
−
∫ t+τ

t
rsds

}]
, (2.3)

and Pt is related to the spot yield Yt(τ) of a bond through

Yt(τ) =−
lnPt(τ)

τ
=−A(τ)+B(τ)′xt

τ
,

where rt is the short rate, that is, the rate as τ → 0, and E∗ denotes that the expectation is taken
under risk-neutral probabilities. The short rate shall be a function of the state vector, and, in
affine term structure models, the function is affine by assumption (PIAZZESI, 2010). More
precisely, the short rate is defined by

rt = δ0 +δ
′
1xt ,

and, in particular cases where the short rate itself is the only factor, we have δ0 = 0 and δ1 = 1.
The right-hand side of (2.3) is assumed to be of the form exp{A(τ)+B(τ)′xt}.

The second assumption behind affine term structure models is that the state vector xt is
an affine diffusion process under risk-neutral probabilities (PIAZZESI, 2010). Mathematically
this can be written as

dxt = µ(xt)dt +σ(xt)dWt , (2.4)

where µx(xt) and σx(xt) are called, respectively, the drift and diffusion coefficients, and Wt is a
Wiener process. A brief overview of Wiener processes is given in Appendix A. It is required,
then, that both the drift and diffusion coefficients are affine.
5 The future payoff expectation is calculated using the risk-neutral probabilities.



24 Chapter 2. Literature review

Duffie and Kan (1996) give a general definition of affine term structure models, assuming
equation (2.4) is of the form

dxt = (axt +b)dt +ΣSdWt ,

where the matrix S is a diagonal n×n matrix with ith diagonal element vi(xt) =
√

αi +βixt , a

and Σ are n×n matrices, b and βi, for each i, are vectors of size n and αi is, for each i, a scalar.

The coefficients A(τ) and B(τ) in equation (2.2) are obtained from a set of Riccati
equations, and may or may not have closed forms, depending on the assumed process for the
state vector (PIAZZESI, 2010). Following Lindström, Madsen and Nielsen (2015, p. 234), if we
take the drift and diffusion coefficients with affine form, as in

µ(xt) = axt +b,

σ(xt) =
√

cxt +d,

then the coefficients A(τ) and B(τ) shall solve the pair of ODEs

B′(τ) =−aB(τ)+
1
2

cB2(τ)−1,

A′(τ) = bB(τ)− 1
2

dB2(τ).

Having defined affine term structure models, we now look into the question of choosing
a functional form for the state vector. Rendleman and Bartter (1980) introduce a model where
the short rate is the single factor and follows the process

drt = µrtdt +σrtdWt .

This kind of process does not show itself as an adequate model for the short rate. Since
rt is endogenously related to other macroeconomic variables, it presents the empirical property
of mean-reversion. This means the short interest rate is unable to grow indefinitely, as opposed
to, e.g., a stock price, and ends up reverting towards a long-term mean. In mathematical terms
this means that when rt is above its long-run mean its drift tends to be negative. Likewise, if rt is
below the long-term mean the drift tends to be positive (HULL, 2009, p. 730).

Vasicek (1977) looks into the case where the short rate is the only factor and follows the
process

drt = κ(µ− rt)dt +σdWt , (2.5)

where the parameters have the following interpretations: µ is the long-term mean to which the
short rate reverses, κ is the speed of mean reversion and σ is the standard deviation of the
logarithmic returns of rt , i.e., the volatility. Figure 3 illustrates the difference between the short
rate process in the Rendleman-Bartter and the Vasicek models.

For the issue of finding the functional forms for the coefficients A(τ) and B(τ) of the
yield curve equation, the Vasicek model has a closed form solution. Recall that

Yt(τ) =−
A(τ)+B(τ)rt

τ
.
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Figure 3 – Simulation of Rendleman-Bartter (Wiener process with drift) and Vasicek (Ornstein-
Uhlenbeck) processes for the short rate

Note – Parameter values are: µ = 4, σ = 1 and κ = 1 (for Vasicek).

Source: Elaborated by the author.

The expressions of A(τ) and B(τ) for the Vasicek model, obtained from Lindström,
Madsen and Nielsen (2015, p. 236), are

B(κ,τ) =
1− exp{−κτ}

κ
,

A(κ,µ,σ ,τ) =

(
σ2

2κ2 −µ

)
τ +

1− exp{−κτ}
κ

(
µ− σ2

κ2

)
+

σ2

4κ3 (1− exp{−2κτ}),

where κ , µ and σ are the parameters in equation (2.5).

One of the disadvantages of the Vasicek model is that it allows interest rates to assume
a negative value, which can be undesirable, and also assumes volatility to be constant. Cox,
Ingersoll and Ross (1985), henceforth CIR, with a slight modification to the Vasicek model,
proposed the short rate process

drt = κ(µ− rt)dt +σ
√

rtdWt .

By multiplying the diffusion coefficient by
√

rt , interest rates cannot assume negative
values while adding conditional heteroskedasticity structure, so long as the condition 2κµ > σ2

holds. Figure 4 illustrates the difference between the short rate processes of the Vasicek and CIR
models. Following Lindström, Madsen and Nielsen (2015, p. 239), the coefficients A(τ) and
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B(τ) have the form

Yt(τ) =−
A(τ)+B(τ)rt

τ
,

γ =
√

κ2 +2σ2,

g(τ) = 2γ− (κ− γ)(exp{−γτ}−1),

B(τ) = 2(exp{−γτ}−1)/g(τ),

A(τ) =
2κµ

σ2 ln
[

2γ exp{(κ− γ)τ/2}
g(τ)

]
.

Figure 4 – Simulation of Vasicek (Ornstein-Uhlenbeck) and CIR (square-root) short rate processes

Note – Parameter values are: µ = 1, κ = 0.4, σ = 1.

Source: Elaborated by the author.

2.1.4 Alternative approaches: the Nelson-Siegel model and dynamics

The empirical findings show that single-factor models often may not perform very well.
Litterman and Scheinkman (1991) find that three-factor models generally suffice to explain
practically all of the variation in the term structure.

A factor structure is present in situations where a high-dimensional object, e.g., the
many interest rates across different maturities, can be well-explained by an underlying low-
dimensional structure called factors (DIEBOLD; RUDEBUSCH, 2013). In the case of the
Vasicek (1977) and Cox, Ingersoll and Ross (1985) models, there is only one factor: the short
rate. Common factors cited in literature for the term structure of interest rates correspond to
the level, slope and curvature of the curve (LITTERMAN; SCHEINKMAN, 1991). Factors can
also be found by performing principal-component analysis, though this process might lead to
spurious relationships when applied to non-stationary data (CRUMP; GOSPODINOV, 2019).
As it was the case with Hull and White (1990), Balduzzi et al. (1996) and Duffie and Kan (1996),
it is possible to specify affine models with more than one factor.
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Nelson and Siegel (1987) propose another kind of model where a non-parametric function
obtained through polynomial expansion is fitted to the yield curve at a single point in time. This
model provides a good fit of the yield curve, but does not allow for time-varying factors. Diebold
and Li (2006) turn the original Nelson-Siegel into the dynamic model

Yt(τ) = lt + st

(
1− e−λτ

λτ

)
+ ct

(
1− e−λτ

λτ
− e−λτ

)
,

which has been named the dynamic Nelson-Siegel (DNS) model.

While in the original Nelson-Siegel the interest rate yt(τ) is not a time series but actually
a cross-section of observations of y at a fixed time period, the DNS writes the panel of interest
rates yt(τ) as a function of the latent factors lt , st and ct . The decay parameter λ can be
treated as a constant to be calibrated from the data. This calibration procedure may be done by
choosing an intermediate maturity, e.g., τ = 2.5 years and maximizing the curvature loading(

1−e−λτ

λτ
− e−λτ

)
in λ . The resulting factor loadings as a function of maturity for the curvature

loading attaining its maximum at τ = 2.5 are presented in Figure 5.

Figure 5 – Factor loadings of the DNS model as a function of maturity

Note – Maturity is on the horizontal axis and λ is calibrated to the value of 0.7173.

Source: Elaborated by the author.

Christensen, Diebold and Rudebusch (2011) convert the dynamic Nelson-Siegel model
into an arbitrage-free model building on the affine framework presented by Duffie and Kan
(1996). The procedure consists in finding factor loadings which resemble the most those of the
Duffie-Kan model. In the arbitrage-free Nelson-Siegel (AFNS) model the spot yields can be
specified as

Yt(τ) = f 1
t +

1− e−λτ

λτ
f 2
t +

(
1− e−λτ

λτ
− e−λτ

)
f 3
t −

C(τ)

τ
,

where the three latent factors f 1, f 2 and f 3 have their dynamics under risk-neutral probabilities
and C(τ)

τ
is an adjustment factor. Imposition of no-arbitrage can or cannot be useful throughout
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different empirical applications (DIEBOLD; RUDEBUSCH, 2013). No-arbitrage restrictions can
improve predictive performance when models are misspecified, but may not be relevant otherwise
(JOSLIN; SINGLETON; ZHU, 2011). Imposing no-arbitrage restrictions, be it cross-sectional
or dynamic, may not improve forecasting, according to Duffee (2011).

2.1.5 Role of macroeconomic variables in forecasting the yield curve

While macroeconomic theory seeks to understand the relation between observed yields
and macroeconomic variables such as inflation, GDP or money supply, the main goal in finance is
predictive modelling, often in no-arbitrage settings (JAMES; WEBBER, 2000, p. 271). However,
there is much to be gained by combining both disciplines, as the short rate is an important
variable for both finance and macroeconomics. This could result in better estimation of the short
rate from a financial perspective by taking into account the central bank’s response to inflation or
output. Conversely, the understanding of future expectations of the economy might be improved
by considering the relation between spot yields of longer and shorter maturities (DIEBOLD;
RUDEBUSCH, 2013).

The relevance of macroeconomic variables in forecasting asset prices can be extended
to other areas of finance other than yield curve modelling. Hahn and Lee (2006) find out the
default and term spreads, which are known to be correlated with the business cycle, account for
the variation in stock returns in the same way that the size (SMB) and book-to-value (HML)
factors do.

Hybrid macro-finance term structure models can range from combining a generalized
Vasicek model with the traditional IS-LM macroeconomic model (JAMES; WEBBER, 2000,
p. 285) to augmenting the DNS or AFNS models with observed macroeconomic variables
as additional factors (DIEBOLD; RUDEBUSCH, 2013). Bauer and Rudebusch (2017) find
that macroeconomic variables related to monetary policy are useful in forecasting a portion
of unspanned risk, i.e., uncorrelated with the other yield factors. There is a great potential in
combining financial and macroeconomic models, not only for our goal of forecasting the term
structure, but also for understanding of relationships between different macroeconomic variables.

2.1.6 The yield curve in macroeconomics: fiscal and monetary policy

The term structure is of great relevance to macroeconomics since the spread between
long and short rates can provide insight regarding agents’ future expectations of the economy
and are helpful in forecasting macroeconomic variables e.g., economic activity or inflation. It
can also be part of dynamic stochastic general equilibrium (DSGE) models.

Ang and Piazzesi (2003) estimate a vector autoregression model for the term structure
combining three latent correlated AR(1) factors plus two observable macroeconomic variables,
inflation and real activity, in a Taylor rule context for monetary policy. In the Taylor rule setting
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for monetary policy, the policy interest rate is set as a weighted combination of the inflation
deviation from its target and the output gap. Rudebusch and Wu (2003) also combine latent factors
with macroeconomic observables in a Taylor rule context to describe the term structure, but
impose no-arbitrage and write the two latent factors Lt and St as functions of the macroeconomic
variables. The level factor Lt is as a weighted average of the nominal equilibrium rate i∗t and its
lagged value Lt−1, and the slope factor St is a weighted average of the central bank response
through the Taylor rule (gπ(πt−Lt)+gyyt) and its lagged value St−1.6

As for fiscal policy, Dai and Philippon (2005) also work in a vector autoregression
approach to model the yield curve, choosing as state space variables government deficits, inflation,
real activity, federal funds rate and a latent factor. The authors also study the impact of deficit,
spending and tax revenue shocks by impulse response functions.

