• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Doctoral Thesis
Full name
Lia Hanna Martins Morita
Knowledge Area
Date of Defense
São Carlos, 2017
Tomazella, Vera Lucia Damasceno (President)
Cabral, Celso Rômulo Barbosa
Colosimo, Enrico Antônio
Freitas, Marta Afonso
Louzada Neto, Francisco
Title in English
Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution
Keywords in English
Burn-in tests
Degradation analysis
Inverse gaussian distribution
Inverse gaussian process
Abstract in English
Conventional reliability analysis techniques are focused on the occurrence of failures over time. However, in certain situations where the occurrence of failures is tiny or almost null, the estimation of the quantities that describe the failure process is compromised. In this context the degradation models were developed, which have as experimental data not the failure, but some quality characteristic attached to it. Degradation analysis can provide information about the components lifetime distribution without actually observing failures. In this thesis we proposed different methodologies for degradation data based on the inverse Gaussian distribution. Initially, we introduced the inverse Gaussian deterioration rate model for degradation data and a study of its asymptotic properties with simulated data. We then proposed an inverse Gaussian process model with frailty as a feasible tool to explore the influence of unobserved covariates, and a comparative study with the traditional inverse Gaussian process based on simulated data was made. We also presented a mixture inverse Gaussian process model in burn-in tests, whose main interest is to determine the burn-in time and the optimal cutoff point that screen out the weak units from the normal ones in a production row, and a misspecification study was carried out with the Wiener and gamma processes. Finally, we considered a more flexible model with a set of cutoff points, wherein the misclassification probabilities are obtained by the exact method with the bivariate inverse Gaussian distribution or an approximate method based on copula theory. The application of the methodology was based on three real datasets in the literature: the degradation of LASER components, locomotive wheels and cracks in metals.
Title in Portuguese
Modelagem de degradação para análise de confiabilidade com estrutura dependente do tempo baseada na distribuição gaussiana inversa
Keywords in Portuguese
Análise de degradação
Distribuição gaussiana inversa
Processo gaussiano inverso
Testes de burn-in.
Abstract in Portuguese
As técnicas convencionais de análise de confiabilidade são voltadas para a ocorrência de falhas ao longo do tempo. Contudo, em determinadas situações nas quais a ocorrência de falhas é pequena ou quase nula, a estimação das quantidades que descrevem os tempos de falha fica comprometida. Neste contexto foram desenvolvidos os modelos de degradação, que possuem como dado experimental não a falha, mas sim alguma característica mensurável a ela atrelada. A análise de degradação pode fornecer informações sobre a distribuição de vida dos componentes sem realmente observar falhas. Assim, nesta tese nós propusemos diferentes metodologias para dados de degradação baseados na distribuição gaussiana inversa. Inicialmente, nós introduzimos o modelo de taxa de deterioração gaussiana inversa para dados de degradação e um estudo de suas propriedades assintóticas com dados simulados. Em seguida, nós apresentamos um modelo de processo gaussiano inverso com fragilidade considerando que a fragilidade é uma boa ferramenta para explorar a influência de covariáveis não observadas, e um estudo comparativo com o processo gaussiano inverso usual baseado em dados simulados foi realizado. Também mostramos um modelo de mistura de processos gaussianos inversos em testes de burn-in, onde o principal interesse é determinar o tempo de burn-in e o ponto de corte ótimo para separar os itens bons dos itens ruins em uma linha de produção, e foi realizado um estudo de má especificação com os processos de Wiener e gamma. Por fim, nós consideramos um modelo mais flexível com um conjunto de pontos de corte, em que as probabilidades de má classificação são estimadas através do método exato com distribuição gaussiana inversa bivariada ou em um método aproximado baseado na teoria de cópulas. A aplicação da metodologia foi realizada com três conjuntos de dados reais de degradação de componentes de LASER, rodas de locomotivas e trincas em metais.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.