• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Alex de la Cruz Huayanay
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2019
Orientador
Banca examinadora
Cancho, Vicente Garibay (Presidente)
Branco, Marcia D Elia
Núñez, José Santos Romeo
Título em português
Modelos de regressão para resposta binária na presença de dados desbalanceados
Palavras-chave em português
Dados desbalanceados
Ligação assimétrica
Medidas de similaridade
Regressão binária
Resíduos quantílicos
Resumo em português
Na regressão binária, o desbalanceamento de dados refere-se à presença de valores zeros (ou uns) numa proporção significativamente maior do que os correspondentes valores uns (ou zeros). Neste trabalho, estudamos dois métodos desenvolvidos para lidar com o desbalanceamento e comparamos eles com o uso de funções de ligação assimétrica potência e reversa de potência. Os resultados mostram que esses métodos não corrigem adequadamente o viés nas estimativas dos coeficientes de regressão e que os modelos com função de ligação assimétrica considerados produzem melhores resultados para certo tipo de desbalanceamento. Adicionalmente, apresentamos uma aplicação para dados desbalanceados identificando o melhor modelo entre vários modelos propostos. A estimação dos parâmetros é realizada sob abordagem Bayesiana considerando o método de estimação Monte Carlo Hamiltoniano usando o algoritmo No-U-Turn Sampler e as comparações dos modelos são desenvolvidas utilizando diferentes critérios para comparação de modelos, avaliação preditiva e resíduos quantílicos.
Título em inglês
Regression models for binary response in the presence of imbalanced data
Palavras-chave em inglês
Asymmetric link
Binary regression
Imbalanced data
Quantile residuals
Similarity measures
Resumo em inglês
In binary regression, imbalanced data result from the presence of values equal to zero (or one) in a proportion that is significantly greater than the corresponding real values of one (or zero). In this work, we evaluate two methods developed to deal with imbalanced data and compare them to the use of asymmetric links. The results based on simulation study show, that correction methods do not adequately correct bias in the estimation of regression coefficients and that the models with power links and reverse power considered produce better results for certain types of imbalanced data. Additionally, we present an application for imbalanced data, identifying the best model among the various ones proposed. The parameters are estimated using a Bayesian approach, considering the Hamiltonian Monte-Carlo method, utilizing the No-U-Turn Sampler algorithm and the comparisons of models were developed using different criteria for model comparison, predictive evaluation and quantile residuals
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-10-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.