Binsbergen et al. (2012) employ term structure data in a DSGE model with the goal of
modelling the impact of rates on technology and preference parameters. The utility functions
are of the Epstein-Zin form, and the authors estimate high values for both risk aversion and
intertemporal elasticity of substitution parameters.7

2.2 Bayesian inference: from theory to practice

2.2.1 Theoretical aspects of Bayesian inference in predictive mod-
elling

Some of the common reasons for why economists have traditionally shied away from
Bayesian inference can be identified. Among those are the misconceptions that Bayesian infer-
ence is “subjective” (versus “objective” frequentist inference) or that Bayesian methods are “hard”
(SIMS, 2010). This might not be the case for current-day macroeconomics, where Bayesian
methods have become the standard (FERNÁNDEZ-VILLAVERDE, 2010), and the same can
be said about empirical finance (JACQUIER; POLSON, 2012). However, the main point of
concern for the use of Bayesian inference in economic and financial models seems to be that
many economists think of Bayesian inference as just a set of practical tools, and not as a different
interpretation of statistical inference (SIMS, 2010).

One of the greatest theoretical motivations for the use of Bayesian inference is the
possibility of combining prior domain knowledge, in an explicit fashion, with the observed data
(JACQUIER; POLSON, 2012). Perhaps the greatest example of this in finance is the Black-

6 gπ and gy are weights that represent how much the central bank values divergences in expected inflation
or real activity and usually add up to 1.

7 Epstein and Zin (1991) define a recursive utility function, where present utility is a function of
present consumption and future expected utility. The intertemporal elasticity of substitution determines
consumption growth with respect to the return rate on savings.



30 Chapter 2. Literature review

Litterman model (BLACK; LITTERMAN, 1990), which builds from the mean-variance portfolio
optimization while allowing for prior subjective information on asset returns.

With the goal of predictive modelling in hand, it is worth noticing the characteristics of
that goal, and how Bayesian reasoning might be helpful. The challenges posed by predictive
modelling can differ from those of an inferential and/or causality perspective. One of these
challenges is the bias-variance trade-off, as in classical statistical inference the bias and variance
tolerance can radically differ from predictive modelling. Overfitting of models can be another
concern (SHMUELI, 2010).

In machine learning, one of the ways to improve predictive performance of regression
models is to introduce regularization, which is usually done in non-Bayesian settings by adding
constraints on the regression objective function (SCHMIDT; FUNG; ROSALES, 2009). Ordinary
least squares regression can be thought of an optimization problem, where the function to
be minimized is the residual sum of squares. Common machine learning techniques such
as ridge and LASSO introduce additional terms to the regression loss function, “shrinking”
coefficients towards zero. The procedure can introduce more bias, but may also increase predictive
performance and avoid overfitting (HELWIG, 2017). This can also help in variable selection.

As for the Bayesian case, the regularization can be imposed by informative prior distribu-
tions (POLSON; SOKOLOV, 2019), which is very straightforward in many MCMC algorithms.
Another possible advantage of the Bayesian approach is that the posterior distribution contains all
the information we need about the parameter after having observed the data. This decreases the
reliance on standard summarizing statistics such as the mean, median or mode, although these can
be obtained as Bayes estimators with specific loss functions. Common regularization procedures
such as ridge or LASSO for regression models can be obtained in a Bayesian framework with
certain priors on the coefficients, more specifically normal priors for ridge and Laplace priors for
LASSO (TIBSHIRANI, 1996). Puelz (2018) gives a comprehensive overview of regularization
methods in econometrics and finance, mostly from a Bayesian perspective, combining decision
theory and model selection methods. As we can see, Bayesian inference provides a flexible way
of imposing regularization, although Sims (2010) notes that Bayesian inference is not just a set
of tools but a different approach to probabilistic reasoning.

Differences in frequentist and Bayesian reasoning can be traced back to epistemological
concerns, and both approaches can contribute to statistical practice (BAYARRI; BERGER, 2004).
Bayesian estimation has also become the dominant approach for estimation of DSGE models in
macroeconomics, e.g., Smets and Wouters (2003), although for more practical than theoretical
reasons. Macroeconomic data usually consist of quarterly time series of macroeconomic variables
and the likelihood functions have many local maxima/minima and near-flat surfaces. Integrating
the likelihood (times the prior) with computational methods, e.g., MCMC is much easier than
optimizing the likelihood function (FERNÁNDEZ-VILLAVERDE, 2010).
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2.2.2 Bayesian estimation of dynamic models

Time series, or dynamic models, have been a very prominent subfield of statistics.
Specific estimation techniques, both likelihood-based and Bayesian, have been developed for
models of that type. In the case of frequentist estimation, adaptations of the generalized method
of moments (HANSEN; SINGLETON, 1982) or maximum-likelihood versions of the Kalman
filter are commonly used. As for the Bayesian case, extensions of the Kalman filter, such as the
forward-filtering backward-sampling (FFBS) smoothing algorithm (CARTER; KOHN, 1994)
(FRÜHWIRTH-SCHNATTER, 1994) have become prominent. The FFBS algorithm has since
been used to model financial data such as in stochastic volatility models (KIM; SHEPHARD;
CHIB, 1998). A possible motivation for using Bayesian methods in time series analysis is that
some likelihood methods, such as versions of the expectation maximization algorithm, might get
“trapped” in local maxima for state space models (KANTAS et al., 2015).

One of the main drawbacks of the FFBS algorithm is that, in order to obtain the joint dis-
tribution of the state vector, it relies on conditional sampling, which can become computationally
expensive for longer time series, or higher dimensional data. Novelty methods for sampling of
the state vector such as Chan and Jeliazkov (2009) and McCausland, Miller and Pelletier (2011)
rely on the block diagonal structure of precision matrices in order to directly draw from the joint
distribution of the state vector. Another concern regarding the FFBS algorithm is that it might
generate biased estimates in nonlinear non-Gaussian settings (MORAL; DOUCET; SINGH,
2010).

Recent advances in Bayesian computation such as the Hamiltonian Monte Carlo (HMC)
(BETANCOURT, 2017) and automatic differentiation variational inference (KUCUKELBIR
et al., 2017) can improve performance of Bayesian estimation. HMC seeks to improve upon
the popular random-walk Metropolis algorithm with ideas from Hamiltonian mechanics. More
specifically, HMC involves a transformation of the posterior parameter space into a bidimensional
Hamiltonian phase space by the introduction of a momentum variable. The sampling occurs
in the Hamiltonian phase space, and then marginalization in the momentum variable recovers
the posterior distribution. The joint density of the phase space depends on the Hamiltonian
function, which is the sum of kinetic and potential energy functions. While the potential energy
function depends only on the target distribution, the kinetic energy depends on a mass matrix
(BETANCOURT, 2017). Hoffman and Gelman (2014) describe the No U-Turn Sampling (NUTS)
variant of HMC and applications, including a stochastic volatility model.

Automatic differentiation variational inference (ADVI) can be an alternative to Monte
Carlo methods. It seeks to approximate the posterior through the minimization of the Kullback-
Leibler (KL) divergence between the actual posterior and another approximating family of
distributions. As there is no analytic form for the KL divergence, instead the evidence lower
bound (ELBO) is maximized, as maximization of the ELBO is equivalent to minimizing the
KL divergence. ADVI employs stochastic gradient ascent in order to maximize the ELBO
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(KUCUKELBIR et al., 2017), performing approximate inference when regular MCMC is
unfeasible.

2.2.3 Bayesian inference in asset pricing and macroeconomics

The field of finance is highly dependent on statistical modelling, presenting several
opportunities for the use of Bayesian inference to estimate model parameters and compute
predictive densities. Applications range from market efficiency and return predictability tests to
the use of Bayesian computation to estimate models with high computational cost, e.g., stochastic
volatility models (JOHANNES; POLSON, 2010, p. 2).

Eraker (2001) presents a detailed study on the use of Bayesian inference and MCMC
simulation for both affine interest rate and stochastic volatility models. The conclusion is that,
besides high computational cost, MCMC algorithms show a good performance in comparison to
maximum likelihood estimation for model parameters.

Ang, Dong and Piazzesi (2007) employ Bayesian estimation techniques for a macroeco-
nomic model with Taylor rules for monetary policy, identifying monetary shocks through the
affine no-arbitrage framework of Duffie and Kan (1996).8 The authors impose priors in order to
assure stationarity of the state-space and report the possibility of obtaining the full posterior dis-
tribution and increased tractability as the advantages of Bayesian estimation. Chib and Ergashev
(2009) estimate a similar model with informative priors that result in an upward-sloping yield
curve, justifying that choice with economic theory.

In the case of affine short-rate models, Gray (2005) applies Bayesian inference to the
parameters of two models. The first one is the model from Chan et al. (1992), which is a general
form that contains many well-known models as special cases. The second one is the canonical
Vasicek (1977) model. The Chan et al. (1992) model is

drt = α(µ− rt)dt +σrγ

t dWt ,

where the special case γ = 0 yields the Vasicek model, and γ = 0.5 results in the CIR model.
The author notes that the Bayesian estimates compare favorably to the maximum likelihood
counterparts.

Bayesian inference can also be applied to the DNS model. Laurini and Hotta (2010) start
from the DNS model as presented in Diebold and Li (2006), also adding a stochastic volatility
structure and time-varying decay parameter.9 Bayesian estimation with informative priors al-
lows reduced numerical instability. Caldeira, Laurini and Portugal (2010) also propose similar
extensions to the Diebold-Li specification of the dynamic Nelson-Siegel model, such as the time-
varying decay and stochastic volatility for the factor loadings. The authors notice improvements

8 See Taylor (1993) for a better description of Taylor rules.
9 Some of the modifications were introduced by Svensson (1994).
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by the use of conditional heteroskedasticity. Das (2019) applies hierarchical Bayesian modeling
and HMC sampling to the DNS model, obtaining a strong negative relationship between the level
factor and Monte Carlo-simulated bond prices.
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CHAPTER

3
METHODOLOGY AND MODELS

Our methodology consists of specifying five models, of which two are affine (Vasicek
and CIR), as defined by Piazzesi (2010), and the others are versions of the dynamic Nelson-
Siegel model from Diebold and Li (2006) in state space form. The Vasicek and CIR model are
specified with the short rate process in continuous time. The observation equations are obtained
mainly from Lindström, Madsen and Nielsen (2015) in pages 236 and 239, respectively, although
some modifications present in Brigo and Mercurio (2001) are also employed. Following the
approach by Johannes and Polson (2010, p. 54), we introduce some additional parameters for the
observation equations where latent process parameters would appear. For the DNS model, we
give three different specifications of the Nelson-Siegel decay parameter: as a calibrated constant;
free parameter to be estimated; and as a dynamic parameter to be estimated. More details are
provided in the following sections.

The choice of hyperparameter values is done by prior predictive checking, a procedure
described in Gabry et al. (2019). This is done by guessing values for the hypeparameters and
simulating data from the prior predictive distribution until the results look like data that can
plausibly be observed. The procedure assigns some prior mass for hyperparameter values that
generate extreme but plausible data sets, and no mass on completely implausible data sets. For
the dataset we use in Chapter 5, which corresponds to the Brazilian yield curve from 2012 to
2020, it seems implausible that we would observe short rates above 0.3, or negative short rates.
Therefore, this was taken into account in the priors selection procedure. The same goes for 1
year spot rates, for example.

Besides common probability distributions such as the Gaussian distribution, we also use
less common distributions as priors for some parameters. These include the truncated normal
and half-Cauchy distributions. The noncentral chi-squared distribution is also mentioned as the
distribution for the short rate process under the CIR model. More details about these distributions
can be found in Appendix A, with information about stochastic processes, such as the Wiener
process.
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The models were estimated using the Python programming language and the PyMC3
library (SALVATIER; WIECKI; FONNESBECK, 2016). The NUTS version of Hamiltonian
Monte Carlo (HOFFMAN; GELMAN, 2014) is used for sampling from the posterior distributions,
and the mass matrix of the Hamiltonian is initialized by automatic differentiation variational
inference, or ADVI (KUCUKELBIR et al., 2017). We simulate a chain of size 2000 with 1000
burn-in draws.

PyMC3 lets us implement the Vasicek and CIR differential equations (latent process) in
the form of an Euler-Maruyama discretization (ELERIAN; CHIB; SHEPHARD, 2001), which
we also do for the DNS factors. We specify dt = ∆t = 1

52 . We shall evaluate the convergence
of the simulated chains checking the density, trace and autocorrelation plots for each of the
two chains for each model. The kernel density estimates (KDEs) for the marginal posterior
distribution of the parameters are presented in Appendix B with the trace and autocorrelation
plots.

As all models are specified in state space form, we add observation noise to each
observation equation as well. In all models, we denote the random noise as ηt , which follows
a normal distribution with mean zero and variance σ2

obs. Treating both the latent vector and
observation noise standard deviations as unknowns can be computationally expensive, so we
calibrate and fix a value for σobs. Besides, stochastic singularity can also pose a problem to
model estimation, which can be solved by adding measurement error to the observation equations
(JOHANNES; POLSON et al., 2003).

Schmidt, Krämer and Hennig (2021) analyze a problem of Bayesian inference in state
space models with latent variables in differential equation form, in the context of epidemiological
data. In their case, they apply the model with simulated data and set the variance of the latent
process for the data 3 orders of magnitude greater than the measurement noise variance. Maybank,
Bojak and Everitt (2017) study Bayesian inference for stochastic differential equations in a
multidimensional neuroscience model, fixing some of the model parameters based on results
of previous studies. In their model, the observation noise is fixed and two orders of magnitude
smaller than the latent equation variances, also treated as known values. Within the dataset used
in Chapter 5, the standard deviations of the percent changes of spot rates across maturities range
from 0.012 (1 month) to 0.036 (3 years), so we deem reasonable to fix σobs to the value of 0.001.

3.1 Vasicek model

The model first introduced by Vasicek (1977) assumes the short rate follows an Ornstein-
Uhlenbeck process. This choice ensures the short rate has the empirically observed mean-
reverting property. Given its relevance as one of the benchmarks for term structure modelling,
the Vasicek model seems like a good choice for a starting point.
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The Vasicek model in state space form corresponds to

drt = κ(µ− rt)dt +σdWt ,

Yt(τ) =−
[A(b,a,σ ,τ)−B(b,τ)rt ]

τ
+ηt ,ηt ∼ N(0,σ2

obs),

B(b,τ) =
1− exp{−bτ}

b
,

A(b,a,σ ,τ) =

(
σ2

2b2 −a
)

τ +
1− exp{−bτ}

b

(
a− σ2

b2

)
+

σ2

4b3 (1− exp{−2bτ}),

where Yt(τ) is the observed spot rate for maturity τ , rt is the short rate, Wt is the Wiener process
i.e., dWt = ε

√
dt, ε ∼ N(0,1). Our basis for the Vasicek model is the specification given in page

236 of Lindström, Madsen and Nielsen (2015), although modifications are made so that the
coefficient B(b,τ) in the spot rate equation has a negative sign. This is usual in literature, as the
sign of the coefficient does not preclude the affine structure. One example of this modification
for the Vasicek model can be found on Brigo and Mercurio (2001, p. 59).

In the standard Vasicek model the parameters κ and µ also appear in the observation
equation in place of b and a, respectively. However, in the Vasicek model the process for rt

occurs in a risk-neutral world, which means that modelling the market price of risk would be
necessary for estimating the term structure with real data. This would require the introduction of
an additional parameter in the state equation. Instead of doing this, we follow the approach by
Johannes and Polson (2010) and introduce the parameters a and b to the observation equation as
the real-world correspondents of µ and κ .

The parameters κ and µ appear in the state equation, a and b in the observation equation
and σ > 0 in both state and observation equations. The long-term mean of the short rate is
represented by µ , while κ can be interpreted as the mean speed at which the short rate reverts to
its long-term mean. The standard deviation of the random normal shocks that affect the short
rate, often called volatility, is denoted by σ . It will also affect the long-run level of the yield
curve, as it enters the intercept of the observation equation. The parameters a and σ determine
the long-run level of the yield curve, i.e., the level of the spot rates with higher maturities. The
parameter b controls the decay of long-run rates in relation to shorter-maturity spot rates.

The prior probability distributions with hyperparameter values for the parameters are

κ ∼ T N(0, 2
∆t )
(0.7,0.16),

µ ∼ T N(0,∞)(0.08,0.01),

σ ∼ Hal fCauchy(0.03),

a∼ N(0.1,0.01),

b∼ N(0.5,0.25),

(3.1)

where T N(α,β )(µ,σ
2) denotes the truncated normal distribution on interval (α,β ) with mean µ

and variance σ2.
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We truncate the κ Gaussian prior in order to impose stationarity and use regularizing
priors for all parameters. We follow the recommendation by Polson and Scott (2012) to adopt
half-Cauchy priors for the standard deviation parameters. The half-Cauchy prior has superior
quadratic risk properties and better behavior in the presence of sparsity in comparison with,
e.g., the inverse-gamma prior (POLSON; SCOTT, 2012). The variable ηt only corresponds to
observation noise, which is added to the observation equation for, among other possible reasons,
breaking a possible stochastic singularity (JOHANNES; POLSON, 2010, p. 55), but its standard
deviation σobs has no empirical interpretation.

3.2 CIR model

The Cox, Ingersoll and Ross (1985) model aimed to solve some of the presumed issues
with the Vasicek model, mainly allowing for negative short rates and having constant volatility.
The CIR model assumes a square-root process for the short rate, ensuring it does not assume
negative values. The short rate under the CIR model also has a conditional heteroskedasticity
structure. It is worth mentioning that the short rate under the CIR model follows the same process
as the log-volatility in the Heston (1993) stochastic volatility model.

The CIR model in state space form is

drt = κ(µ− rt)dt +σ
√

rtdWt ,

Yt(τ) =−
A(τ)−B(τ)rt

τ
+ηt ,

ηt ∼ N(0,σ2
obs),

γ =
√

b2 +2σ2,

g(τ) = 2γ +(b+ γ)(exp{γτ}−1),

B(τ) = 2(exp{γτ}−1)/g(τ),

A(τ) =
2ba
σ2 ln

[
2γ exp{(b+ γ)τ/2}

g(τ)

]
.

The interpretations of the state equation parameters κ and µ are similar to the Vasicek
model in Section 3.1, as both models have the same drift coefficient. The parameter σ is a scaling
factor for the volatility of the short rate, given that the volatility also depends on the square
root of the short rate level. It also affects the decay of the observed spot rates as well, because
it appears in the equation for γ . The parameters a and b also have similar interpretations as in
the Vasicek model, so more details can be found in Section 3.1. We also use the approach from
Johannes and Polson (2010, p. 54), treating the parameters in the state and observation equations,
except for σ , as separate.
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The main difference with the Vasicek model is that now
√

rt is multiplying the diffusion
coefficient in the state equation. For the observation equations, we once again combine the
specifications in Lindström, Madsen and Nielsen (2015, p. 239) and Brigo and Mercurio (2001,
p. 66). This results in a coefficient B(τ) with a negative sign in the spot rate equation, as in the
specification we use for the Vasicek model.

The short rate rt has a noncentral chi-squared distribution under the CIR model (BRIGO;
MERCURIO, 2001, p. 65). We do not use the exact transition densities for the stochastic
simulation, but instead use an Euler-Maruyama discretization, as we do with the latent variables
of the other estimated models. Results such as Higham and Mao (2005) and Alfonsi (2013) show
that the Euler-Maruyama discretization displays strong convergence properties with a small
enough time step.

The prior distributions for the corresponding parameters are

κ ∼ T N(0, 2
∆t )
(0.7,0.16),

µ ∼ T N(0,∞)(0.08,0.01),

σ ∼ Hal fCauchy(0.1),

a∼ N(0.1,0.01),

b∼ N(0.5,1).

(3.2)

3.3 Dynamic Nelson-Siegel (DNS) model

The original Nelson and Siegel (1987) model is static, in the sense that it only estimates
one equation of the yield curve at a fixed point in time. Diebold and Li (2006) modify the original
Nelson-Siegel model by allowing factors to vary with time, creating a dynamic version that we
will refer to as the dynamic Nelson-Siegel model, or DNS.

For the state space form of the DNS model, we specify three continuous time AR(1)
latent factors, each corresponding to level, slope and curvature. These factors follow processes
similar to the Vasicek short rate process. It is usual in the literature to estimate the factors in a
vector autoregression structure, but we assume them to be independent for simplicity. The model
is

dlt = κl(µl− lt)dt +σldW1t ,

dst = κs(µs− st)dt +σsdW2t ,

dct = κc(µc− ct)dt +σcdW3t ,

Yt(τ) = lt + st

(
1− e−λτ

λτ

)
+ ct

(
1− e−λτ

λτ
− e−λτ

)
+ηt ,ηt ∼ N(0,σ2

obs),

where λ is a decay parameter which controls factor loadings and (W1t ,W2t ,W3t) are independent
Wiener processes.
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The panel of observed spot rates for different maturities is modeled as a function of the
three latent factors, lt ,st and ct , each corresponding to level, slope and curvature. The factor
loadings are parametrized so that the latent variables can be interpreted as level, slope and
curvature factors in accordance with Litterman and Scheinkman (1991).

We chose prior distributions for the factor process parameters by the prior predictive
check procedure. The prior distributions are

κl ∼ T N(0, 2
∆t )
(1,1),

κs ∼ T N(0, 2
∆t )
(0.8,0.25),

κc ∼ T N(0, 2
∆t )
(0.5,0.16),

µl ∼ T N(−0.5,∞)(0.12,0.0025),

µs ∼ T N(−∞,0.5)(−0.04,0.0009),

µc ∼ T N(−∞,0.5)(−0.05,0.0016),

σl,s,c ∼ Hal fCauchy(0.015).

(3.3)

In the following subsections we give more detail into the three different versions we
estimate of the DNS model with regards to the parameter λ .

3.3.1 Calibrated λ

For the calibrated λ version of the DNS model (DNS-C), the decay parameter λ is
treated as a fixed quantity. The parameter is calibrated by maximizing λ in the curvature loading
expression (

1− e−λτ

λτ
− e−λτ

)
from the equation defining Yt(τ), with τ chosen to represent an “intermediate” maturity. This
is done in order to intermediate maturities for the curvature and emulate humped yield curves
observed on the market. We pick the value of λ = 1.2 so that the curvature loading peaks around
the intermediate one-year maturity.

3.3.2 Free λ

For the free λ version of the DNS model (DNS-F), we treat λ as a free parameter to be
estimated. We consider λ the prior

λ ∼ N(1.1,0,09).

3.3.3 Dynamic λ

In the third and final version of the DNS model (DNS-D), we treat λ as following a time
series process over time. Therefore, we add a time subscript and write λt . We specify λt as the
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random-walk process

λt+1 = λt + ε
λ
t ,

ε
λ
t ∼ N(0,σ2

λ
),

σλ ∼ Hal fCauchy(1).
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CHAPTER

4
SIMULATED DATA

In this chapter each of the models shall be estimated for simulated term structure
data. Estimation of the model with simulated data can be useful in assessing both possible
computational issues and estimation of the latent variables, whose values for the real data are
unknown (GELMAN et al., 2020). Also, in an environment where we know the true parameter
values for the data generating process, it becomes possible to evaluate the performance of
the parameter estimates. Starting from the premise that the models seek to be a good enough
approximation to the real data generating process (JOHANNES; POLSON et al., 2003), we
simulate data without the observation noise included in our statistical models.

The parameter estimates for each model shall be based on the absolute loss function,
therefore the estimates will be equal to the posterior median for each parameter. More specifically,
if we have the loss function L(θ ,δ (X)) for the parameter θ and the estimator δ (X), the Bayes
estimator shall be the value for δ (X) that minimizes the expected loss

E[L(θ ,δ (X)|X ] =
∫

Θ

L(θ ,δ (X))P(θ |X)dθ ,

and, for the case of the absolute loss function, i.e., L(θ ,δ (X)) = |θ −δ (X)|, the Bayes estimator
for real-valued parameters shall be the posterior median (DEGROOT; SCHERVISH, 2012,
p. 411). Although other loss functions, such as the squared loss, could have also been used, the
absolute loss tends to be more robust for outliers. As we use the absolute loss as the benchmark
for prediction in Chapter 5, we also use it for parameter estimation for standardization purposes.

4.1 Vasicek model

We estimate the Vasicek model as presented in Section 3.1, with prior distributions
specified in (3.1). In order to estimate the model and analyze its properties with respect to the
data, we simulated data according to the model equations and the following parameter values:
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κ = 0.4, µ = 0.05, σ = 0.02, a = 0.2 and b = 0.3. The observation error standard deviation is
fixed as σobs = 0.001.

We first simulated a T = 440 latent vector and then proceeded to calculate the spot yields
from the observation equations. Since we wanted to reproduce weekly data, we set ∆t = 1

52 and
6 spot maturities, i.e., different values for τ: 0.17, 0.25, 0.5, 1, 3, 5.1 We simulated the data in
order to reproduce long-term behavior, i.e., ergodicity, so the starting value is not relevant.2 The
simulated data is presented in Figure 6. We then proceeded to estimate the model via HMC.

Table 1 presents the statistical summary for the Vasicek model. The median and standard
deviations of the estimated posteriors are presented, with the lower and upper bounds of the
95% highest posterior density (HPD) interval, denoted by LB and UB, respectively. We present
some additional MCMC diagnostics in Appendix B. The real parameter values are presented
in the first column, with its respective parameter. Since Table 1 contains the posterior medians,
standard deviations, HPD bounds and true values it is possible to assess how near the posterior
medians and real values are to each other.

Table 1 shows that all true values used to simulate the data are contained within the 95%
highest posterior density interval. The posterior median for µ is 0.11 standard deviation away
from the assumed value in the simulation. For κ the distance between the posterior median and
the true value is of 0.24 standard deviation, and κ of all parameters seems the less sensible to the
data. The median for a, b and σ come close to the real values. The estimated short rate visually
comes very close to the true simulated values, as presented in Figure 7. All of the 440 true values
for the Vasicek short rate are contained in the 95% HPD interval.

Table 1 – Statistical summary for the Vasicek model - Simulated data

Parameter Median SD LB UB
a = 0.200 0.200 0.001 0.199 0.201
b = 0.300 0.300 0.002 0.297 0.303
κ = 0.400 0.460 0.251 0.019 0.917
µ = 0.050 0.053 0.028 0.012 0.106
σ = 0.020 0.020 0.001 0.019 0.021

4.2 CIR model

The estimated CIR model is the one presented in Section 3.2, with the prior distributions
from (3.2). We simulated the data and estimated the model in the same way done for the Vasicek
model in the previous section. As the graph for the simulated data looks similar to the Vasicek

1 The set of maturities correspond to time periods commonly observed on the market: 2 months, 3
months, 6 months, 1 year, 3 years and 5 years.

2 The ergodicity behavior is obtained by simulating a series of size 2T = 880 and discarding the first
half i.e., the first 440 samples.



4.2. CIR model 45

Figure 6 – Simulated data for the Vasicek model

Note – The short rate rt is presented along with the observed spot rates for the maturities 1, 3 and 5.

Source: Elaborated by the author.

Figure 7 – Estimated short rate and 95% highest posterior density interval for the Vasicek model - Simu-
lated data

Source: Elaborated by the author.

Note – The black line is the simulated state vector, and the red line the posterior median with the 95%
highest posterior density interval.

simulated data in Figure 6, it is presented in Appendix B. We used the following values for the
parameters: κ = 0.4, µ = 0.05, σ = 0.1, a = 0.2 and b = 0.3. The observation error standard
deviation was fixed as σobs = 0.001. The length of the data is also T = 440, the size of the
discretization time step ∆t = 1

52 and the maturities 0.17, 0.25, 0.5, 1, 3 and 5.

The summary of the estimates for the CIR model is presented in Table 2. The posterior
medians for parameters a and b are the same as the real values, as in the Vasicek model. The
posterior mean for σ , however, is 0.33 SD away from its real value. The κ parameter seemed
more responsive to the data and had its median close to the true value, with a distance of 0.125
standard deviation. The posterior median for µ had a distance of 0.06 SD to its real value, smaller
than its equivalent for the Vasicek model. All true values for the parameters were contained in
the 95% HPD intervals. Once again, the estimated short rate visually came very close to the true
simulated values for the short rate, in a similar fashion to the Vasicek model. We observed that
all of the 440 true values are contained in the 95% HPD interval for the short rate.
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Table 2 – Statistical summary for the CIR model - Simulated data

Parameter Median SD LB UB
a = 0.200 0.200 0.001 0.198 0.201
b = 0.300 0.300 0.002 0.297 0.304
κ = 0.400 0.431 0.248 0.001 0.864
µ = 0.050 0.052 0.034 0.001 0.120
σ = 0.100 0.099 0.003 0.092 0.106

4.3 DNS model

The DNS model is presented in Section 3.3, with the prior distributions given in (3.3).
The three different specifications for the λ parameter mentioned in the previous section were
tried, which means we estimated three different DNS models. We simulated one process for each
of the three factors, and then proceeded to construct the observed spot rates from the observation
equation.

The real parameter values were chosen in order to replicate the behavior of real term
structures, with the level factor being positive and the slope and curvature factors being negative
most of the time.3 Therefore, the true value for the mean parameter of the level factor was
positive (µl = 0.11) and the assumed values for the mean of the slope and curvature factors
were negative (µs,µc =−0.03). The true values for the mean-reversion speed parameters were:
κl = 0.8, κs = 0.6, and κc = 0.4. As for the factor standard deviations, the assumed values were:
σl = 0.02, σs = 0.03 and σc = 0.04. For the free λ model, λ had a true value of 1.2 and for the
time-varying λ model σλ had a true value of 0.07. The observation error standard deviation was
fixed as σobs = 0.001. The data once again had length T = 440 and ∆t = 1

52 , and the spot rate
had the same six different maturities: 0.17, 0.25, 0.5, 1, 3 and 5.

Simulated factors and spot rates for the fixed λ DNS model are presented in Figures 8
and 9 as an example. As the simulated factors and spot rates for the other two DNS models were
similar, these are presented in Appendix B. Figure 10 illustrates the estimated DNS factors for
the fixed λ DNS model. Once again, the estimated factors for the other two DNS models can be
found in Appendix B.

Table 3 contains the statistical summary for the DNS model with fixed λ . The standard
deviation parameters σl,s,c had their posterior medians 1, 4 and 6 SD away from their real values,
respectively. The assumed values fell out of the bounds for the 95% HPD interval, except for σl .
The distributions for κl,s,c seemed to learn less from the data, with wide 95% HPD intervals that
all contained the true values. The mean parameters µl,s,c are the best in terms of estimation, as
the posterior medians were closer to the assumed values (0.1, 0.56 and 0.9 SD, respectively). For
the estimated latent factors, 4 points for the level factor and 14 points for the curvature factor fell

3 It makes sense that the slope and curvature factors are only positive during periods where the yield
curve is inverted, as this will cause shorter maturities to have higher yields than longer maturities.
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outside the 95% HPD bounds.

Tables 4 and 5 present the statistical summaries for the DNS models with free and
time-varying λ . For the free λ model, only the real values for σs and σc fell outside the 95%
HPD interval. A total of 6 data points for the level factor and 14 for the curvature factor fell
outside the 95% HPD interval bounds. As for the time-varying λ model, the same σs and σc

parameters were the ones whose real values fell outside the 95% HPD interval bounds. The real
value for σλ also fell outside of the 95% HPD bounds. We had 12 data points for the level factor,
10 for the slope factor and 11 for the curvature factor not contained in the 95% HPD intervals.

Table 3 – Statistical summary for the DNS model (calibrated λ ) - Simulated data

Parameter Median SD LB UB
κl = 0.800 0.494 0.316 0.005 1.071
µl = 0.110 0.112 0.020 0.076 0.161
σl = 0.020 0.019 0.001 0.017 0.020
κs = 0.600 0.278 0.189 0.000 0.629
µs = -0.030 -0.043 0.023 -0.091 0.002
σs = 0.030 0.026 0.001 0.024 0.028
κc = 0.400 0.585 0.297 0.005 1.119
µc = -0.030 -0.012 0.020 -0.054 0.027
σc = 0.040 0.028 0.002 0.025 0.032

Figure 8 – Simulated factors for the DNS model (calibrated λ )

Note – The presented factors correspond to level, slope and curvature of the yield curve.

Source: Elaborated by the author.
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Figure 9 – Simulated spot yields for the DNS model (calibrated λ )

Note – The presented maturities are 0.17, 0.25, 0.5, 1, 3 and 5.

Source: Elaborated by the author.

Figure 10 – Estimated latent factors and 94% highest posterior density intervals for the DNS model
(calibrated λ ) - Simulated data

Source: Elaborated by the author.

Table 4 – Statistical summary for the DNS model (free λ ) - Simulated data

Parameter Median SD LB UB
λ = 1.200 1.196 0.032 1.132 1.260
κl = 0.800 0.489 0.333 0.002 1.136
µl = 0.110 0.111 0.022 0.066 0.161
σl = 0.020 0.019 0.001 0.018 0.021
κs = 0.600 0.264 0.195 0.001 0.673
µs = -0.030 -0.043 0.023 -0.097 -0.001
σs = 0.030 0.026 0.001 0.024 0.028
κc = 0.400 0.616 0.293 0.053 1.150
µc = -0.030 -0.011 0.020 -0.059 0.020
σc = 0.040 0.028 0.002 0.024 0.032
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Table 5 – Statistical summary for the DNS model (time-varying λ ) - Simulated data

Parameter Median SD LB UB
σλ = 0.100 0.055 0.010 0.037 0.076
κl = 0.800 0.461 0.329 0.001 1.104
µl = 0.110 0.112 0.021 0.068 0.156
σl = 0.020 0.019 0.001 0.017 0.021
κs = 0.600 0.260 0.189 0.001 0.627
µs = -0.030 -0.043 0.023 -0.094 0.001
σs = 0.030 0.026 0.001 0.024 0.029
κc = 0.400 0.546 0.305 0.006 1.118
µc = -0.030 -0.012 0.021 -0.061 0.024
σc = 0.040 0.028 0.002 0.024 0.033
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5
REAL DATA APPLICATION

In this chapter we estimate the models with real term structure data from the Brazilian
market. The data utilized in order to fit our models comes from NEFIN FEA-USP – Center for
Research in Financial Economics of the Department of Economics of the University of São
Paulo. It consists of the spot rate curve for Brazil, calculated from One-Day Interbank Deposit
Futures contracts (DI rate) via flat-forward interpolation.1 Although flat-forward interpolation
is known to possibly introduce some issues, such as arbitrage opportunities (HAGAN; WEST,
2006), discussions about yield curve construction methods are beyond the scope of this work.

For model estimation we used a subsample which starts in January 2012 and ends on
May 2020, with weekly observations (∆t = 1

52 ), for a total sample size of T = 438. Our panel of
spot rates included the following maturities: 2 months, 3 months, 6 months, 1 year, 3 years and 5
years. We use the priors mentioned in Chapter 3 for model estimation.

Figure 11 contains the graphical representation of the data. We can see that the rates do
not go above 20%, neither below the 2% threshold, and, as mentioned in Chapter 3, this was
accounted for in prior hyperparameter choice. Although we see both periods with steep and
inverted yield curves, this period can be seen as quite stable for the Brazilian yield curve, if
compared to the previous decades. The rates for short maturities are much less volatile than the
ones for longer maturities.

It is of relevance that we estimate the proposed models with real market data. We learned
from the previous chapter that the models are successfully able to estimate the latent vectors,
since we worked in an environment where the true values were known. Because the data were
simulated in order to look like real yield curves, we should also observe the same patterns
regarding the convergence of the simulated samples. We already mentioned in Section 2.1.6 of
the literature review how the term structure is relevant to macroeconomic policy. Forecasting
of the yield curve is also crucial in financial markets, as it is used to price bonds that have their

1 The data can be found at <http://nefin.com.br/data/spot_rate_curve.html>

http://nefin.com.br/data/spot_rate_curve.html
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Figure 11 – Brazilian yield curve from January 2012 to May 2020

Source: Elaborated by the author.

values as a function of future expected rates.

Besides model estimation, in this real data application section we can also use the
estimated results to obtain predictions of future market data. Therefore, in this chapter we are
also interested in evaluating the performance of the models for forecasting future observations.
Our main measure of model forecasting ability is the rolling window mean absolute error (MAE),
introduced in Section 5.4, and is based on the absolute loss function.

5.1 Vasicek model
We estimate the same model in Section 3.1, with the same prior distributions for the

parameters, using the yield curve data described at the start of the current chapter. We fix
σobs = 0.001. In the same style of the previous chapter, Table 6 presents the statistical summary
for the Vasicek model with real term structure data. Medians for the parameters marginal posterior
distributions, standard deviations and 95% HPD bounds (LB and UB).

Additional MCMC diagnostics such as Monte Carlo standard error (MCSE) and effective
sample size (ESS) are presented in Appendix B. In terms of convergence of the simulated
samples, no major issues were found for the Vasicek model. Marginal posterior distributions for
the parameters, together with trace and autocorrelation plots, are presented in Appendix B.

Figure 12 shows the estimated short rate vector, with its posterior mean and 95% HPD
intervals. The MCMC diagnostics presented in Appendix B show the absence of major problems
regarding convergence of the simulated samples. The empirical interpretations of κ and µ is that
rt is pulled to the level of µ at rate κ (HULL, 2009, p. 731). As κ multiplies (µ− rt), the gap
between µ and rt is “closed” at the rate κ̂ = 0.087 per interval ∆t. The parameter µ is the level
to where rt tends to in the long term. This means in our estimated model rt tends to 0.036 if we
use the posterior median of µ as its estimate. The volatility σ is the standard deviation of the
random shocks εt , times

√
∆t.

The observation equation parameters a and b determine the relationship between the
short rate and the yield curve. The decay of shorter maturity rates away from the longer maturity
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rates and towards the short rate is controlled by b. A higher value of b means the decay will be
slower, and therefore a larger distance between shorter and longer spot rates. For a, as it only
appears in the term A(b,a,σ ,τ), it controls the level of the longer maturity rates. A higher value
of a means the spot rates will be higher as τ grows. The parameter σ also affects the level of
longer maturity spot rates, as a higher volatility implies longer rates will be higher.

Table 6 – Statistical summary for the Vasicek model - Real data

Parameter Median SD LB UB
a 0.138 <0.001 0.137 0.138
b 0.179 0.001 0.177 0.181
κ 0.087 0.053 0.001 0.183
µ 0.036 0.038 0.000 0.112
σ 0.012 <0.001 0.011 0.013

Figure 12 – Estimated short rate and 95% highest posterior density interval for the Vasicek model - Real
data

Source: Elaborated by the author.

5.2 CIR model

For the CIR model, we estimated the model described in Section 3.2, with the same prior
distributions and hyperparameter values, using the yield curve data. The observation noise σobs

was fixed at 0.001. Table 7 presents the statistical summary for the CIR model. As with the
Vasicek model, no major convergence issues were apparent through the MCMC diagnostics or the
diagrams in Appendix B. The estimated short rate looks very much like the one for the Vasicek
model presented in Figure 12, and so we omit the graph for the CIR short rate. The empirical
interpretations for the CIR parameters are similar to the ones of the Vasicek model described in
the previous section. The main difference is that the short rate volatility is affected by the square
root of the level of the short rate,

√
rt . Therefore, σ has a slightly different interpretation as in

the Vasicek model.
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Table 7 – Statistical summary for the CIR model - Real data

Parameter Median SD LB UB
a 0.138 <0.001 0.138 0.139
b 0.177 0.001 0.175 0.179
κ 0.110 0.063 0.000 0.220
µ 0.029 0.033 0.000 0.090
σ 0.042 0.002 0.039 0.045

5.3 DNS model
The three versions of the dynamic Nelson-Siegel model specified in Section 3.3 were

estimated, with the aforementioned prior distribution and hyperparameter values. The parameter
σobs was also fixed at 0.001.

Tables 8, 9 and 10 show statistical summaries for the three specifications of the DNS
model. All three versions of the DNS model present good results in terms of autocorrelations and
convergence, as diagnostics in Appendix B show. The latent factors for the calibrated and free λ

models look very much the same, so only the factors for the free λ model are presented in Figure
13. For the dynamic λ model, the factors appear somewhat different, especially the curvature
factor. The HPD bands are also wider for some time periods, as can be seen in Figure 14.

As the three factors have the same parametrization as the Vasicek short rate, the interpre-
tation of the parameters is also similar. The decay parameter λ controls how the three factors are
combined in order to obtain the yield curve. A higher λ means the slope factor will have a lesser
effect on the longer rates, and the curvature loading will attain its maximum at shorter maturities.

Table 8 – Statistical summary for the DNS model (calibrated λ ) - Real data

Parameter Median SD LB UB
κl 0.414 0.333 0.001 1.100
µl 0.110 0.027 0.046 0.163
σl 0.022 0.001 0.020 0.024
κs 0.372 0.227 0.002 0.792
µs -0.035 0.020 -0.085 0.001
σs 0.023 0.001 0.022 0.025
κc 0.314 0.199 0.000 0.699
µc -0.040 0.029 -0.100 0.019
σc 0.036 0.002 0.032 0.041

5.4 Comparison of forecasts for all models in rolling win-
dow framework

Our main goal for the model estimation with real term structure data is to evaluate the
forecasting ability of each model and perform comparisons using a statistical error measure. Our
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Table 9 – Statistical summary for the DNS model (free λ ) - Real data

Parameter Median SD LB UB
λ 1.396 0.018 1.361 1.433
κl 0.424 0.316 0.000 1.051
µl 0.108 0.027 0.056 0.172
σl 0.022 0.001 0.021 0.024
κs 0.412 0.250 0.001 0.886
µs -0.032 0.020 -0.079 0.000
σs 0.024 0.001 0.022 0.026
κc 0.274 0.190 0.001 0.645
µc -0.042 0.031 -0.102 0.021
σc 0.033 0.002 0.029 0.037

Figure 13 – Estimated latent factors and 95% highest posterior density intervals for the DNS model (free
λ ) - Real data

Source: Elaborated by the author.

choice of measure is the mean absolute error (MAE), which is based on an absolute loss function.
We calculate values for the MAE for the medians of predictions in a rolling window framework,
described in the next paragraphs, and present them in Table 11.

The rolling window framework employed in this section consists of estimating the models
with observations ranging from k to K = k+400, with k varying from 1 to 30. Each estimate
produces draws d = 1, . . . ,2000 for the parameters, which we use to obtain a total of 2000
predicted values for the spot rates at each maturity and horizon. We then proceed to compute the
medians of the predicted spot rates across draws and compare those medians with the observed
data points for each given horizon and maturity, using a statistical error measure. This is done
for horizons h = 1, . . . ,8, corresponding to the periods immediately following those used in
estimation.

We first obtain predictions at each step of the MCMC algorithm, for all 30 windows,
by using sampled values for each parameter to obtain predictions for the spot rates. We denote
the predicted values for window (k,K), horizon h, maturity τ and draw d as ŷ(τ)

(K+h),d , which are
obtained for each of the models. For example, for the Vasicek model the predicted value for
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Table 10 – Statistical summary for the DNS model (time-varying λ ) - Real data

Parameter Median SD LB UB
σλ 0.137 0.009 0.122 0.155
κl 0.184 0.173 0.000 0.550
µl 0.108 0.028 0.050 0.170
σl 0.013 0.001 0.012 0.015
κs 0.154 0.111 0.001 0.378
µs -0.050 0.022 -0.100 -0.011
σs 0.013 0.001 0.012 0.015
κc 0.388 0.222 0.003 0.806
µc -0.040 0.028 -0.098 0.016
σc 0.044 0.003 0.039 0.050

Figure 14 – Estimated latent factors and 95% highest posterior density intervals for the DNS model
(time-varying λ ) - Real data

Source: Elaborated by the author.

ŷ(τ)
(K+h),d is obtained from

r̂(K+h),d =r̂(K+h−1),d + κ̂d(µ̂d− r̂(K+h−1),d)∆t + σ̂dε1,t
√

∆t

ŷ(τ)
(K+h),d =−

A(b̂d, âd, σ̂d,τ)−B(b̂d,τ)r̂(K+h),d

τ
+σobsε2,t ,

ε1,t ,ε2,t ∼N(0,1),

where θ̂d denotes draw d for the parameter θ (which could be κ , µ etc.) estimated from the data
in the window (k,K). We then proceed to calculate the medians for ŷ(τ)

(K+h),d from the draws,

denoting them by ŷ(τ)med,(K+h), and use them as our predictions for each window, horizon and
maturity.

The next step is to compare the predictions to the observed values for each forecasting
window, horizon and maturity. Our statistical error measure for this is the mean absolute error, or
MAE. The estimate for the MAE is defined as

M̂AE
(τ)

h =
∑

430
K=401 |ŷ

(τ)
med,(K+h)− y(τ)

(K+h)|
30

,
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where y(τ)
(K+h) is the observed value for horizon h = 1, . . . ,8. We shall have the mean of the

forecasting error measures of the windows for all horizons, maturities and models.

The rolling window framework is a benchmark for time series forecasting, and its
choice as our main measure of predictive ability seems justified. Schnaubelt (2019) finds that
standard cross-validation methods can produce a large bias for time series models, and that
forward-validation schemes, such as rolling window forecasts, are better suited for time series
data.

Table 11 presents the estimated mean absolute errors for all models across different
maturities and horizons, with the lowest error for a given maturity and horizon highlighted
in boldface. The results show that the DNS model with dynamic decay parameter (DNS-D)
generally provides the better forecasts. The Vasicek and CIR models present the best forecasts
for the shorter maturities (2, 3 and 6 months) with longer horizons. For the longer maturities
(1, 3 and 5 years) the DNS models provide clearly better forecasts, with the DNS-D being the
best and the other two coming very close. We also calculated alternative measures, based on
squared and logarithmic deviations, which are presented in Appendix C. The fact that the DNS
models are generally able to deliver better forecasts seems in accordance with Litterman and
Scheinkman (1991), which states that three factors are able to explain most of the yield curve
changes. Therefore, our conclusions reinforce the strength of these results, although with some
caveats.

Figure 15 presents an example of the KDEs for the posterior distribution of the spot rates,
in this case for the 1 year maturity spot rates obtained for the first rolling window. We present
the posterior medians (dotted black line), 95% HPD intervals (shaded area) and real observed
values (dashed red line). It is important to keep in mind that this is just one of the 30 rolling
window forecasts, so the differences between posterior medians and real values shown in the
figure might not be perfectly representative of the error measures in Table 11.
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Table 11 – Comparison of mean absolute errors for the five models across different forecasting horizons
and maturities - Rolling window forecast

Maturity Model
Horizon

1 2 3 4 5 6 7 8

Vasicek 0.0047 0.0041 0.0036 0.0032 0.0030 0.0030 0.0030 0.0032
CIR 0.0047 0.0041 0.0037 0.0033 0.0030 0.0030 0.0030 0.0032

2 months DNS-C 0.0008 0.0018 0.0027 0.0034 0.0044 0.0053 0.0062 0.0073
DNS-F 0.0010 0.0019 0.0027 0.0035 0.0044 0.0055 0.0065 0.0075
DNS-D 0.0009 0.0016 0.0024 0.0031 0.0039 0.0048 0.0056 0.0065

Vasicek 0.0036 0.0032 0.0029 0.0026 0.0025 0.0027 0.0030 0.0034
CIR 0.0036 0.0031 0.0029 0.0026 0.0026 0.0028 0.0030 0.0033

3 months DNS-C 0.0009 0.0019 0.0028 0.0035 0.0045 0.0054 0.0063 0.0074
DNS-F 0.0009 0.0018 0.0026 0.0034 0.0043 0.0053 0.0063 0.0073
DNS-D 0.0008 0.0016 0.0024 0.0031 0.0039 0.0047 0.0056 0.0064

Vasicek 0.0014 0.0016 0.0021 0.0025 0.0031 0.0037 0.0043 0.0049
CIR 0.0014 0.0016 0.0021 0.0025 0.0030 0.0036 0.0041 0.0048

6 months DNS-C 0.0011 0.0021 0.0030 0.0037 0.0046 0.0055 0.0063 0.0073
DNS-F 0.0009 0.0017 0.0025 0.0033 0.0042 0.0051 0.0061 0.0070
DNS-D 0.0008 0.0016 0.0024 0.0031 0.0039 0.0047 0.0055 0.0062

Vasicek 0.0028 0.0035 0.0042 0.0047 0.0053 0.0060 0.0065 0.0072
CIR 0.0028 0.0034 0.0041 0.0046 0.0052 0.0058 0.0063 0.0070

1 year DNS-C 0.0014 0.0024 0.0033 0.0039 0.0047 0.0055 0.0062 0.0070
DNS-F 0.0013 0.0022 0.0031 0.0038 0.0046 0.0054 0.0061 0.0069
DNS-D 0.0012 0.0021 0.0030 0.0036 0.0043 0.0050 0.0056 0.0062

Vasicek 0.0055 0.0057 0.0061 0.0064 0.0063 0.0065 0.0066 0.0068
CIR 0.0054 0.0056 0.0061 0.0063 0.0062 0.0064 0.0065 0.0066

3 years DNS-C 0.0025 0.0035 0.0043 0.0048 0.0051 0.0051 0.0055 0.0056
DNS-F 0.0026 0.0037 0.0044 0.0049 0.0052 0.0053 0.0057 0.0059
DNS-D 0.0027 0.0035 0.0043 0.0050 0.0051 0.0051 0.0054 0.0055

Vasicek 0.0093 0.0092 0.0095 0.0097 0.0094 0.0093 0.0091 0.0089
CIR 0.0093 0.0092 0.0094 0.0097 0.0094 0.0092 0.0090 0.0088

5 years DNS-C 0.0028 0.0037 0.0047 0.0053 0.0054 0.0057 0.0057 0.0059
DNS-F 0.0027 0.0035 0.0046 0.0053 0.0054 0.0058 0.0057 0.0059
DNS-D 0.0027 0.0034 0.0044 0.0052 0.0052 0.0056 0.0056 0.0056
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Figure 15 – Kernel density estimates of the posterior distributions for the 1 year spot rates across all
models and horizons for the first rolling window

Source: Elaborated by the author.
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CHAPTER

6
DISCUSSION AND FURTHER DIRECTIONS

In this chapter we briefly discuss the results presented in this work, together with some
interpretations. We also list suggestions of possible directions for future research, taking into
account our literature review in Chapter 2 and open research problems. Our suggestions focus on
the interdisciplinary nature of the problem, taking into account novel research both in statistics
and financial economics. All computational procedures utilized throughout this work may be
made available and consulted upon request.

6.1 Discussion of the results

The main goal of this work was to estimate and compare the predictions of different
models for the term structure of interest rates. We studied three different models: the affine models
by Vasicek (1977) and Cox, Ingersoll and Ross (1985), and the dynamic Nelson-Siegel model of
Diebold and Li (2006). For the last one, we provided three different specifications regarding the
decay parameter λ . We used the Hamiltonian Monte Carlo algorithm for computational Bayesian
inference, first with simulated data and then with real term structure data. The main goal of the
simulated data section is to check how well the models and algorithms were able to estimate the
latent variables. The estimates were compared with the true simulated values for the state vector
that were also used for calculating the synthetic yield curve data used in estimation. As pointed
out by Gelman et al. (2020), working in an environment where the true data to be estimated
are known can be very useful for the assessment of statistical models. All of the five analyzed
models were able to successfully estimate the true state vectors. We also present convergence
diagnostics in Appendix B for the posterior chains, which indicate no major convergence issues
were observed throughout most of the results. We then proceeded to estimate the model for the
real yield curve data from the Brazilian market, ranging from 2012 to 2020.

With the estimates from real data, we evaluate model forecasting abilities in a rolling
window framework with the mean absolute error as our benchmark measure. According to this
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measure, the DNS model with time-varying decay parameter λ has provided the best forecasts
for most of the horizons and maturities, although the affine models (Vasicek and CIR) performed
better for shorter maturities with longer hozirons. For the longer maturities, the DNS models
were noticeably better, with the time-varing λ DNS being the best and the other two being very
close. The calibrated λ DNS provided the best forecasts for some maturities. Between the two
affine models, the results were very close, with the Vasicek or the CIR delivering the better
forecasts in different occasions. It is also worth mentioning that the data did not present short
rates near zero, one of the main possible shortcomings of the Vasicek model that the CIR model
seeks to solve.

Our results seem to justify the reputation of the dynamic Nelson-Siegel model from
Diebold and Li (2006) as the main workhorse in term structure modelling. It is worth pointing
out that treating the decay parameter λ as a time-varying process results in improvements from
the original approach most of the time.

Our results show some support for the results from Litterman and Scheinkman (1991)
that three factors provide the best description of the yield curve. We also conclude that working
in a multi-model framework may prove beneficial for forecasting, as some models can perform
better than others in different maturities or horizons. Tools such as Bayesian model averaging,
for example, might also prove to be useful. The general framework for affine models presented
in Duffie and Kan (1996) allows for multifactor models, so it may be possible to specify affine
models that provide better forecasting results.

6.2 Further direction for research

6.2.1 Bayesian methods for time series forecasting

Directions for future research might include prior sensitivity analysis for the model
parameters, especially for λ as a free parameter for the DNS model. Different specifications for
the λt process in the dynamic scenario might also be the subject of future research. In particular,
the prior predictive checking procedure by Gabry et al. (2019) can be an important part of the
Bayesian workflow, as suggested by Gelman et al. (2020).

Bridging the breakthrough work across research areas might be an excellent further step
for related research. For example, comparisons of the standard Bayesian econometric methods
such as the Kalman filter, simulation smoothers (KOOP, 2003) and FFBS algorithms (CARTER;
KOHN, 1994) with the HMC algorithm presented in this work for estimation of state space
models. Novel methods in machine learning, such as Gaussian processes, are certainly of great
interest either.

Bayesian state space modelling techniques may also be employed in estimating macroeco-
nomic models that have the term spread, or even the entire yield curve, as an input. As explained
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in Section 2.1.6, interactions between the term structure and macroeconomic policy making can
go both ways. Future research may employ the Bayesian modelling approaches presented in this
work for estimation of macro-finance models, and possibly as part of dynamic stochastic general
equilibrium (DSGE) models.

6.2.2 Financial and macroeconomic theory

A stronger interaction between theory and empirical models may also be pursued with
regards to financial theory and time series forecasting. In particular, the assumption of the
no-arbitrage restrictions of Christensen, Diebold and Rudebusch (2011) for the dynamic Nelson-
Siegel model and its possible effects on forecasting ability present one possible path for research.
A more thorough study of the effect of such type of restriction on financial time series forecasting
can prove to be fruitful in terms of research.

Although mentioned in Section 2.1.5, we did not explore any models that include
macroeconomic variables, such as the inflation rate or GDP growth, in forecasting. Macro-
finance models that decompose the term structure in macroeconomic factors resulting from
monetary policy, e.g., Rudebusch and Wu (2003), can be estimated and compared with the tools
described in this work.

The endogenous relationship between the yield curve and both monetary and fiscal
policies may also be object of further investigation. Works that relate fiscal (DAI; PHILIPPON,
2005) or monetary policy variables (GALLMEYER; HOLLIFIELD; ZIN, 2005) to the term
structure in a vector autoregression context already provide valuable contributions. Research
such as Huse (2011) and Morales (2010) combine the DNS model from Diebold and Li (2006)
with observed macroeconomic variables. Combining the knowledge of the ever-growing macro-
finance theory with the cutting edge advances in statistical time series methods is a path to
valuable research.
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APPENDIX

A
ADDITIONAL STOCHASTIC PROCESSES

AND PROBABILITY DISTRIBUTIONS

A.1 Wiener process

A Wiener process Wt , also called Brownian motion, is a stochastic process that can
be seen as the continuous-time analogue of a random walk.1 Although the Wiener process is
continuous in time t, we define its properties in discrete time for a time interval ∆. Start by
defining εt as following a standard normal distribution over discrete time. Then the stochastic
process Zt has independent and Gaussian increments if

Zt−Zt−1 = εt ,

where the variance of εt scales over time. Then, for a time interval ∆

Zt+∆−Zt ∼ N(0,∆).

The notation dZt is used to represent Zt+∆−Zt when ∆ is arbitrarily small. As Zt is not
differentiable, dZt has a different interpretation in stochastic calculus than in standard calculus.
As this is not the focus of this work, the relevant part is that dZt has the properties

E(dZt) = 0,

E(dZ2
t ) = dZ2

t = dt,

where dt is the time difference for an arbitrarily small time interval (COCHRANE, 2009).

1 Strictly speaking, Brownian motion refers to the physical movement of a particle which can be modelled
mathematically through a Wiener process. It is, however, very common to use the name “Brownian
motion” for the mathematical process itself, be it the discrete-time (random walk) or continuous-time
(Wiener process) version.
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A variable Wt follows a Wiener process if it has independent and Gaussian increments,
which is equivalent to saying it follows two properties (HULL, 2009):

Property 1. The change ∆Wt during a time interval ∆t is

∆Wt = εt
√

∆t,

where εt follows the standard Normal distribution.

Property 2. The values of ∆Wt for two different intervals ∆t are independent.

It is worth observing that Wt is both a Markovian process and a martingale, and also that

E[Wt ] = 0,

Var(Wt) = ∆t,

SD(Wt) =
√

Var(Wt) =
√

∆t.

The first mathematical formulation of the Brownian motion, as well as its first use in
asset pricing, dates back to Bachelier (1900). The famous option pricing model by Black and
Scholes (1973) assumes the price of the underlying asset follows a geometric Brownian motion.
Continuous-time formulations of term structure models may also rely on the Wiener process in
order to model random changes in variables.

The Wiener process is also part of the more elaborate diffusion processes. A diffusion
process is defined as a stochastic process which solves a stochastic differential equation. For
example, we can say the short rate rt is a diffusion process under the Vasicek model because rt

satisfies
drt = κ(µ− rt)dt +σdWt , (A.1)

where equation (A.1) is a stochastic differential equation. More precisely, the general form for
stochastic differential equations is

dxt = µ(t)dt +σ(t)dWt ,

where Wt is a Wiener process and the process xt that solves the left-hand side is, therefore, a
diffusion process.

A.2 Additional probability distributions

A.2.1 Truncated normal distribution

First, define the normal distribution with probability density function

φ(x; µ,σ2) =
1

σ
√

2π
exp
{
− 1

2

(
x−µ

σ

)2}
,
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with {µ,x} ∈R, σ ∈R+, and cumulative distribution function denoted by Φ(x; µ,σ2). Thus, we
can obtain the truncated normal distribution by setting a truncation interval (a,b), assigning zero
probability density to all values outside the interval and scaling the values so that the density
integrates to 1 (BURKARDT, 2014).

More specifically, a random variable is said to follow a truncated normal distribution,
or a normal distribution with mean µ and variance σ2 truncated between a and b, if it has the
probability density function

p(x; µ,σ ,a,b) =


0, if x≤ a

φ(x;µ,σ2)

Φ(b;µ,σ2)−Φ(a;µ),σ2)
, if a < x < b

0, if x≥ b

,

with φ(x; µ,σ2) denoting the PDF and Φ(x; µ,σ2) denoting the CDF of a (non-truncated)
normal distribution with mean µ and variance σ2. Note that µ and σ

2 do not refer to the
mean and variance of the truncated normal distribution, but of the “parent” normal distribution
(BURKARDT, 2014).

We now present expressions for the actual mean and variance of the truncated normal
distribution, µT N and σ2

T N . First, start by defining

α =
a−µ

σ
,

β =
b−µ

σ
.

Then, the mean and variance of the truncated normal can be written as

µT N = µ−σ
φ(β ;0,1)−φ(α;0,1)
Φ(β ;0,1)−Φ(α;0,1)

,

σ
2
T N = σ

2
[

1− βφ(β ;0,1)−αφ(α;0,1)
Φ(β ;0,1)−Φ(α;0,1)

−
(

φ(β ;0,1)−φ(α;0,1)
Φ(β ;0,1)−Φ(α;0,1)

)2]
.

A.2.2 Half-Cauchy distribution

A random variable is said to follow a half-Cauchy distribution with parameter β > 0 if it
has the probability density function

p(x;β ) =


2

πβ [1+( x
β
)2]
, if x≥ 0

0, otherwise.

The half-Cauchy distribution has both undefined mean and variance. As the Cauchy dis-
tribution is symmetric around its location parameter, in this case taken to be zero, the half-Cauchy
is obtained by truncating the Cauchy distribution on its left side (CORDEIRO; LEMONTE,
2011).
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A.2.3 Noncentral chi-squared distribution

A random variable is said to follow a noncentral chi-squared distribution with degrees of
freedom k and noncentrality parameter λ if it has the probability density function

p(x;k,λ ) = exp{−(λ + x)/2}1
2
( x

λ

)(k−2)/4I(k−2)/2(
√

λx),

Ia(y) = (
1
2

y)a
∞

∑
j=1

(y2/4) j

j!Γ(a+ j+1)
,

with support {x,k,λ} ∈R+. The noncentral chi-squared distribution has mean k+λ and variance
2(k+2λ ) (JOHNSON; KOTZ; BALAKRISHNAN, 1995).

An additional way of characterizing the noncentral chi-squared distribution is by defining

Y =
K

∑
i=1

X2
i

as the sum of squared K independent Gaussian random variables with means µi and unit variance.
Then Y shall follow a noncentral chi-squared distribution, with parameters K and λ = ∑

K
i=1 µ2

i .
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APPENDIX

B
MCMC CONVERGENCE DIAGNOSTICS AND

ADDITIONAL PLOTS

Here we describe some MCMC convergence diagnostics for the models, and also present
additional diagrams such as trace plots, kernel density estimates and autocorrelation diagrams
for models in Chapters 4 and 5. The main reference for this section is Vehtari et al. (2021), and
all of the statistics are computed via the ArviZ package for Python (KUMAR et al., 2019).

B.1 Monte Carlo standard error

It is possible to evaluate the precision of the average θ of S independent draws as an
estimate of E[θ |y] through the Monte Carlo standard error (MCSE). The MCSE can be computed
as

MCSE =

√
Var(θ) =

√
Var(θ |y)

S
,

and this can be generalized to the posterior expectation of any function g(θ). In this work the
MCSEs are computed from the effective sample sizes through the procedure described in Vehtari
et al. (2021). We report the mean and standard deviation estimates for the MCSE.

B.2 Effective sample size

The effective sample size (ESS) is a measure of information contained in each sampling
chain. A higher sampling autocorrelation means higher sampling uncertainty and therefore
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smaller ESS. The ESS can be estimated as

ÊSS =
S
τ̂
,

τ̂ =−1+2
K

∑
t ′=0

P̂t ′,

P̂t ′ = ρ̂2t ′+ ρ̂2t ′+1,

where S is the number of samples and ρ̂t are autocorrelations estimated at lag t via fast Fourier
transform. K is the last integer for which P̂K = ρ̂2K + ρ̂2K+1 is positive.

Besides the mean and standard deviation estimates of ESS, Vehtari et al. (2021) propose
two other versions: Bulk-ESS and Tail-ESS. Bulk-ESS is obtained by rank normalization of
the draws in the chain, a procedure that consists of replacing drawn parameter values with rank
normalized values. The rank normalized values are normal scores for pooled draws from all
chains. Tail-ESS is the minimum of the effective sample sizes of the 5% and 95% quantiles.
While Bulk-ESS is useful for assessing problems due to trend behavior of chains, Tail-ESS
allows for diagnosing issues related to the scale of chains.

B.3 MCMC diagnostics for simulated and real data

Tables 12 to 16 present the MCMC diagnostics for each of the five models estimated with
simulated data, in Chapter 4. For the first three models, we observe a large ESS for all parameters
and small values for MCSE. This behavior is also observed for most of the parameters in the last
two models, except for the free λ parameter and the standard deviation of the random walk λt ,
denoted by σλ . The MCSE’s are still small, although a small bulk-ESS might indicate minor
trend problems with the chains.

Tables 17 to 21 present the MCMC diagnostics for the five models estimated with real
data, in Chapter 5. Overall we see the same patterns as in the simulated data. For the σλ parameter
of the time-varying λ DNS model, estimation improves quite a lot, as we can see in the ESS
counts or MCSE.

Table 12 – MCMC convergence for the Vasicek model - Simulated data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
a <0.001 <0.001 1189 1189 1189 1233
b <0.001 <0.001 1122 1122 1118 1227
κ 0.008 0.006 949 949 795 631
µ 0.001 0.001 630 630 750 566
σ <0.001 <0.001 2116 2109 2128 1685
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Table 13 – MCMC convergence for the CIR model - Simulated data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
a <0.001 <0.001 1011 1011 1023 1124
b <0.001 <0.001 966 966 969 1353
κ 0.010 0.007 663 663 611 588
µ 0.002 0.001 412 412 333 179
σ <0.001 <0.001 1542 1531 1551 1263

Table 14 – MCMC convergence for the DNS model (calibrated λ ) - Simulated data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
κl 0.011 0.008 777 777 701 998
µl 0.001 <0.001 1181 1172 1328 936
σl <0.001 <0.001 2321 2321 2316 1701
κs 0.006 0.004 1119 1119 883 654
µs <0.001 <0.001 2330 1785 2391 1081
σs <0.001 <0.001 2098 2091 2109 1525
κc 0.010 0.007 885 885 832 638
µc 0.001 <0.001 1379 996 1546 1020
σc <0.001 <0.001 542 539 550 900

Table 15 – MCMC convergence for the DNS model (free λ ) - Simulated data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
λ 0.003 0.002 96 96 97 111
κl 0.012 0.008 833 833 725 645
µl 0.001 0.001 863 863 866 737
σl <0.001 <0.001 2184 2184 2171 1590
κs 0.005 0.004 1415 1415 1102 714
µs <0.001 <0.001 2758 2282 2779 1529
σs <0.001 <0.001 2328 2328 2311 1586
κc 0.009 0.007 1009 1009 952 827
µc 0.001 <0.001 1535 967 1801 1207
σc <0.001 <0.001 552 552 553 1056

B.4 Simulated data and estimated state vectors - Chap-
ter 4

As the figures for the Vasicek simulated data and estimated short rate are already pre-
sented in Chapter 4, we proceed to analyze the remaining figures. The simulated data for the CIR
model presented in Figure 16 looks overall very similar to the Vasicek simulated data presented
in Figure 6 of Chapter 4.

For the DNS models, as the decay parameter λ does not enter the equation for the latent
factors, the simulated factors for the free and time-varying λ versions of the DNS (Figures 17
and 19) are the same as the ones for the calibrated λ DNS presented in Figure 8 of Chapter 4.
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Table 16 – MCMC convergence for the DNS model (time-varying λ ) - Simulated data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
σλ 0.001 0.001 46 46 45 83
κl 0.011 0.008 879 879 688 567
µl 0.001 0.001 770 770 866 691
σl <0.001 <0.001 1493 1489 1499 1385
κs 0.005 0.003 1686 1686 1287 997
µs <0.001 <0.001 2356 1883 2400 1327
σs <0.001 <0.001 2167 2167 2153 1670
κc 0.010 0.007 852 852 759 746
µc 0.001 0.001 1073 796 1142 1035
σc <0.001 <0.001 299 296 303 450

Table 17 – MCMC convergence for the Vasicek model - Real data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
a <0.001 <0.001 1164 1164 1167 1457
b <0.001 <0.001 940 940 945 1370
κ 0.002 0.001 1247 1247 1063 788
µ 0.001 0.001 1214 1214 1033 913
σ <0.001 <0.001 2456 2450 2444 1638

Table 18 – MCMC convergence for the CIR model - Real data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
a <0.001 <0.001 2570 2569 2576 1618
b <0.001 <0.001 2519 2519 2514 1464
κ 0.002 0.001 1143 1143 1023 805
µ 0.001 0.001 1057 1057 1192 1013
σ <0.001 <0.001 3153 3102 3223 1553

The factor loadings that generate the spot yield curves are affected by different specifications
of λ , but look similar overall. The spot yield curves for the free and dynamic λ DNS models,
presented in Figures 18 and 21, respectively, do not look much different than the calibrated λ

spot curve presented in Figure 9 of Chapter 4. The simulated λt for the dynamic λ DNS model
is presented in Figure 20.

The estimated short rate for the CIR model, present in Figure 22, also looks similar to
the Vasicek short rate presented in Figure 7 of Chapter 4. The estimated latent factors for the free
λ DNS model presented in Figure 23 also look very similar to the fixed λ DNS latent factors
presented in Figure 10 of Chapter 4. The factors for the dynamic λ DNS presented in Figure 24
look slightly different, with wider HPD intervals, especially for the slope and curvature factors.
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Table 19 – MCMC convergence for the DNS model (calibrated λ ) - Real data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
κl 0.013 0.009 709 709 633 888
µl 0.001 0.001 899 899 975 817
σl <0.001 <0.001 2410 2410 2386 1819
κs 0.007 0.005 1001 1001 827 741
µs <0.001 <0.001 2426 1719 2453 1301
σs <0.001 <0.001 1991 1991 1995 1739
κc 0.005 0.004 1357 1357 1133 952
µc 0.001 0.001 2626 1715 2626 1504
σc <0.001 <0.001 575 575 576 908

Table 20 – MCMC convergence for the DNS model (free λ ) - Real data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
λ 0.001 0.001 153 153 153 406
κl 0.011 0.008 884 884 728 722
µl 0.001 <0.001 1476 1432 1603 1014
σl <0.001 <0.001 2338 2338 2344 1737
κs 0.008 0.005 1046 1046 919 873
µs <0.001 <0.001 2094 1234 2522 1217
σs <0.001 <0.001 1985 1956 2040 1508
κc 0.005 0.004 1380 1380 1180 1101
µc 0.001 0.001 1965 1402 1996 1194
σc <0.001 <0.001 696 696 690 1085

Table 21 – MCMC convergence for the DNS model (time-varying λ ) - Real data

Parameter MCSEµ MCSEσ ESSµ ESSσ ESSbulk ESStail
σλ <0.001 <0.001 705 705 708 1181
κl 0.006 0.004 785 785 654 996
µl 0.001 0.001 1650 1477 1696 1033
σl <0.001 <0.001 1122 1122 1125 1249
κs 0.003 0.002 1502 1502 1117 919
µs 0.001 <0.001 1609 1407 1650 1363
σs <0.001 <0.001 949 949 945 1425
κc 0.006 0.004 1300 1300 1167 1058
µc 0.001 0.001 1713 1569 1786 827
σc <0.001 <0.001 849 848 847 1431

B.5 Marginal posterior distributions, trace diagrams and
autocorrelation plots - Chapter 4

Figures 25 to 29 present the trace diagrams, kernel density estimates (KDEs) for the
marginal posterior distributions and autocorrelation plots for the sampled chains for each of the
parameters of the five models. The horizontal straight (black) lines on the trace plots are the
true parameter values. For the KDE plots, the vertical dashed (red) lines are the true parameter
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Figure 16 – Simulated data for the CIR model

Note – The short rate rt is presented along with the observed spot rates for the maturities 1, 3 and 5.

Source: Elaborated by the author.

Figure 17 – Simulated factors for the DNS model (free λ )

Note – The presented factors correspond to level, slope and curvature of the yield curve.

Source: Elaborated by the author.

Figure 18 – Simulated spot yields for the DNS model (free λ )

Note – The presented maturities are 0.17, 0.25, 0.5, 1, 3 and 5.

Source: Elaborated by the author.

values, and the dotted (black) lines are the posterior medians for the sampled marginal posterior
distributions.

Throughout Chapter 4 we mentioned how much the medians of the posterior estimates
for the parameters deviate from the parameters’ true values, which can be verified in the KDE
plots. As already mentioned in Chapter 4, none of the parameters for the five models show any
major convergence issues, which can be verified in the trace and autocorrelation plots. Almost all
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Figure 19 – Simulated factors for the DNS model (time-varying λ )

Note – The presented factors correspond to level, slope and curvature of the yield curve.

Source: Elaborated by the author.

Figure 20 – Simulated λt for the DNS model (time-varying λ )

Note – The presented factors correspond to level, slope and curvature of the yield curve.

Source: Elaborated by the author.

Figure 21 – Simulated spot yields for the DNS model (time-varying λ )

Note – The presented maturities are 0.17, 0.25, 0.5, 1, 3 and 5.

Source: Elaborated by the author.

of the parameters show fast decaying autocorrelation functions, indicating no major issues with
chain convergence. The notable exception is the σλ parameter for the dynamic λ DNS model,
with some persistently high autocorrelation.
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Figure 22 – Estimated short rate and 95% highest posterior density interval for the CIR model - Simulated
data

Source: Elaborated by the author.

Note – The black line is the simulated state vector, and the red line the posterior median with the 95%
highest posterior density interval.

Figure 23 – Estimated latent factors and 95% highest posterior density intervals for the DNS model (free
λ ) - Simulated data

Source: Elaborated by the author.

B.6 Marginal posterior distributions, trace diagrams and
autocorrelation plots - Chapter 5

Figures 30 to 34 show the trace diagrams, KDEs for the marginal posterior distributions
and autocorrelation plots for the sampled chains for each of the parameters of the five models
estimated with the dataset described in Chapter 5. While estimating the model with real data, we
do not know the true parameter values. Thus, it is not possible to compare marginal posterior
moments with the true values as it was the case with Chapter 4.

The KDEs for the two chains do not diverge very much from one another and the trace
plots indicate no autocorrelation issues. Similarly to Chapter 4, the autocorrelations are fast
decaying, therefore indicating no major chain convergence issues. The autocorrelation for σλ is
significantly lower than for the simulated data model.
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Figure 24 – Estimated latent factors and 95% highest posterior density intervals for the DNS model
(time-varying λ ) - Simulated data

Source: Elaborated by the author.

Figure 25 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
Vasicek model - Simulated data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.
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Figure 26 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
CIR model - Simulated data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.

Figure 27 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
DNS model (calibrated λ ) - Simulated data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.
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Figure 28 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
DNS model (free λ ) - Simulated data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.

Figure 29 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
DNS model (time-varying λ ) - Simulated data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.
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Figure 30 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
Vasicek model - Real data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.

Figure 31 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
CIR model - Real data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.
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Figure 32 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
DNS model (calibrated λ ) - Real data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.

Figure 33 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
DNS model (free λ ) - Real data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.
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Figure 34 – Estimated trace diagrams, marginal posterior distributions and autocorrelation plots for the
DNS model (time-varying λ ) - Real data

Note – The three columns are the trace, KDE and autocorrelation for the sampled chain.

Source: Elaborated by the author.
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APPENDIX

C
ADDITIONAL FORECASTING MEASURES

In this appendix we present two additional measures of statistical error for the rolling
window forecast. The first one is the root mean squared error, or RMSE. The estimate of the
RMSE is defined as

R̂MSE
(τ)

h =

√
∑

430
K=401(ŷ

(τ)
med,(K+h)− y(τ)

(K+h))
2

30
,

with the same notation from Chapter 5. The second measure is the root mean squared logarithmic
error, or RMSLE. The RSMLE estimate is obtained from

R̂MSLE
(τ)

h =

√√√√√∑
430
K=401 ln

(
1+y(τ)

(K+h)

1+ŷ(τ)med,(K+h)

)2

30
.

Tables 22 and 23 contain, respectively, the RMSE and RMSLE for each model, maturity
and time horizon. Similar conclusions to those of the Table 11 analysis can be drawn: the DNS-D
model provides the best forecasts for most of the maturities. The two affine models perform
better for shorter maturities and longer horizons, and the three DNS models perform better at
longer maturities.
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Table 22 – Comparison of root mean squared errors for the five models across different forecasting
horizons and maturities - Rolling window forecast

Maturity Model
Horizon

1 2 3 4 5 6 7 8

Vasicek 0.0047 0.0041 0.0036 0.0032 0.0030 0.0030 0.0030 0.0032
CIR 0.0047 0.0041 0.0037 0.0033 0.0030 0.0030 0.0030 0.0032

2 months DNS-C 0.0008 0.0018 0.0027 0.0034 0.0044 0.0053 0.0062 0.0073
DNS-F 0.0010 0.0019 0.0027 0.0035 0.0044 0.0055 0.0065 0.0075
DNS-D 0.0009 0.0016 0.0024 0.0031 0.0039 0.0048 0.0056 0.0065

Vasicek 0.0036 0.0032 0.0029 0.0026 0.0025 0.0027 0.0030 0.0034
CIR 0.0036 0.0031 0.0029 0.0026 0.0026 0.0028 0.0030 0.0033

3 months DNS-C 0.0009 0.0019 0.0028 0.0035 0.0045 0.0054 0.0063 0.0074
DNS-F 0.0009 0.0018 0.0026 0.0034 0.0043 0.0053 0.0063 0.0073
DNS-D 0.0008 0.0016 0.0024 0.0031 0.0039 0.0047 0.0056 0.0064

Vasicek 0.0014 0.0016 0.0021 0.0025 0.0031 0.0037 0.0043 0.0049
CIR 0.0014 0.0016 0.0021 0.0025 0.0030 0.0036 0.0041 0.0048

6 months DNS-C 0.0011 0.0021 0.0030 0.0037 0.0046 0.0055 0.0063 0.0073
DNS-F 0.0009 0.0017 0.0025 0.0033 0.0042 0.0051 0.0061 0.0070
DNS-D 0.0008 0.0016 0.0024 0.0031 0.0039 0.0047 0.0055 0.0062

Vasicek 0.0028 0.0035 0.0042 0.0047 0.0053 0.0060 0.0065 0.0072
CIR 0.0028 0.0034 0.0041 0.0046 0.0052 0.0058 0.0063 0.0070

1 year DNS-C 0.0014 0.0024 0.0033 0.0039 0.0047 0.0055 0.0062 0.0070
DNS-F 0.0013 0.0022 0.0031 0.0038 0.0046 0.0054 0.0061 0.0069
DNS-D 0.0012 0.0021 0.0030 0.0036 0.0043 0.0050 0.0056 0.0062

Vasicek 0.0055 0.0057 0.0061 0.0064 0.0063 0.0065 0.0066 0.0068
CIR 0.0054 0.0056 0.0061 0.0063 0.0062 0.0064 0.0065 0.0066

3 years DNS-C 0.0025 0.0035 0.0043 0.0048 0.0051 0.0051 0.0055 0.0056
DNS-F 0.0026 0.0037 0.0044 0.0049 0.0052 0.0053 0.0057 0.0059
DNS-D 0.0027 0.0035 0.0043 0.0050 0.0051 0.0051 0.0054 0.0055

Vasicek 0.0093 0.0092 0.0095 0.0097 0.0094 0.0093 0.0091 0.0089
CIR 0.0093 0.0092 0.0094 0.0097 0.0094 0.0092 0.0090 0.0088

5 years DNS-C 0.0028 0.0037 0.0047 0.0053 0.0054 0.0057 0.0057 0.0059
DNS-F 0.0027 0.0035 0.0046 0.0053 0.0054 0.0058 0.0057 0.0059
DNS-D 0.0027 0.0034 0.0044 0.0052 0.0052 0.0056 0.0056 0.0056
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Table 23 – Comparison of root mean squared logarithmic error for the five models across different
forecasting horizons and maturities - Rolling window forecast

Maturity Model
Horizon

1 2 3 4 5 6 7 8

Vasicek 0.0045 0.0040 0.0035 0.0031 0.0029 0.0028 0.0029 0.0031
CIR 0.0045 0.0039 0.0035 0.0031 0.0029 0.0029 0.0029 0.0031

2 months DNS-C 0.0008 0.0017 0.0025 0.0033 0.0042 0.0051 0.0060 0.0070
DNS-F 0.0009 0.0018 0.0025 0.0034 0.0043 0.0053 0.0062 0.0072
DNS-D 0.0008 0.0016 0.0023 0.0030 0.0038 0.0046 0.0054 0.0062

Vasicek 0.0035 0.0030 0.0027 0.0025 0.0024 0.0026 0.0029 0.0033
CIR 0.0034 0.0030 0.0028 0.0025 0.0025 0.0027 0.0029 0.0032

3 months DNS-C 0.0009 0.0018 0.0027 0.0034 0.0043 0.0052 0.0061 0.0071
DNS-F 0.0009 0.0017 0.0025 0.0033 0.0042 0.0051 0.0061 0.0070
DNS-D 0.0008 0.0015 0.0023 0.0030 0.0037 0.0046 0.0054 0.0061

Vasicek 0.0013 0.0015 0.0020 0.0024 0.0029 0.0036 0.0041 0.0047
CIR 0.0013 0.0016 0.0020 0.0024 0.0029 0.0035 0.0040 0.0046

6 months DNS-C 0.0011 0.0020 0.0029 0.0035 0.0044 0.0053 0.0061 0.0070
DNS-F 0.0009 0.0016 0.0024 0.0031 0.0040 0.0049 0.0058 0.0067
DNS-D 0.0008 0.0015 0.0023 0.0030 0.0037 0.0045 0.0052 0.0060

Vasicek 0.0027 0.0033 0.0040 0.0045 0.0051 0.0057 0.0062 0.0069
CIR 0.0026 0.0033 0.0040 0.0044 0.0050 0.0056 0.0061 0.0067

1 year DNS-C 0.0013 0.0023 0.0032 0.0038 0.0045 0.0053 0.0059 0.0068
DNS-F 0.0012 0.0021 0.0030 0.0037 0.0044 0.0051 0.0059 0.0066
DNS-D 0.0011 0.0020 0.0028 0.0035 0.0041 0.0048 0.0054 0.0060

Vasicek 0.0052 0.0053 0.0058 0.0061 0.0060 0.0062 0.0062 0.0064
CIR 0.0051 0.0053 0.0057 0.0060 0.0059 0.0061 0.0061 0.0063

3 years DNS-C 0.0023 0.0033 0.0040 0.0045 0.0048 0.0048 0.0052 0.0053
DNS-F 0.0024 0.0035 0.0042 0.0046 0.0049 0.0050 0.0054 0.0056
DNS-D 0.0025 0.0033 0.0040 0.0047 0.0048 0.0049 0.0051 0.0052

Vasicek 0.0087 0.0086 0.0089 0.0091 0.0088 0.0087 0.0085 0.0083
CIR 0.0087 0.0086 0.0088 0.0091 0.0088 0.0086 0.0084 0.0082

5 years DNS-C 0.0027 0.0035 0.0044 0.0050 0.0051 0.0054 0.0054 0.0055
DNS-F 0.0026 0.0033 0.0043 0.0050 0.0050 0.0054 0.0054 0.0055
DNS-D 0.0025 0.0032 0.0041 0.0048 0.0048 0.0052 0.0052 0.0053
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